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ABSTRACT

This work examines the performance of stochastic sub-gradient
learning strategies, for both cases of stand-alone and networked
agents, under weaker conditions than usually considered in the
literature. It is shown that these conditions are automatically satis-
fied by several important cases of interest, including support-vector
machines and sparsity-inducing learning solutions. The analysis
establishes that sub-gradient strategies can attain exponential con-
vergence rates, as opposed to sub-linear rates, and that they can
approach the optimal solution within O(µ), for sufficiently small
step-sizes, µ. A realizable exponential-weighting procedure is pro-
posed to smooth the intermediate iterates and to guarantee these
desirable performance properties.

Index Terms— sotochastic sub-gradient method, affine-Lipschitz,
exponential rate, diffusion strategy, SVM, LASSO, gradient noise.

1. INTRODUCTION AND RELATED WORK

The minimization of non-differentiable convex cost functions is a
critical step in the solution of many important design problems [1–
3], including the design of sparse-aware (LASSO) solutions [4, 5],
support-vector machine (SVM) learners [6–10], or total-variation
based image denoising solutions [11, 12]. The sub-gradient tech-
nique is a popular choice for minimizing such non-differentiable
costs; it is closely related to the traditional gradient-descent method
where the actual gradient vector is replaced by a sub-gradient at
points of non-differentiability. It is one of the simplest methods in
current practice but is known to suffer from slow convergence. In
particular, it is shown in [3] that, for convex cost functions, the op-
timal convergence rate that can be delivered by sub-gradient meth-
ods in deterministic optimization problems cannot be faster than the
O(1/

√
i), where i is the iteration index.

However, the results in subsequent sections will show that when
used in the context of stochastic optimization, sub-gradient descent
algorithms turn out to have superior performance than suggested by
traditional analyses in the deterministic context. In particular, un-
der constant step-size adaptation, these algorithms will be shown to
converge at the faster exponential rate of O(αi) for some α ∈ (0, 1)
when the cost function is strongly-convex. This rate is much faster
than the O(1/i) rate that would be observed under a diminishing
step-size implementation for strongly-convex costs. We will clarify
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these favorable properties for both cases of stand-alone agents and
networked agents [13–16].

There are at least two main reasons that motivate a closer ex-
amination of the limits of performance of sub-gradient learning al-
gorithms. First, the explosive interest in large-scale and big data
scenarios favors the use of simple and computer-efficient algorith-
mic structures, of which the sub-gradient technique is a formidable
example. Second, it is becoming increasingly evident that more
sophisticated optimization iterations do not necessarily ensure im-
proved performance when dealing with complex models and data
structures [2, 17–19]. Motivated by these consideration, in our anal-
ysis of stochastic sub-gradient descent algorithms, we diverge in a
noticeable way from conditions that are commonly used in the litera-
ture. First, we introduce weaker assumptions than usually adopted in
prior works and, more importantly, we show that our assumptions are
automatically satisfied for important cases of interest (such as SVM,
LASSO, Total Variation). In contrast, these same problem formula-
tions do not satisfy the traditional assumptions used in the literature
and, hence, conclusions derived based on these earlier studies are
not directly applicable to SVM or LASSO problems. For example,
it is common in the literature to assume that the cost function has a
bounded gradient [2, 16, 20–22]; this condition is unreasonable and
is not satisfied even by quadratic costs whose gradient vectors are
affine in their parameter. The condition is also in direct conflict with
strongly-convex costs. By relaxing the conditions, the conclusions
in our work become stronger and applicable to a broader class of
algorithms and scenarios.

A second aspect of our study is that we focus on the use of con-
stant step-sizes in order to enable continuous adaptation and learn-
ing. Since the step-size is assumed to remain constant, the effect of
gradient noise is always present and does not die out, as would oc-
cur if we were using instead a diminishing step-size, say, of the form
µ(i) = τ/i [7, 16, 21, 23]. The challenge in analyzing the perfor-
mance under constant-rate adaptation is to show that the algorithm
is able to counter the effect of gradient noise and ensure convergence
of the iterates at exponential rate to within O(µ) of the desired opti-
mal solution.

