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ABSTRACT

In this paper, we consider the problem of quickly detecting
an abrupt change of linear coefficients in linear regression
models. In particular, the observer sequentially observes a
sequence of observations {(xn, yn)}∞n=1, which is assumed
to obey a linear regression model at each time slot n. Some
of the coefficients in the linear model change at a fixed but
unknown time t. The post-change linear coefficients are un-
known to the observer. The observer aims to design an online
algorithm to detect the model change based on his sequen-
tial observations. Two performance metrics, namely the worst
case detection delay (WADD) and the average run length to
false alarm (ARL2FA), are adopted to evaluate the perfor-
mance of detection algorithms. We design a low complexity
algorithm, termed as parallel sum algorithm, for the detection
purpose. An asymptotic upper bound on WADD is provided
under any given ARL2FA constraint.

Index Terms— Linear model; online change detection;
parallel-sum procedure; sequential detection; unknown post-
change parameter

1. INTRODUCTION

Linear regression is a basic but important model in statistical
machine learning. It has wide range applications in data fit-
ting, signal processing, economic data analysis [1], biomedi-
cal science [2], etc. A fundamental question of linear regres-
sion is to estimate the coefficients in the linear model based
on a group of observed data. A common assumption used in
the existing work is that all data come from a single linear
model. However, in many applications, such as the ones in
dynamic linear systems, the system model changes over time.
In such applications, it is of interest to detect the change of
linear model.

In our recent work [3], we study the change detection
problem for a linear model under an offline setup, in which
all observations are collected before the analysis is carried
out. In this paper, we focus on an on-line setup, in which one
collects observations in a sequential manner and carries out
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the analysis after each observation is collected. In particular,
an observer keeps monitoring the system input xn and the sys-
tem output yn. yn and xn are assumed to obey a linear model
at each time slot n. At the very beginning, the relationship be-
tween yn and xn is known exactly by the observer. However,
some of the linear coefficients change at an unknown time t,
and the observer does not know the post-change linear coef-
ficients. Based on his sequential observations, the goal of the
observer is to design an on-line detection algorithm to detect
such a change in the linear model.

We formulate this problem in the framework of non-
Bayesian quickest change-point detection, in which the
change time t is assumed to be fixed but unknown. In particu-
lar, under an average run length to false alarm (ARL2FA) con-
straint, which implies that the expected duration between two
false alarms is larger than γ, we aim to minimize the worst
case average detection delay (WADD) supt≥1 esssupEt[(τ−
t + 1)+|x1, . . . ,xt−1, y1, . . . , yt−1], in which τ is the time
instant when an alarm is raised. When the post-change dis-
tribution contains unknown parameters, it has been shown
by T. L. Lai [4] that the generalized likelihood ratio (GLR)
cumulative sum (CUSUM) detection rule is asymptotically
optimal as ALR2FA goes to infinity. However, GLR-CUSUM
is computationally infeasible for the problem considered in
this paper. Hence, in this paper, we propose a low complexity
algorithm, in which the observer calculates the correlations
between yn and each individual component in xn and then
compares the sum of these calculated statistics with a pre-
designed threshold. If the threshold is exceeded, which
indicates that yn strongly depends on some components in
xn, the observer raises an alarm. This algorithm is termed
as the parallel-sum algorithm. This algorithm is computa-
tionally feasible. We further analyze the performance of this
low-complexity algorithm and provide an upper bound of
WADD.

Extensive existing works are related to the problem con-
sidered in this paper. Due to limited space, we only mention
a few most relevant papers here. [5] proposes a parallel recur-
sive χ2 test to detect the abrupt change in multivariate Gaus-
sian random signals with unknown mean after change. [6]
proposes a SUM algorithm, which is based on the sum of local
CUSUMs, to quickly detect the abrupt change in multiple in-
dependent data streams. Different from these two works, our
paper aims to detect the change in the linear models rather
than the change in the distributions of random vectors. [7]
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considers the change detection problem for the linear model,
and proposes an algorithm based on the decomposition of the
post-change parameter space. [8] adopts the window-limited
GLR CUSUM for the change detection in stochastic dynamic
systems. However, the algorithms in these two papers have a
very high computation complexity. In this paper, we propose
a low complexity algorithm.

The remainder of this paper is organized as follows. The
mathematical model is given in Section 2. Section 3 presents
a lower bound of WADD and reviews the GLR-CUSUM al-
gorithm. In Section 4, we propose and study the performance
of the low complex parallel sum algorithm. Numerical exam-
ples are given in Section 5 to illustrate the results obtained in
this work. Finally, Section 6 offers concluding remarks.

