
COMPRESSED TRAINING ADAPTIVE EQUALIZATION

Baki B. Yılmaz and Alper T. Erdoğan
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ABSTRACT

We introduce compressed training adaptive equalization as a
novel approach for reducing number of training symbols in a
communication packet. The proposed semi-blind approach is
based on the exploitation of the special magnitude bounded-
ness of communication symbols. The algorithms are derived
from a special convex optimization setting based on l1 norm.
The corresponding framework has a direct link with the com-
pressive sensing literature established by invoking the duality
between l1 and l1 norms. Through this link, it is possible
to adapt various research results in sparse signal processing
literature to adaptive equalization problem. In fact, through
utilization of such a link, we show that the amount of train-
ing data needed is in the order of the logarithm of the channel
spread (or equalizer length) in the fractionally spaced equal-
ization scenario. The numerical experiments provided vali-
dates the analytical results and the potentials of the proposed
approach.

Index Terms— Adaptive Equalization, Sparseness, Semi-
Blind Equalization, Compressive Sensing

1. INTRODUCTION

The dispersive effects of communication channel cause time
scrambling of digital communication sequences sent from the
transmitter. For this reason, the frequency selective behaviour
of the communication channel is compensated by the receiver
via employing a filter ( called equalizer). The coefficients of
this filter need to be obtained adaptively as communication
channel is unknown to the receiver.

The most typical approach is to send known training sym-
bols within each communication package, as shown in Fig-
ure 1. This approach has the drawback of consuming part of
available bandwidth for training signals. In the past, a great
deal of effort was spent on developing unsupervised or blind
algorithms where the goal was the complete elimination of
training symbols. Among them, probably the most popular
blind approach is Constant Modulus Algorithm (CMA) [1–3]
which makes use of the constant modulus property of some
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digital communication constellations. However, the need for
long data lengths for convergence in connection with non-
convex property of CMA cost function led to research for
other alternatives. In this direction, Vembu et.al. proposed
a convex blind equalization algorithm which exploits the use
of infinity norm of equalizer outputs [4]. As an algorithmic
extension of this convex blind equalization framework, Lin-
ear Programming based [5, 6] and sub-gradient optimization
based [7] approaches were proposed.

As the blind algorithms typically require relatively long
receiver samples for convergence, a compromise between full
training and blind approaches can be achieved by the use of
semi-blind algorithms which target to reduce the training size
by exploiting some side information. In this area, typical ap-
proach is to introduce an objective function which is a convex
combination of the square error in the training region and the
blind objective such as CMA [8, 9] and constant power [10].

In this article, we develop a new semi-blind equaliza-
tion framework which exploits the least squares approach for
training symbols and infinity norm based cost function for
the magnitude boundedness property of the digital communi-
cation sources. The resulting optimization problems are the
duals of the l1 norm optimization settings encountered in the
data processing applications exploiting sparsity, in particular
the compressed sensing. Through exploitation of this link, we
show that the training requirement can be reduced to the loga-
rithm of the channel spread/equalization. The organization of
the article is as follows: Section 2 introduces the communi-
cation scenario assumed throughout the article. Compressed
training adaptive equalization approach is proposed in Sec-
tion 3. In Section 4, a performance analysis of our approach
is provided. Section 5 offers a numerical example which il-
lustrates the potential of the proposed approach in alignment
with the analysis results.

2. COMMUNICATION SETUP

We consider the following communication scenario:

• Blocks of LD constellation points {s0, s1, ..., sLD�1}
are sent by the transmitter as illustrated in Figure 1. For
simplifying discussion, we assume BPSK constellation
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is used where the symbols take values from the set ⌥1.
The proposed approach can be extended to PAM or
complex QAM constellations.

• Training symbols with length LT are embedded in each
block of data, located in indices {p, p+1, ..., p+LT �
1}.

Fig. 1. A Generic Transmit Block for a Communication Sys-
tem.