A third aspect of our contribution is that it is known that sub-
gradient methods are not descent methods. For this reason, it is cus-
tomary to employ pocket variables (i.e., the best iterate) [1,3,24,25]
or arithmetic averages [7] to smooth out the output. However, the
pocket method is not practical in the stochastic setting, and the use
of arithmetic averages slows down convergence. Our analysis will
suggest an alternative weighted averaging scheme that does not de-
grade convergence while providing the desired smoothing effect in
an efficient manner.
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2. PROBLEM FORMULATION: SINGLE AGENT CASE

We consider the problem of minimizing a risk function, J(w) :
RM → R, which is assumed to be expressed as the expected value
of some loss function, Q(w;x), namely,

w? ∆
= arg min

w
J(w)

∆
= arg min

w
E xQ(w;x) (1)

where w? denotes the minimizer. We first denote the sub-gradient
of J(w) at any arbitrary point w0 by g(w0), and defined it as any
vector g ∈ RM that satisfies:

J(w) ≥ J(w0) + gT(w0)(w − w0), ∀w (2)

In the context of adaptation and learning, we do not know the ex-
act form of J(w) because the distribution of the data is not known
to enable computation of E xQ(w;x). As such, true sub-gradient
vectors for J(w) cannot be determined and they will need to be re-
placed by stochastic approximations evaluated from streaming data.
We employ the following stochastic iteration [1, 3, 24, 25]:

wi = wi−1 − µ ĝ(wi−1) (3)

where the successive iterates, {wi}, are now random variables (de-
noted in boldface) and ĝ(·) represents an approximate sub-gradient
vector at locationwi−1 estimated from data available at time i. The
difference between an actual sub-gradient vector and its approxima-
tion is referred to as gradient noise and is denoted by

si(wi−1)
∆
= ĝ(wi−1)− g(wi−1) (4)

2.1. Modeling Conditions

In order to examine the performance of the stochastic sub-gradient
implementation (3) for single-agent adaptation and learning, and
later for multi-agent networks, it is necessary to introduce some as-
sumptions. The first condition essentially requires that the construc-
tion of the approximate sub-gradient vector should not introduce bias
and that its error variance should decrease as the quality of the iter-
ate approaches the optimal solution. Both of these conditions are
sensible and can be shown to be satisfied by, for example, SVM and
LASSO constructions.

Assumption 1 (CONDITIONS ON GRADIENT NOISE) The first and
second-order conditional moments of the gradient noise process sat-
isfy the following conditions:

E [ si(wi−1) |F i−1 ] = 0 (5)

E [ ‖si(wi−1)‖2 |F i−1 ] ≤ β2‖w? −wi−1‖2 + σ2 (6)

for some constants β2 ≥ 0 and σ2 ≥ 0, and where F i−1 denotes
the filtration corresponding to all past iterates (essentially, the con-
ditioning in (5)–(6) is relative to the previous iterates). �

The second condition ensures that w? is unique so that the optimiza-
tion problem is well-defined, and the third condition is more relaxed
than what is traditionally imposed in the literature.

Assumption 2 (STRONGLY-CONVEX RISK FUNCTION) The risk
function is assumed to be η−strongly-convex, i.e.,

J(θw1 + (1− θ)w2) ≤ θJ(w1) + (1− θ)J(w2)

− η

2
θ(1− θ)‖w1 − w2‖2

(7)

for any θ ∈ [0, 1], w1, and w2, and where η > 0 �

Assumption 3 (SUB-GRADIENT IS AFFINE-LIPSCHITZ) It is as-
sumed that the sub-gradient of the risk function, J(w), is affine
Lipschitz, i.e. there exist constants c ≥ 0 and d ≥ 0 such that

‖g(w1)− g(w2)‖ ≤ c‖w1 − w2‖+ d, ∀w1, w2 (8)

and for any choice g(·) ∈ ∂J(·), where ∂J(w) represent sub-
differentials, i.e., the set of all valid sub-gradients at w. �

Assumption 2 is rare in works on sub-gradient optimization because
it is customary for these works to focus on studying piece-wise linear
risks; these are important examples of non-smooth functions but they
do not satisfy the strong-convexity condition. In our case, strong-
convexity is not a restriction because in the context of adaptation
and learning, it is common for the risk functions to include a regu-
larization term, which helps ensure strong-convexity.

