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ABSTRACT

Considering groups of variables, rather than variables individually,
can be beneficial for estimation accuracy if structural relationships
between variables exist (e.g., spatial, hierarchical or related to the
physics of the problem). Group-sparsity inducing estimators are
typical examples that benefit from such type of prior knowledge.
Building on this principle, we show that the diffusion LMS algo-
rithm for distributed inference over networks can be extended to deal
with structured criteria built upon groups of variables, leading to a
flexible framework that can encode various structures in the param-
eters to estimate. We also propose an unsupervised online strategy
to differentially promote or inhibit collaborations between nodes de-
pending on the group of variables at hand.

Index Terms— Diffusion adaptation, distributed optimization,
multitask learning, group-based estimation

1. INTRODUCTION

Diffusion adaptation algorithms enable multi-agent networks to con-
tinuously learn and track concept drifts in a distributed manner from
streaming data. They are efficient to address learning problems over
multi-agent networks as well as to model the behavior of biological
networks [1–3]. They have also demonstrated better stability and
performance [4, 5] than incremental [6–9] and consensus [10–12]
strategies.

Diffusion strategies can be implemented in single-task or multi-
task scenarios. In recent years, distributed learning over multitask
networks has attracted increasing attention. Instead of dealing with
applications where a common parameter vector is estimated by the
entire network, multi-task diffusion strategies consider situations
where agents need to simultaneously infer multiple parameter vec-
tors. The performance of diffusion LMS when it is run, either
intentionally or unintentionally, in a multitask environment was an-
alyzed in [13]. An unsupervised clustering strategy that allows each
node to select the neighboring nodes with which it can collaborate
was also introduced in the same article. Alternative strategies were
introduced in [14, 15]. A multitask counterpart of the diffusion
LMS algorithm was derived in [16]. Its behavior over asynchronous
networks was studied in [17]. A multitask diffusion with TV reg-
ularization was analyzed in [18]. In [19], the parameter space was
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decomposed into two orthogonal subspaces with one of them being
common to all nodes. Other scenarios are described in [20, 21],
where incremental and diffusion strategies are used to solve esti-
mation problems with nodes that simultaneously estimate local and
global parameters.

An inspection of the literature on diffusion adaptation over net-
works shows that, in most existing works, single-task and multitask
oriented algorithms fuse information from neighboring agents via
weighted combinations of estimated parameter vectors. These com-
binations assign the same scaling weight to all entries in the com-
bined iterates. There are situations where different groups within
the iterate vectors should be weighted differently than other groups
within the same iterates. Consider an example where the top half of
the entries of the parameter vectors to estimate are common across
all agents, while the bottom half entries are randomly distributed
without obvious relationship. Uniformly combining estimates as
performed by the single-task diffusion LMS [1] may cause large esti-
mation error due to the presence of the significantly different entries.
In the same way, the multitask diffusion LMS in [13] may reduce the
estimation bias by degenerating a cooperative algorithm into a non-
cooperative one at each node, but may not benefit from similarities
that exist among the top half of the entries.

Considering groups of variables, rather than variables individu-
ally, can be beneficial for estimation accuracy if structural relation-
ships between variables exist (e.g., spatial, hierarchical or related
to the physics of the problem). Group-sparsity inducing estimators
are typical examples that benefit from such type of prior knowledge.
Building on this principle, we show that the diffusion LMS algorithm
can be extended to deal with structured criteria built upon groups of
variables, leading to a flexible framework that can encode various
structures in the parameters to estimate. We also propose an unsu-
pervised strategy to differentially promote or inhibit collaborations
between nodes in an online manner, depending on the group at hand.

Notation. Small letters x denote scalars, and boldface small
letters x denote column vectors. Boldface capital lettersR represent
matrices, and the operator (·)> denotes matrix transposition. IN
denotes the N × N identity matrix. Nk denotes the neighbors of
node k, including k. Finally, ⊗ denotes the Kronecker product.