2. MODEL

We consider the problem of detecting the change-point in a
linear regression model. Let {(xn, yn)}∞n=1 be a sequence
of conditionally (condition on the change-point) independent
and identically distributed (i.i.d.) random vectors whose un-
derlying model changes at a fixed but unknown time t, which
is referred to as change-point. Before the change happens,
i.e. n < t, yn linearly depends on xn via a known model
yn = aT0 xn + ϵn, in which a0 is perfectly known by the ob-
server, and ϵn is i.i.d. Gaussian noise with zeros mean and
variance one. After the change-point, the dependency be-
tween yn and xn changes to a new model yn = aT1 xn + ϵn,
in which a1 is not exactly known by the observer.

In this paper, we assume that xn = [x1,n, x2,n, . . . , xp,n]
T

∈ Rp. a0 and a1 are also p dimensional real vectors. More-
over, we assume that xn has an underlying probability dis-
tribution, whose probability density function (pdf) is denoted
as f(x). However, f(x) is unknown to the observer. The
observer only knows that the mean value of x is a zero vector,
and each entry in the covariance matrix of x is finite.

To simplify the notation and derivations, we transform
the model into a simpler but equivalent form. Since the pre-
change coefficient a0 is known, we can set y′n = yn − aT0 xn.
Hence, before change-point t, y′n is normal distributed; after
change-point t, y′n = (a1−a0)

Txn+ϵn. Let a := a1−a0, the
model mentioned above is equivalent to the following model

yn =

{
0Txn + ϵn n < t
aTxn + ϵn n ≥ t

. (1)

In practice, it is common that the change only modifies
parts of the coefficients in the linear model. Hence, it is rea-
sonable to assume that the post-change linear coefficients a
only contain s non-zero elements, where s could be any num-
ber in {1, 2, . . . , p}. For the detection problem, if the change
happens to more components in a (i.e., if s is large), it will be
easier to detect the change. Therefore, the case with a small s
is of more practical interest. We assume that the value of s is
known to the observer; however, our proposed algorithm can
be easily extended to the case with an unknown s.

Let a = [a1, a2, . . . , ap]
T and let A be the domain of a.

To guarantee the change is detectable, the origin should be

excluded from A. Specifically, we assume that if the change
happens to the ith linear coefficient, then ai locates in a com-
pact set

Ai = {ai ≤ ai ≤ āi},
where ai > 0 for all 1 ≤ i ≤ p. Otherwise, ai ∈ Āi :=
{ai = 0}. Hence, A can be written as

A = ∪(i1,...,ip)∈P(Ai1 × · · · × Ais × Āis+1 × · · · × Āip),

where P is the set of all permutations of {1, 2, . . . , p} with
cardinality s.

The observer aims to design an online algorithm to
detect the change-point t via his sequential observations
(yn,xn), n = 1, 2, . . .. Let τ be the stopping time at which
the change is declared by the observer. We formulate the
above problem in the framework of non-Bayesian quickest
detection. In particular, we consider Lorden’s setup:

minimizeτ WADD(τ ;a) :=

sup
t≥1

esssupEa
t [(τ − t+ 1)+|Ft−1],

subject to ARL2FA(τ) := E∞[τ ] ≥ γ, (2)

where Ea
t is the expectation under the probability measure

that change occurs at t with the post change linear coefficient
being a, E∞ is the expectation under the probability measure
that change never happens (i.e., t = ∞), and Ft−1 is the
sigma field generated by {(xn, yn)}t−1

n=1.
We use k, m and n as time index for observations, and use

i and j as component index for vectors. For example, the ith

component in observation xn is denoted as xi,n.

3. LOWER BOUND OF THE DETECTION DELAY

Let f0(xn, yn) be the joint pdf of (xn, yn) before change-
point t, and let f1(xn, yn;a) be the joint pdf after change-
point t with the linear coefficient being a. For any given a,
the likelihood ratio can be calculated as

Ln(a) :=
f1(xn, yn;a)

f0(xn, yn)
=

f1(yn|xn;a)f(xn)

f0(yn)f(xn)

=
exp{−1

2 (yn − aTxn)
2}

exp{− 1
2y

2
n}

= exp

{
aTxnyn − 1

2
aTxnx

T
na

}
. (3)

Furthermore, the Kullback-Leibler (KL) divergence can
be calculated as

D(f1, f0;a) := Ea [logLn(a)]

= aTEa[xnyn]−
1

2
aTEa

[
xnx

T
n

]
a

=
1

2
aTRa

=
1

2

p∑
i=1

a2i ri,i +
1

2

∑
i ̸=j

aiajri,j , (4)
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where ri,j is the element of covariance matrix R. A lower
bound of the worst case detection delay is given in the fol-
lowing theorem.