More critically, though, it is customary in the literature to use in
place of Assumption 3 a more restrictive condition that requires the
risk function itself (rather than its sub-gradient) to be Lipschitz.This
condition is equivalent to requiring the sub-gradient to be bounded
[1, 16, 20, 22], i.e.,

‖g(w)‖ ≤ d1, ∀w, g ∈ ∂J(w) (9)

Such a requirement does not even hold for quadratic risk functions,
J(w), whose gradient vectors are affine in w and, therefore, can-
not be bounded. Even more, it can be easily seen that requirement
(9) is conflicted with the strong-convexity assumption. One way to
circumvent this problem is to restrict the domain of J(w) to some
bounded convex set, say, w ∈ W , and then employ a projection-
based sub-gradient method. However, this approach has at least three
drawbacks. First, the unconstrained problem is transformed into a
more demanding constrained problem involving an extra projection
step. Second, the projection step may not be straightforward to carry
out unless the setW is simple enough. Third, the bound that results
on the sub-gradient vectors by limiting w toW can be very loose.

For these reasons, we do not rely on the restrictive condition
(9) and introduce instead the more relaxed affine-Lipschitz condition
(8). This condition is weaker than (9). Indeed, it can be verified that
(9) implies (8) but not the other way around. The following example
shows that the important problem of SVM learning satisfies con-
dition assumption 3; a similar conclusion applies to `1-regularized
least-square (LASSO) but is omitted for brevity.

2.2. Example: Single-Agent SVM Learning

The two-class SVM formulation deals with the problem of determin-
ing a separating hyperplane, w ∈ RM , in order to classify feature
vectors, denoted by h ∈ RM , into one of two classes: γ = +1 or
γ = −1. The regularized SVM risk function is strongly-convex and
of the form:

Jsvm(w)
∆
=

ρ

2
‖w‖2 + E

(
max

{
0, 1− γhTw

})
(10)

where ρ > 0 is a regularization parameter. We are generally given
a collection of independent training data, {γ(i),hi}, consisting of
feature vectors and their class designations and assumed to arise
from joint wide-sense stationary processes. One choice to approxi-
mate the sub-gradient vector of Jsvm(w) is to employ the following
instantaneous approximation:

ĝsvm(wi−1) = ρwi−1 + γ(i)hi I[γ(i)hT
iwi−1 ≤ 1] (11)
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In this expression, the indicator function I[a] is 1 if the statement a
is true; otherwise it equals 0. Then, the gradient noise process in the
SVM formulation is given by

si(wi−1) = γ(i)hi I[γ(i)hT
iwi−1 ≤ 1]−Eγh I[γhTwi−1 ≤ 1]

(12)
It is easy to verify that Assumption 1 is satisfied with β2 = 0 and
σ2 = Tr(Rh), where Rh = EhhT. Likewise Assumption 3 is
satisfied with parameters c = ρ and d = 2[Tr(Rh)]1/2.

2.3. Performance Analysis

In preparation for the analysis, we first conclude from (8) that:

‖g(w1)−g(w2)‖2 ≤ e2‖w1−w2‖2 +f2 ∀w1, w2, g ∈ ∂J (13)

where

e2 ∆
= c2 +

2cd

R
≥ 0, f2 ∆

= d2 + 2cdR ≥ 0 (14)

and the constantR is any positive number that we are free to choose.
At every iteration i, the risk value that corresponds to the iterate

wi is J(wi). This value is obviously a random variable due to the
randomness in the data used to run the algorithm. We denote the
mean risk value by EJ(wi). The next theorem shows how fast and
how close this mean value approaches the optimal value, J(w?). To
do so, the statement in the theorem relies on the best pocket iterate,
denoted bywbest

i , and which is defined as:

wbest
i

∆
= arg min

0≤j≤i
E J(wj) (15)