2. NETWORK MODEL AND DIFFUSION LMS

2.1. Network model
Consider a connected network consisting of N nodes. In this pa-
per, we address the problem of estimating an L× 1 unknown vector
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at each node k from collected data. Node k has access to time se-
quences {dk(n),xk,n}, where dk(n) denotes the reference signal,
and xk,n represents an L× 1 regression vector with covariance ma-
trixRx,k = E{xk,nx

>
k,n} > 0. We assume that the data are related

via the linear model:

dk(n) = x
>
k,nw

?
k + zk(n) (1)

for all k, with w?
k an unknown parameter vector, and zk(n) a zero-

mean i.i.d. noise of variance σ2
z,k that is independent of every other

signal. For determining the parameter vectors wk, we consider the
mean-square error criterion at each node k defined as:

Jk(wk) = E
{
|dk(n)− x>k,nwk|2

}
. (2)

We refer to cases where all nodes estimate the same parameter vec-
tor, that is, w?

k = w? for all k, as single-task problems. In com-
parison, we refer to cases where nodes may be estimating distinct
parameter vectors as multi-task problem.

2.2. Diffusion LMS
Before introducing the diffusion strategy at the group level, we pro-
vide a brief review of standard diffusion LMS. The goal of this algo-
rithm is to minimize the following global cost function:

Jglob(w) =

N∑
k=1

Jk(w) (3)

We denote the minimizer by w?. Minimizing (3) over w is equiva-
lent to minimizing the following alternative cost [1–3]:

Jglob′
(w) = Jk(w) +

∑
6̀=k

‖w −w?‖2Rx,`
(4)

In order to bypass the unknown second-order statistics Rx,`, based
on the Rayleigh-Ritz characterization of their eigenvalues, previ-
ous works approximated the weighted norm in (4) by a scaled un-
weighted norm [1–3], say as,

‖w −w?‖2Rx,`
≈ b`k ‖w −w?‖2 (5)

for some nonnegative coefficients b`k. This leads to the following
modified cost function at node k:

Jglob′′
(w) = Jk(w) +

∑
6̀=k

b`k ‖w −w?‖2 (6)

Calculating the gradient vector of (6), restricting communication to
immediate neighbors, and using approximation (5) along with the ar-
guments from [2], we arrive at the adapt-then-combine (ATC) strat-
egy1

ψk,n = wk,n−1 + µk xk,n (dk(n)− x>k,nwk,n−1)

wk,n =
∑
`∈Nk

a`k ψ`,n

(7a)

(7b)

whereNk denotes the set of neighbors of agent k, and the {a`k}
coefficients are given by:

akk = 1− µk

∑
`∈Nk\{k}

b`k (8)

a`k = µk b`k, ` ∈ Nk\{k} (9)
a`k = 0, ` /∈ Nk (10)

1We focus on the ATC form in this paper. The combine-then-adapt (CTA)
form can be derived in a similar way.

and µk is a positive step-size. The coefficients {a`k} are usually
treated as free weighting parameters to be chosen by the designer, it
is not necessary to worry about selecting the {b`k} and it is sufficient
to select the {a`k} are nonnegative convex combination coefficients
satisfying

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (11)

The selection of the {a`k} has a significant impact on the perfor-
mance of the algorithm.

3. GROUP DIFFUSION LMS

It is explained in [2] how approximation (5) leads to the fusion (7b)
of local estimates in the neighborhood of each node. All entries are
combined with the same weight. Figure 1 illustrates one possible
limitation of uniform combination of the entries and the interest in
grouping them. Adjacent nodes k and ` are estimating parameter
vectors w?

k and w?
` structured in three groups of entries: both vec-

tors have the same entries in the first group, they significantly differ
in the second group due to sensor failure for instance, and slightly
differ in the third group due to sensor drift. This scenario cannot be
considered as a single-task problem, or even a multitask one, with a
single set of combination weights a`k. A small combination weight
may not sufficiently promote the closeness of entries in the first and
third groups, whereas a large combination weight may lead to a large
estimation bias caused by the second group.