• We assume a two branch receiver (which can corre-
spond to oversampling or multiple antennas) for nota-
tional convenience where the results can be easily ex-
tended to multiple branches. These branch signals are
linearly combined through an adaptive equalizer with
LE taps at each branch.

The block diagram for the communication system de-
scribed above is given in Figure 2. The signal received at

Fig. 2. Equalization Setting with Two Diversity Branches.

each branch is represented by

y(i)n = h(i)
n ⇤ sn i = 1, 2, (1)

where {h(i)
n : n 2 {0, . . . , LC � 1}} represents the impulse

response of the channel corresponding to the branch i and
{sn} is the transmission sequence sent by the transmitter. The
equalizer combines these branches through

zn = w(1)
n ⇤ y(1)n + w(2)

n ⇤ y(2)n (2)

where {w(i)
n : n 2 {0, . . . , LE � 1}} represents the equalizer

coefficients for the branch i and {zn} is the equalizer output
sequence. It is well known that if the channels of alternative
receive branches do not share a common zero, and satisfies the
sufficient length requirement LE � LC , the perfect equaliza-
tion is possible, which will be our standing assumption for
this case.

We note that the setup outlined refers to noise free which
is the case of interest in the current article, which will be ex-
tended in our future article to more general noisy case [11].

3. COMPRESSED TRAINING ADAPTIVE
EQUALIZATION

The proposed compressed training adaptive equalization al-
gorithm aims to reduce the training data length by exploiting

the bounded magnitude constellation structure of communi-
cation sources.

As a recipe to the adaptive equalization problem for ob-
taining the equalizers coefficients, the following optimization
setting is proposed:

Setting I: minimize kzk1
subject to YTw = sT

where z =

⇥
zq zq+1 . . . zq+LD�1

⇤T
is the vector

containing a collection of LD equalizer outputs between in-
dexes {q} and {q + LD � 1}, YT =

h
Y(1)

T Y(2)
T

i
is

the observation matrix, whose components corresponding to
different observation branches can be written as the Toeplitz
matrix

Y
(i)
T =

2

666664

y
(i)
p+d y

(i)
p+d�1 . . . y

(i)
p+d�LE+1

y
(i)
p+d+1 y

(i)
p+d . . . y

(i)
p+d�LE+2

. . .
. . .

. . .
. . .

y
(i)
p+d+LT�1 y

(i)
p+d+LT�2 . . . y

(i)
p+d+LT�LE

3

777775

i = 1, 2,

where d is the target equalization delay, and

sT =

⇥
sp sp+1 . . . sp+LT�1

⇤T
, (3)

is the training vector, w =

h
w(1)Tw(2)T

iT
, is the equal-

izer coefficient vector whose subcomponents corresponding
to different receiver branches can be written as

w(i)
=

h
w(i)

0 w(i)
1 . . . w(i)

LE�1

iT
i = 1, 2, (4)

and z = YDw, where YD is constructed as YT by consid-
ering all receiver outputs rather than the outputs in the train-
ing region. Therefore, the proposed optimization setting is
about minimizing the peak absolute value for some selected
range of equalizer output samples, under the constraint that
equalizer outputs are equal to training data in the training re-
gion. The main utility of this setting is for the case where
the training data is not sufficiently long to determine equal-
izer coefficients, i.e., LT < 2LE . In such a case the equation
YTw = sT refers to an underdetermined system. There-
fore, without additional side information, obtaining a perfect
equalizer can not be resolved. In order to clarify why Setting I
is useful for addressing this insufficient training data problem,
we defined the combined (communication channel+equalizer)
channel from sources to equalizer outputs as

gn = w(1)
n ⇤ h(1)

n + w(2)
n ⇤ h(2)

n (5)

whose length is LG = LC+LE�1. Based on this definition,
we can write zn = gn ⇤ sn. Therefore, under the assumption
that the selected set of output samples are sufficiently long
and BPSK constellation at the input, we can write

kzk1 = kgk1, (6)
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where g =

⇥
g0 g1 . . . gLG�1

⇤T
. Furthermore, in

terms of g, the constraint of Setting I can be written as
Sg = sT , where S is given in (7).