Theorem 1 (SINGLE AGENT PERFORMANCE) Consider using the
stochastic sub-gradient algorithm (3) to seek the unique minimizer,
w?, of problem (1), where the risk function satisfies Assumptions 1–
3. If the step-size parameter is sufficiently small, then it holds that

lim
i→∞

EJ(wbest
i )− J(w?) ≤ µ(f2 + σ2)/2 (16)

Moreover, the convergence of E J(wbest
i ) towards J(w?) occurs at

an exponential rate, O(αi), where

α
∆
= 1− µη + µ2(e2 + β2) = 1−O(µ) (17)

Proof: Omitted due to space limitations — see [26] �
The above theorem only clarifies the performance of the best

pocket value, which is not readily available during the algorithm im-
plementation since the risk function itself cannot be evaluated due
to the lack of knowledge about the probability distribution of the
data. However, a more practical conclusion can be deduced from the
statement of the theorem as follows. Suppose we choose a param-
eter κ that satisfies α ≤ κ < 1. Next, we introduce the convex-
combination coefficients:

rL(j)
∆
=

κL−j

SL
, j = 0, 1, . . . , L, where SL

∆
=

L∑
j=0

κL−j

(18)
Using these coefficients, we define the weighted iterate

w̄L
∆
=

L∑
j=0

rL(j)wj (19)

Observe that, in contrast towbest
L , the above weighted iterate is com-

putable since its value depends on the successive iterates {wj} and
these are available during the operation of the algorithm. Observe
further that w̄L satisfies the recursive construction:

w̄L =

(
1− 1

SL

)
w̄L−1 +

1

SL
wL (20)

Now, since J(·) is a convex function, it holds that

J(w̄L) = J

(
L∑

j=0

rL(j)wj

)
≤

L∑
j=0

rL(j)J(wj) (21)

Using this fact, we can derive a result similar to (16) albeit applied
to w̄L. Specifically, under the same conditions as in Theorem 1, it
holds that

lim
L→∞

EJ(w̄L)− J(w?) ≤ µ(f2 + σ2)/2 (22)

and the convergence of EJ(w̄L) towards J(w?) continues to occur
at an exponential rate, O(κL).

2.4. Simulation: Single-Agent SVM Learning

We compare the performance of the stochastic sub-gradient SVM
implementation against LIBSVM (a popular SVM solver that uses
quadratic programming on dual problem) [27]. The test data is ob-
tained from the LIBSVM website1 and also from the UCI dataset2.
We first use the Adult dataset after preprocessing [28] with 11,220
training data and 21,341 testing data in 123 feature dimensions. To
ensure a fair comparison, we use linear LIBSVM with the exact same
parameters as the sub-gradient method. Hence, we choose C =
5 × 102 for LIBSVM, which corresponds to ρ = 1

C
= 2 × 10−3.

We also set µ = 0.05. We can see from Fig. 1 that the stochastic sub-
gradient algorithm is able converge to the performance of LIBSVM
quickly. Since we only use each data point once, and since each it-
eration is computationally simpler, the sub-gradient implementation
ends up being computationally more efficient. Similar performance
results can be obtained for LASSO (`1-regularized least-squares)
problems and for total-variation based image denoising problems.
We omit these two examples due to space limitations — see [26].

3. PROBLEM FORMULATION: MULTI-AGENT CASE

We now extend the previous results to multi-agent networks where a
collection of agents cooperate with each other to seek the minimizer
of an aggregate cost of the form:

min
w

N∑
k=1

Jk(w), where Jk(w)
∆
= E xkQk(w;xk) (23)

where k refers to the agent index. Extension of the earlier results to
the multi-agent case requires some nontrivial effort due to the cou-
pling that exists among neighboring agents. Nevertheless, the same
broad conclusion will continue to hold with proper adjustments. We
continue to assume that the individual costs satisfy Assumptions 2
and 3, i.e., each Jk(w) is strongly-convex and its sub-gradient vec-
tors are affine-Lipschitz with parameters {ηk, ck, dk}. We further

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets
2http://archive.ics.uci.edu/ml/
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Fig. 1. SVM solvers applied to the Adult data set. Comparison of
the performance accuracy, percentage of correct prediction over test
dataset, for LIBSVM [27] and a stochastic sub-gradient implemen-
tation.

assume that the individual risks share a common minimizer, w?,
which will therefore agree with the global minimizer for (23). This
scenario corresponds to the important situation in which agents have
a common objective (or task), namely, that of estimating the same
parameter vector, w?, in a distributed manner through localized in-
teractions and cooperation.