This motivates us to introduce a grouping strategy into dis-
tributed learning over networks. Let {Gm}Mm=1 be a partition of the
set of indexes G = {1, . . . , L}, namely,

M⋃
m=1

Gm = G, Gm ∩ Gm′ = ∅ if m 6= m′ (12)

and let wGm or [w]Gm denote a sub-vector of w indexed by Gm.
For the scenario in Fig. 1, the entries of the parameter vectors can
be grouped into three groups as described by Fig. 1(b). We can then
assign large combination weights to the first group, small or even
null-valued ones to the second group, and medium ones to the third
group. Such grouping strategy can end up exploiting the structure
of the parameter vectors more fully. We shall introduce an unsu-
pervised adaptive strategy to estimate the combination weights in
the next section. Since information on group structures may not be
available in practice, one possible strategy is to split parameter vec-
tors into a number of groups of preset lengths and assign a combina-
tion coefficient to each group, as illustrated in Fig. 1(c). Note that the
parameter vector entries within each group need not be necessarily
contiguous.

3.1. Group diffusion LMS algorithm
We now derive the group diffusion LMS. Inspecting (5), we assign a
scaling factor to each group of entries instead of using a single factor
for scaling the unweighted norm:

‖w −w?‖2Rx,`
≈

M∑
m=1

b`k,m‖wGm −w
?
Gm‖

2 (13)

where b`k,m is the weight for group m. The global cost (6) is then
relaxed as follows:

Jglob′′
(w) = Jk(w) +

∑
` 6=k

M∑
m=1

b`k,m‖wGm −w
?
Gm‖

2 (14)
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Fig. 1. Network model for group diffusion LMS. (a) Weight vector
structures for nodes k and `, where three sections coded by colors
exhibit different levels of similarity; (b) optimal groups; (c) groups
with uniform sizes.

Calculating the gradient vector of (14), following the same steps
as for diffusion LMS, and introducing the following combination
weights a`k,m for each group m

akk,m = 1− µk

∑
`∈Nk\{k}

b`k,m (15)

a`k,m = µk b`k,m, ` ∈ Nk\{k} (16)
a`k,m = 0, ` /∈ Nk, (17)

we arrive at the group diffusion LMS algorithm:

ψk,n = wk,n−1 + µk xk,n (dk(n)− x>k,nwk,n−1)

[wk,n]Gm =
∑
`∈Nk

a`k,m[ψ`,n]Gm , for m = 1, . . . ,M.

(18a)

(18b)

Parameters
⋃M

m=1{a`k,m} can be adjusted by users, and each sub-
set {a`k,m} forms a left-stochastic matrixAm withm = 1, . . . ,M .
Appropriate selection of these coefficients can enhance the perfor-
mance of diffusion LMS, especially for scenarios with structural re-
lationships between optimums. In Section 4, we shall introduce an
unsupervised strategy to adjust these weights in an online manner. A
version of the group diffusion strategy (18a)–(18b) was introduced
in [22] and applied to the tuning of A/D converters. The combina-
tion weights {a`k,m} were selected there in proportion to the SNR
conditions within relevant frequency bands.

3.2. Network behavior with constant a`k,m
We provide now a brief discussion on the behavior of the group diffu-
sion LMS algorithm (18) with constant combination weights a`k,m.
Define the square matrix A consisting of N × N diagonal matri-
ces. The diagonal entries of the (`, k)-th block A(`k) are given by
[A(`k)]Gm,Gm = a`k,m for m = 1, . . . ,M . Following the analysis
in [13], it can be found that A plays the same role as A2 = A2 ⊗ I
in [13, Sec. III]. Since A is also a left-stochastic matrix, the sta-
bility condition and performance measurement expressions remain
unchanged.