Therefore, in terms of combined impulse response, we
can write Setting I as follows:

Setting Ig: minimize kgk1
subject to Sg = sT

As an important link, we observe Setting Ig is equivalent
to the optimization setting for Sparse Reconstruction Problem
in Compressed Sensing literature, where S would be equiva-
lent to measurement matrix and sT vector contains the train-
ing symbols. This connection opens up a wealth of possi-
bilities for transferring the results accumulated in sparse in-
formation processing literature in the form of algorithms and
analysis to adaptive equalization problem.

4. ANALYSIS OF THE PROPOSED APPROACH

The proposed approach offers to reduce the required train-
ing length below the number of unknown parameters, 2LE .
However, the basic question is how much we can reduce the
training length, while maintaining perfect equalization solu-
tion g = ed+1 as the unique solution to the Setting Ig.

We use the mutual coherence concept to obtain a prescrip-
tion for the minimum number of training symbols [12]. The
mutual coherence of the matrix � 2 <LT⇥LG is defined as

µ(�) = max

1i,jM

|�T
:,i�:,j|

k�:,ik2k�:,jk2
where the notation �:,j represents the jth column of �. The
following theorem [12] is backbone for the future derivation
of lower bound for LT :

Theorem 4.1. Let � 2 <LT⇥LG be full rank with LT < LG.
If the system of linear equations �g = y has a solution gs

which obeys

kgsk0 < 0.5
⇣
1 + µ(�)

�1
⌘

then it is the unique solution for the optimization problem in
Setting Ig.

The ideal combined channel impulse response ed+1 is a
solution to Sg = sT . According to Theorem 4.1, a sufficient
condition for ed+1 whose `0 norm is one to be the unique
solution is given by

1 < 0.5
⇣
1 + µ(S)�1

⌘
) µ(S) < 1 (8)

Therefore, the perfect equalization condition is guaranteed if
µ(S) < 1. The following corollary relates the probability of
occurrence of this condition as a function of LT and LG:

Corollary 4.2. Let S 2 <LT⇥LG be a Toeplitz matrix with
i.i.d. Bernoulli elements. If LT > log2(LG(LG � 1)) then
the mutual coherence condition µ(S) < 1 is satisfied with
probability at least

1� LG(LG � 1) · 2�LT . (9)

Proof. Assume G is Gram matrix of S defined by G = STS.
Every element of G takes values from �LT  Gi,j  LT .

In order to satisfy the mutual coherence condition µ(S) <
1, absolute values of all off-diagonal elements of G must be
less than LT for perfect equalization. Based on this observa-
tion, initially, we derive a union bound for P (µ(S) = 1).

For deriving the elements of the union bound, we first con-
centrate on deriving the probability that a super-diagonal ele-
ment of G having an absolute value LT . If we explicitly write
the super-diagonal entry Gi,i+1 as

G(i,i+1) = sp+d�i+1 ⇥ sp+d�i + sp+d�i+2 ⇥ sp+d�i+1

+ sp+d�i+LT ⇥ sp+d�i+LT�1,

the corresponding expression involves LT + 1 different i.i.d.
Bernoulli variables, which can create 2

LT+1 distinct se-
quences. Since a super-diagonal entry of G corresponds to
the inner product between two consecutive columns of S, for
the simplification of the discussion, let us consider the first
two columns of S as an example:

S:,1:2 =

2

6664

sp+d sp+d�1

sp+d+1 sp+d
...