Theorem 3.1. (Theorem 1 in [4]) For any a ∈ A, as γ → ∞,
we have

inf{WADD(τ,a) : ARL2FA(τ) ≥ γ}

≥ | log γ|
D(f1, f0;a)

(1 + o(1)). (5)

It is also shown in [4] that the GLR CUSUM algorithm is
asymptotically (in the sense γ → ∞) optimal for all a ∈ A.
The GLR CUSUM statistic is given as

Cn := max
1≤m≤n

supa∈A
∏n

k=m f1(xk, yk;a)∏n
k=m f0(xk, yk)

= max
1≤m≤n

sup
a∈A

n∏
k=m

Lk(a), (6)

and the corresponding stopping rule is

τGLR := min{n ≥ 0 : Cn ≥ B} (7)

for a properly chosen threshold B.
Unfortunately, GLR CUSUM is computationally infeasi-

ble for our problem. Specifically, for each m ∈ {1, . . . , n},
GLR CUSUM requires to estimate a by solving

sup
a∈A

n∏
k=m

Lk(a) = sup
a∈A

n∏
k=m

exp{− 1
2 (yk − aTxk)

2}
exp{−1

2y
2
k}

, (8)

which is equivalent to solve

inf
a∈A

n∑
k=m

(yk − aTxk)
2 for m = 1, . . . , n. (9)

We note that a only contains s non-zero elements. It is known
that to find an s−sparse solution of an underdetermined sys-
tem is NP hard 1.

4. A LOW COMPLEXITY ALGORITHM

In this section, we first propose a low complex algorithm for
the change detection, and then present an upper bound for its
detect delay. The proposed algorithm is described as follows:

Wi(m,n; ai) := 2ai

n∑
k=m

xi,kyk − a2i

n∑
k=m

x2
i,k,

for 1 ≤ i ≤ p, (10)

U(m,n) := sup
a∈A

s∑
i=1

Wi(m,n; ai), (11)

Cn := sup
1≤m≤n

U(m,n), (12)

τps := inf{n ≥ 0 : Cn ≥ logB}. (13)
1Due to the additional constraint that ai ∈ Ai if the change happens to

the ith component, it is difficult to say whether the l1 relaxation technique
works for above problem or not. However, even if the l1 relaxation works, the
computational complexity of GLR CUSUM is still very high as the observer
needs to solve n LASSOs at each time slot n.

We first provide some intuitive explanations of the pro-
posed algorithm. In the linear regression model, yk depends
on xi,k if ai ̸= 0; hence it is reasonable to use the correla-
tion between yk and xi,k for the detection purpose. When the
components of xk are independent, we note that

Ea[Wi(m,n; ai)] = −E∞[Wi(m,n; ai)] = (n−m+ 1)a2i ri,i.

That is, Wi has a negative trend before the change and has a
positive trend after the change. This property of Wi can be
used to construct the detection statistic.

In order to take all changing components in a into con-
sideration, the observer may want to sum up all positive Wi’s
together. This idea is realized by the supremum operator in
(11). Specifically, before the change happens, all Wi’s tend
to be negative; hence U is negative on average and the false
alarm is controlled. On the other hand, if the change occurs,
s out of p Wi’s tend to turn positive; hence the observer sums
up s most likely components to speed up the detection pro-
cedure. Since the change-point t is unknown, (12) searches
over all possible time instants up to the current time instant.
This is a classic technique to construct a quickest detection
statistic from a one-sided SPRT statistic [9].

In terms of implementation, the observer runs p parallel
procedures to calculate the correlation between yk and each
individual component in xk, and then sums up the results by
selecting the best a within the feasible set A. Therefore, we
term the proposed algorithm as parallel-sum algorithm.

The proposed parallel-sum algorithm can be easily com-
puted. Let

a∗i =

∑n
k=m xi,kyk∑n
k=1 x

2
i,k

. (14)

It is easy to see Wi(m,n; ai) achieves the maximum at a∗i if
no constraint on ai is considered. Let

âi = ai1{a∗
i <ai} + a∗i 1{ai≤a∗

i ≤āi} + āi1{a∗
i >āi},

and let â∗ = [â∗1, â
∗
2, . . . , â

∗
p]

T be the optimal solution in (11).
Denote the order statistics of {Wi(m,n; âi)}pi=1 as

W(1)(m,n; â(1)) ≥ W(2)(m,n; â(2)) ≥ · · · ≥ W(p)(m,n; â(p)).

It is easy to see the optimal solution is given as

â∗i =

{
âi if Wi(m,n; âi) ≥ W(s)(m,n; â(s))
0 otherwise (15)

Hence, the whole calculation procedure is very simple for
each given m.

One potential concern of the parallel-sum algorithm is that
the computation complexity increases as n increases. To deal
with this difficulty, we may replace sup1≤m≤n in (12) by
supn−wa≤m≤n, that is, we adopt a time window with length
wa to truncate the proposed algorithm. The window limited
idea was firstly purposed in [10] and then studied for the GLR
CUSUM algorithm in [4, 8]. In this paper, we do not discuss
the window limited algorithm in detail.