4. ADAPTIVE COMBINATION STRATEGY

We shall now derive an adaptive combination strategy for group dif-
fusion LMS. Motivated by [13, 23], we adjust a`k,m in an online
manner via instantaneous MSD optimization. Let us denote by vk,n

the weight error vectorw?
k−wk,n after the combination step (18b).

Considering groups Gm with m = 1, . . . ,M , the instantaneous
mean-square deviation (MSD) at each agent k can be expressed as a
function of a`k,m by

E{‖vk,n‖2} =
M∑

m=1

E
{∥∥[w?

k]Gm −
∑
`∈Nk

a`k,m [ψ`,n]Gm
∥∥2}

=

M∑
m=1

∑
`∈Nk

∑
p∈Nk

a`k,m apk,m [Ψ
(m)
k,n ]`p (19)

The matrix Ψ
(m)
k,n is the covariance matrix of the weight error for

group m at node k at instant n, with (`, p)-th entry given by:

[Ψ
(m)
k,n ]`p=

{
E
{
[w?

k−ψ`,n]
>
Gm [w?

k−ψp,n]Gm
}
, `, p ∈ Nk

0, otherwise.
(20)

To make the problem tractable, we approximate Ψ
(m)
k,n by an instan-

taneous value and we drop its off-diagonal entries. In addition, we
approximatew?

k by ŵ?
k as shown in (23). This leads to:

min
ak,m

N∑
`=1

M∑
m=1

a2`k,m ‖[ŵ?
k −ψ`,n]Gm‖

2

subject to 1>N ak,m = 1, a`k,m ≥ 0,

a`k,m = 0 if ` /∈ Nk

(21)

where the vector ak,m = [a1k,m, . . . , aNk,m]>. The above objec-
tive function encourages weak information exchange via small a`k,m
if the estimate of groupm at node ` is far from its counterpart at node
k. The solution of (21) is given by:

a`k,m =
‖[ŵ?

k −ψ`,n]Gm‖−2∑
j∈Nk

‖[ŵ?
k −ψj,n]Gm‖−2

, for ` ∈ Nk. (22)

We now introduce an instantaneous approximation ŵ?
k,n for w?

k at
each node k and time instant n. In order to reduce the MSD bias
that may result from an inappropriate cooperation between nodes
performing distinct estimation tasks, a possible strategy is to use the
local one-step ahead approximation:

ŵ?
k,n = ψk,n + µ′k qk,n (23)

where qk,n = (dk(n) − x>k,nψk,n)xk,n is the instantaneous ap-
proximation of the negative gradient of Jk(w) atψk,n. Substituting
this expression into (22) leads to the combination rule:

a`k,m(n) =
‖[ψk,n + µ′k qk,n −ψ`,n]Gm‖−2∑

j∈Nk
‖[ψk,n + µ′k qk,n −ψj,n]Gm‖−2

(24)

for ` ∈ Nk and m = 1, . . . ,M . Furthermore, we observed in our
experiments that the normalized gradient qk,n ← qk,n/(‖qk,n‖+ε)
with ε a small positive constant can increase the robustness of the
resulting strategy.

5. SIMULATIONS

This section shows how the proposed strategy behaves with two il-
lustrative scenarios. All curves were obtained by averaging over 100
runs 2.

2Matlab code is available at http://www.jie-chen.com/codes
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Fig. 2. Network MSD learning curves
.

Fig. 3. Combination coefficient matrices {Am}3m=1 with optimal grouping. Left to right: group G1 to G3.

5.1. Stationary environment
We considered the network ofN = 8 nodes shown in Fig. 1. The op-
timums {w?

k}Nk=1 consisted of L = 26 entries. The first 12 entries
were common across all nodes, that is, [w?