...
sp+d+LT�1 sp+d+LT�2

3

7775
. (10)

For the inner product between these two columns to be equal
to LT , we need sp+d�1 = sp+d = ... = sp+d+LT�1 = 1

or sp+d�1 = sp+d = ... = sp+d+LT�1 = �1, i.e. two
sequences where all elements have the same sign. For the
inner product of these two columns to be equal to �LT , we
need sign alternating sequences, where there are also two al-
ternatives. Therefore, among 2

LT+1 different possibilities for
{sp+d�1, sp+d, . . . sp+d+LT�1} only 4 of them can cause the
condition |G1,2| = LT . Therefore,

P (|Gi,i+1| = LT ) =
4

2

LT+1
=

1

2

LT�1
(11)

Following the same approach, if we now consider second
upper off-diagonal elements of G: the expression for Gi,i+2

contains LT + 2 i.i.d. consecutive elements of {sn}, which
can create 2

LT+2 distinct sequences. We can show that there
are only 8 vectors out of these 2

LT+2 choices for second up-
per off-diagonal contains an element with absolute value LT .
Therefore, we can write

P (|Gi,i+2| = LT ) =
8

2

LT+2
=

1

2

LT�1
, (12)
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S =

2

6664

sp+d sp+d�1 . . . sp . . . sp+d�i+1 sp+d�i . . . sp+d�LC�LE+2

sp+d+1 sp+d . . . sp+1 . . . sp+d�i+2 sp+d�i+1 . . . sp+d�LC�LE+3

. . . . . . . . . . . . . . . . . . . . . . . . . . .
sp+d+LT�1 sp+d+LT�2 . . . sp+LT�1 . . . sp+d�i+LT sp+d�i+LT�1 . . . sp+d�LC�LE+LT+1

3

7775
(7)

which is same as the probability for the super-diagonal ele-
ments. In fact, the result generalizes to any off-diagonal ele-
ment. Therefore,

P (|Gi,j | = LT ) =
1

2

LT�1
, i 6= j. (13)

Since G 2 <LG⇥LG is a symmetric matrix with LG(LG�1)
2

upper diagonal elements, we can write

P (µ(S) = 1) = P

0

@
LG�1[

i=1

LG[

j=i+1

{|Gi,j | = LT }

1

A (14)


LG�1X

i=1

LGX

j=i+1

P (|Gi,j | = LT ) (15)

=

LG(LG � 1)

2

1

2

LT�1
=

LG(LG � 1)

2

LT
, (16)

where the inequality (15) is obtained by union bound. As a
result, for the perfect equalization condition:

P (µ(S) < 1) = 1� P (µ(S) = 1) (17)

� 1� LG(LG � 1)

2

LT
. (18)

Probability lower bound is informative for the perfect equal-
ization if it is grater than 0 which leads to the condition that
LT > log2(LG(LG � 1)).

Therefore, if we set the training length as

LT = 2 log2(LG)� log2(�), (19)

then the perfect equalization condition holds with probability
more than 1� �.

5. NUMERICAL EXAMPLE AND CONCLUSION

We consider a scenario with random channel of length LC =

15 and LE = 20. In Figure 3(a), exact recovery probability
(as a function of LT ) is calculated empirically and compared
with our lower bound. Moreover, we define a success prob-
ability for kg⇤ � ed+1k  10

�5 (similar to [13]) where g⇤
is the solution of the optimization setting and plot the success
probability of Setting Ig. Although mutual coherence condi-
tion does not mimic the behaviour of the success probability

Fig. 3. (a)The mutual coherence probability, (b)Mean Square
Error performance of the proposed approach and CMA-LS [9]

exactly, it guarantees exact reconstruction with high probabil-
ity.

In Figure 3(b), we compare our approach with semi-blind
algorithm in [9] for changing LT and LD in terms of mean
square error performance. We observe our algorithm outper-
forms the other algorithm for every combination of packet and
training symbol length. We also observe enlarging the com-
munication packet length results in equivalence of Setting Ig
and Setting I as assumed.

As a conclusion, the proposed approach provides a con-
vex adaptive equalization approach with a clearly prescribed
training length, which is in the order of the logarithm of the
channel spread (or equalizer length) for noiseless/high-SNR
scenarios, as opposed to training length proportional to the
equalizer length. The link established with the compressed
sensing literature is also very fruitful, which help us inherit
the algorithm and analysis related results from the sparse sig-
nal processing literature. The same link can also be utilized
for the algorithm development and analysis for the noisy sce-
nario as shown in [11].
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