Thus, consider a network consisting of N separate agents con-
nected by a topology. As described in [13, 29], we assign a pair
of nonnegative weights, {ak`, a`k}, to the edge connecting any two
agents k and `. The scalar a`k is used by agent k to scale the data
it receives from agent ` and similarly for ak`. There are several
strategies that the agents can employ to seek the minimizer, w?, in-
cluding consensus and diffusion strategies [13–16, 29–31]. In this
work, we focus on the latter class since diffusion implementations
have been shown to have superior stability and performance proper-
ties when used in the context of adaptation and learning from stream-
ing data. [13, 29, 32]. We therefore consider the following diffusion
strategy in its adapt-then-combine (ATC) form:

ψk,i = wk,i−1 − µ ĝk(wk,i−1) (24)

wk,i =
∑
`∈Nk

a`kψ`,i (25)

The entries A = [a`k] define a left-stochastic matrix. Since the net-
work is strongly-connected, the combination matrix A will be prim-
itive [13,33]. The eigenvectors ofA corresponding to the eigenvalue
at one are denoted by Ap = p and AT1 = 1. It follows from the
Perron-Frobenius theorem [33] that the entries of p are all strictly
positive and we normalize them to add up to one. We denote the
individual entries of p by {pk}.

The next result extends Theorem 1 to the network case. The
result establishes that the distributed strategy is stable and converges
exponentially fast for sufficiently small step-sizes. For each agent,
we again introduce a best pocket iterate, denoted bywbest

k,i :

wbest
k,i

∆
= arg min

0≤j≤i
E Jk(wk,j) (26)

Theorem 2 (NETWORK PERFORMANCE) Consider using the stochas-
tic sub-gradient diffusion algorithm (24)–(25) to seek the unique
minimizer, w?, of problem (23), where the risk functions, Jk(w),
satisfy Assumptions 1–3 with parameters {ηk, β2

k, σ
2
k, e

2
k, f

2
k}.

Assume the step-size parameter is sufficiently small. It holds that

lim
i→∞

E

(
N∑

k=1

pkJk(wbest
k,i )−

N∑
k=1

pkJk(w?)

)
≤

µ

2

N∑
k=1

(
pkf

2
k + p2

kσ
2
k + 2pkfkh

)
= O(µ) (27)

for some finite constant h. Moreover, the convergence occurs at an
exponential rate, O(αi

q), where

αq
∆
= max

k

{
1− µηk + µ2e2

k + µ2β2
kpk + µ2h

e2
k

fk

}
= 1−O(µ) (28)

Proof: Omitted for brevity — see [26]. �
A conclusion similar to (22) also holds in the multi-agent case

[26]. Examining the bound in (27), and comparing it with result
(22) for the single-agent case, we observe that the topology of the
network is now reflected in the bound through the Perron entries,
pk. Moreover, the bound in (27) involves three terms (rather than
only two as in the single-agent case): (1) pkf2

k , which arises from
the non-smoothness of the risk function; (2) p2

kσ
2
k, which is due to

gradient noise and the approximation of the true sub-gradient vector;
(3) 2hpkfk, which is an extra term in comparison to the single agent
case. This term reflects the small average variations in performance
that arise across agents over network.

3.1. Simulation: Multi-Agent SVM Learning

We examine the Adult dataset again. We distribute 32561 training
data over a network consisting of 20 agents. We set ρ = 0.002,
equivalent to C = 500 in LIBSVM, and µ = 0.15 for all agents
and we choose κ = 1 − 0.9µρ. Figure 2 shows that cooperation
among the agents outperforms the non-cooperative solution. More-
over, the distributed network can almost match the performance of
the centralized LIBSVM solution.
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