1]G1 = . . . = [w?
N ]G1

with G1 = {1, . . . , 12}. These entries were sampled from a uni-
form distribution U(−1, 1). The next 8 entries were uniformly sam-
pled from U(−1, 1) for each node, so that there was no relationship
between the entries of group G2 = {13, . . . , 20}. The last 6 en-
tries were [w?

k]i = [wo]i + uki for i ∈ G3 = {21, . . . , 26}, with
[wo]i uniformly sampled from U(−1, 1) for all nodes, and inde-
pendent perturbations uki sampled from U(−0.1, 0.1). We did not
assume that nodes know this vector structure beforehand. Inputs
xn were zero-mean 26× 1 random vectors governed by a Gaussian
distribution with covariance matrix Rx,k = σ2

x,kIL. The noises
zk(n) were i.i.d. zero-mean Gaussian random variables, indepen-
dent of any other signal with variances σ2

z,k. Variances σ2
x,k and

σ2
z,k used in this experiment were sampled from U(0.8, 1.2) and
U(0.18, 0.22), respectively. The following algorithms were run: (i)
Non-cooperative LMS (A = IN ); (ii) diffusion LMS; (iii) Mul-
titask algorithm with combination weight adjustments in [13]; (iv)
Group diffusion LMS with (iv) M = 4 uniform contingous groups;
(v) M = 6 uniform contingous groups; and (vi) optimal grouping.
The step sizes were successively set to µ = 0.05 and µ = 0.02. The
prediction step size µ′ in (23) was set to µ′ = 2µ. Parameter ε in the
normalized gradient qk,n was set to 0.01. The MSD learning curves
are shown in Figs. 2(a) and 2(b).

The non-cooperative LMS algorithm can be considered as the
reference for this comparison test since it does not rely on any co-
operation. Since the single-task assumption was violated, especially
by the entries of group G2, the performance of diffusion LMS was
severely degraded. The strategy in [13] can adaptively adjust the
combination weights, but it cannot take possible group structures
into account. It thus processed the parameter vectors wk as if they
were significantly different, in particular because of the entries in
group G2. This algorithm thus inhibited cooperation between nodes
and achieved similar performance as the non-cooperative LMS al-

gorithm. These results show that for estimation problems involv-
ing group structures in their weight vectors, implementations beyond
single-task or multi-task diffusion are called for in order to exploit
the group structure more fully. The proposed algorithm with group-
ing strategy assigned a combination coefficient to each group, sep-
arately. It achieved significantly enhanced performance. The algo-
rithm setting involvingM = 6 groups outperformed the setting with
onlyM = 4 groups, by using finer groups at the cost of higher com-
putational complexity. Finally, we considered the optimal grouping
used to generate the data. This grouping led to the lowest MSD. In
Fig. 3, we present the combination weight matricesA1,A2 andA3.
Cooperations can be observed for G1 and G3, but not for G2. This
figure illustrates the efficiency of the proposed algorithm.

5.2. Nonstationary environment
We also considered a nonstationary setting with the network depicted
in Fig. 1. Between time instants n = 0 to n = 500, the same setting
as in the stationary case studied before was used. From time instant
n = 501, the sub-vectors indexed by G1 and G2 were modified to
be a common vector from U(0, 1) across nodes 2, 6, 7, 8. From
time instant n = 1001, the optimum parameter vectors for nodes
2, 4, 5 were set independently by sampling them from the uniform
distribution U(−1, 1). Simulation results for the non-cooperative
LMS, and the group diffusion LMS with M = 4 and M = 6, are
provided in Fig. 2(c). The performance gain and tracking ability of
the proposed grouping strategy can be observed.

6. CONCLUSION AND PERSPECTIVES
In this paper, we introduced grouping into diffusion adaptation to
take advantage of structural similarity among parameter vectors
to estimate. Simulation results illustrated the effectiveness of the
grouping strategy and of the information fusion rule. The work
presented here assumed predefined group structures. In the future,
we will investigate adaptive grouping and other flexible partitioning
techniques.

4928



7. REFERENCES

[1] A. H. Sayed, S.-Y Tu, J. Chen, X. Zhao, and Z. Towfic, “Dif-
fusion strategies for adaptation and learning over networks,”
IEEE Sig. Process. Mag., vol. 30, no. 3, pp. 155–171, May
2013.