The performance of parallel-sum algorithm is presented
in the following theorem:
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Theorem 4.1. By setting

logB = 4s log
(
p+ p

√
2s/π + E[Nmax]

)
+ 4s log γ,

in which Nmax is a finite random variable whose distribution
relies on f(x), one can guarantee that

ARL2FA[τps] ≥ γ (16)

and the detection delay is bounded by

WADD(τps;a) ≤
4s log γ∑p

i=1 a
2
i ri,i + 2

∑
i ̸=j aiajri,j

(1 + o(1)). (17)

as γ → ∞.

Proof Outline: This theorem can be proved by exploring
the relationship between non-Bayesian quickest detection and
one-sided SPRT. In particular, it suffices to consider the detec-
tion delay Ea

1 [τ1] and the Type I error probability P∞(τ1 <
∞) for τ1 = inf{n ≥ 0 : U(1, n) ≥ logB} in the one-sided
SPRT. By Lemma 1 in [9], we have WADD(τps;a) ≤ Ea[τ1]
and ARL2FA[τps] ≥ 1/P∞(τ1 < ∞).

To establish an upper bound of Ea
1 [τ1], we can con-

struct a random walk Ũ(1, n) :=
∑n

k=1 Yk with Yk :=
2yk

∑p
i=1 aixi,k −

∑p
i=1(aixi,k)

2 for any given a. Let τ̃1 be
the first stopping time that Ũn hits logB. Wald’s identity in-
dicates that Ea

1 [τ̃1] = | logB|/E[Y1](1+o(1)). Moreover, we
note Ea

1 [τ1] ≤ Ea
1 [τ̃1] since Ũ(1, n) is dominated by U(1, n).

As a result, we have

Ea
1 [τ1] ≤

| logB|∑p
i=1 a

2
i ri,i + 2

∑
i ̸=j aiajri,j

(1 + o(1)).

The most challenging part is to establish an upper bound
for the error probability. By mathematical manipulations, we
can show that the error probability has an exponential tail

P∞(τ1 < ∞) ≤
(
p+ p

√
2s/π + E[Nmax]

)
B− 1

4s .

Then, the desired conclusion can be obtained by setting a
proper threshold B such that the error probability is bounded
by 1/γ. Due to space limitation, the rigorous proof is omitted
in this paper.

5. SIMULATION

In this section, we provide a numerical example to illustrate
the results obtained in our paper. In this numerical example,
we assume that p = 15 and s = 3, the true post-change lin-
ear coefficient a is given as a1 = 0.8, a2 = 0.65, a3 = 0.5,
and ai = 0 for the rest of components in a. The observer
has no knowledge about a except that Ai = [0.4, 2.5] for
all 1 ≤ i ≤ p. In the simulation, we set that x has di-
agonal covariance matrix R, which is randomly selected as
R = diag[1.32, 1.18, 1.04, 0.93, 0.86, 0.84, 0.71, 0.64, 0.52,
0.42, 0.39, 0.28, 0.17, 0.14, 0.03].

In this simulation, we illustrate the relationship between
WADD and ARL2FA for the proposed parallel-sum algo-
rithm. The simulation result is shown in Figure 1. In this
simulation, we numerically calculate the performance of the
parallel-sum algorithm for two different distributions of x. In
particular, the blue solid line with squares is the performance
of the parallel-sum algorithm when x is normally distributed
with zero mean. The green solid line with diamonds is the
performance of the proposed algorithm when x is set be a
Possion distributed random vector (the mean of x is shifted
to zero). In Figure 1, the black dot-dash line is the lower
bound of WADD for all detection algorithms, which is pre-
sented in (5). The black dash-line is the upper bound of the
parallel-sum algorithm, which is presented in (17). From the
simulation, we can see that the green line and the blue line
are close to each other, hence the performance of the parallel-
sum algorithm is robust over the distribution of x. This result
is consistent with our theoretical analysis presented in this
paper as the proposed algorithm does not rely on the dis-
tribution of x. In addition, the parallel-sum algorithm is not
asymptotically optimal since it diverges from the lower bound
as γ increases. However, we note that the detection delay of
the parallel-sum algorithm still increases almost linearly with
log γ, and the computation complexity of this algorithm is
extremely low.

log γ
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Fig. 1. WADD versus ARL2FA when p = 15, s = 3

6. CONCLUSION

In this paper, we have considered the problem of quickly
detecting an abrupt change in the linear model. We have
proposed a low complexity online algorithm, namely the
parallel-sum algorithm. We have presented an asymptotic
upper bound on the worst case average detection delay under
a given average run length to false alarm constraint for the
proposed algorithm.
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