[2] A. H. Sayed, “Diffusion adaptation over networks,” in Aca-
demic Press Libraray in Signal Processing, R. Chellapa and
S. Theodoridis, Eds., pp. 322–454. Elsevier, 2013.

[3] A. H. Sayed, “Adaptive networks,” Proc. of the IEEE, vol. 102,
no. 4, pp. 460–497, Apr. 2014.

[4] S.-Y. Tu and A. H. Sayed, “Diffusion strategies outperform
consensus strategies for distributed estimation over adaptive
networks,” IEEE Trans. Signal Process., vol. 60, no. 12, pp.
6217–6234, Dec. 2012.

[5] A. H. Sayed, “Adaptation, learning, and optimization over
networks,” in Foundations and Trends in Machine Learning,
vol. 7, pp. 311–801. NOW Publishers, Boston-Delft, Jul. 2014.

[6] D. P. Bertsekas, “A new class of incremental gradient methods
for least squares problems,” SIAM J. Optimiz., vol. 7, no. 4, pp.
913–926, Nov. 1997.

[7] M. G. Rabbat and R. D. Nowak, “Quantized incremental al-
gorithms for distributed optimization,” IEEE J. of Sel. Topics
Areas Commun., vol. 23, no. 4, pp. 798–808, Apr. 2005.

[8] D. Blatt, A. O. Hero, and H. Gauchman, “A convergent in-
cremental gradient method with constant step size,” SIAM J.
Optimiz., vol. 18, no. 1, pp. 29–51, Feb. 2007.

[9] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies
over distributed networks,” IEEE Trans. Signal Process., vol.
55, no. 8, pp. 4064–4077, Aug. 2007.

[10] A. Nedic and A. Ozdaglar, “Distributed subgradient methods
for multi-agent optimization,” IEEE Trans. Autom. Control,
vol. 54, no. 1, pp. 48–61, Jan. 2009.

[11] S. Kar and J. M. F. Moura, “Distributed consensus algorithms
in sensor networks: Link failures and channel noise,” IEEE
Trans. Signal Process., vol. 57, no. 1, pp. 355–369, Jan. 2009.

[12] K. Srivastava and A. Nedic, “Distributed asynchronous con-
strained stochastic optimization,” IEEE J. Sel. Topics Signal
Process., vol. 5, no. 4, pp. 772–790, Aug. 2011.

[13] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS over
multitask networks,” IEEE Trans. Signal Process., vol. 63, no.
11, pp. 2733–2748, Jun. 2015.

[14] X. Zhao and A. H. Sayed, “Distributed clustering and learning
over networks,” IEEE Trans. Signal Process., vol. 63, no. 13,
pp. 3285–3300, Jul. 2015.

[15] J. Chen, C. Richard, and A. H. Sayed, “Adaptive clustering for
multitask diffusion networks,” in Proc. 23th European Signal
Process. Conf. (EUSIPCO), Nice, France, Sep. 2015.

[16] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion
adaptation over networks,” IEEE Trans. Signal Process., vol.
62, no. 16, pp. 4129–4144, Aug. 2014.

[17] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Perfor-
mance analysis of multitask diffusion adaptation over asyn-
chronous networks,” in Proc. 48th Asilomar Conference on
Signals, Systems and Computers (ASILOMAR), 2014, pp. 788
– 792.

[18] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Mul-
titask diffusion LMS with sparsity-based regularization,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., Bris-
bane, Australia, May 2015, pp. 3516–3520.

[19] J. Chen, C. Richard, A. O. Hero, and A. H. Sayed, “Diffusion
LMS for multitask problems with overlapping hypothesis sub-
spaces,” in Proc. IEEE Int. Workshop on Machine Learn. for
Signal Process., Reims, France, Sept. 2014, pp. 1–6.
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