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ABSTRACT

In this work, we demonstrate how the theory of majorization
and schur-convexity can be used to assess the impact of input-
spread on the Mean Squares Error (MSE) performance of
adaptive filters. First, we show that the concept of majoriza-
tion can be utilized to measure the spread in input-regressors
and subsequently order the input-regressors according to their
spread. Second, we prove that the MSE of the Least Mean
Squares Error (LMS) and Normalized LMS (NLMS) algo-
rithms are schur-convex, that is, the MSE of the LMS and the
NLMS algorithms preserve the majorization order of the in-
puts which provide an analytical justification to why and how
much the MSE performance of the LMS and the NLMS algo-
rithms deteriorate as the spread in input increases.

Index Terms— Adaptive Filters, Mean Square Error
Analysis, Majorization, Schur-convexity, input-spread

1. INTRODUCTION

Both the least mean squares (LMS) and the Normalized LMS
(NLMS) algorithms belong to the steepest-descent algorithm
which is one of the most widely used adaptive algorithms due
to its simplicity and robustness [1]. The LMS algorithm de-
velops from an instantaneous approximation of the steepest-
descent algorithm with the following weight update rule

w; = w;_1 + pu;e;, w_1 = initial guess, (D)

where w, and w; represent M x 1 filter-weights and input-
regressor respectively, at time ¢. The regressor is assumed
to be zero-mean complex-valued circular Gaussian with
positive-definite covariance matrix R, = Euu", where E[/]
represents expectation operator. Further, d; = u}'w® + v; is
the reference signal at time i, e; = d; — uf'w;_; is the esti-
mation error, p is step-size, v; is white Gaussian noise with
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variance o2 and w® is some arbitrary M x 1 weight vector
that we wish to estimate.

The NLMS algorithm uses the energy of the input-
regressor to normalize the correction term in the weight
update which results in the following weight update

u; L
w; = w;_1 + uwei, w_1 = initial guess, (2)

In order to assess the performance of adaptive algo-
rithms, the most commonly used criterion is steady-state
MSE or excess MSE (EMSE). The steady-state EMSE is
defined as EMSE £ ll_i)m Ele;|> — o2. By employing energy-
conservation relationzwi(?fl the aid of some assumptions on the
data{d;, u;}', the steady-state EMSE of the LMS (denoted by
Crams)is [1]

2, My

Tl D = 2=k
M,

L=, PETS

and an approximate” steady-state EMSE of the NLMS (de-
noted by (nrass) is [1]

CNLMS = 1oy ﬁ)\k E {%}, “)
2 | 2 e

respectively. Here, {)\;} are the eigenvalues of R, (sorted
in descending order), i.e., A, > A, V1 < m < n < M.
We collect {\} in an M-dimensional vector X for notational
convenience. Note that, from the EMSE point of view, the
covariance matrix R, can itself be assumed diagonal without
losing any insighti.e., R, = A = diag(A) [2].

3)

CL MS =

'Due to space constraints, we refrain from including the procedure to obtain MSE
and direct the interested reader to [1].

2Exact performance analysis of the NLMS can be found in [2, 3]. For the
purpose of this paper, we confine our attention to the approximate expression
in (4)
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2. QUANTIFICATION OF INPUT SPREAD AND MSE
PERFORMANCE

In analyzing the behavior of adaptive filters, a common ques-
tion is “Given two inputs with correlation matrices A1 and
A53, for which input does the adaptive algorithm perform
better?”” Intuition suggests that the algorithm will perform
better for the less-spread input. However, the notion that
the input with covariance A; is “less spread out” or “more
nearly equal” than the input with covariance Ao, is itself
vague. Many researchers have attempted to study the per-
formance of the LMS and the NLMS algorithms with the
aim to understand why and how much the MSE performance
of the two algorithms degrades to an increase in input cor-
relation [2, 3, 4, 5]. In [2], closed form expressions for
the transient analysis and the steady-state mean-square error
(MSE) of the NLMS algorithm are developed but these ex-
pressions are in terms of multidimensional moments which
[2] falls short of evaluating. Several other works have at-
tempted to evaluate these moments but the corresponding
analyses don’t result in closed form performance expressions
[1, 2, 4], or rely on strong assumptions [5, 6, 7, 8]. Towards
this end, note that a commonly adopted measure to com-
pare the spread of input signal is eigenvalue-spread [1], i.e.,
P = Amax/Amin- However, as evident from the definition of
eigenvalue-spread, it is completely oblivious to any eigen-
value \; # {Amax, Amin }- Therefore, it is possible that two
inputs have the same eigenvalue-spread (i.e., p1 = p2), and
yet yield completely different EMSE, if A1 # A2 (numerical
studies confirming this behaviour are included in Simulation
Results).

In general, the notion that any vector = is more spread
out than a vector y, arises in a variety of contexts and can be
made precise in a number of ways [9]. In remarkably many
cases, the appropriate precise statement is that “x majorizes
y”. We give a formal definition of this statement below:

Definition 1: For any two vectors € R™ and y € RM with
descending order components x1 > xo > --- > xpr > 0 and
Y1 > Y > - > yy > 0, the vector x majorizes the vector
y (written as > y) if

k k M M
inEZyi, k=1,2,--- M —1, andei:Zyi.
i=1 i=1 i=1 i=1

&)

In this work, we use majorization to compare the spread in
input signals with eigenvalues collected in A; and A, respec-
tively. Note that, we aim to study the impact of input-spread
on the EMSE of the LMS and the NLMS algorithms, which
is a scalar-valued function of X. Hence not only we are in-
terested in ordering vectors based on their spread, but also in

3Here onwards we use A and X interchangeably.

functions of these vectors that preserve this order (i.e., order-
preserving functions). Specifically, the functions that preserve
the ordering of majorization are known as Schur-convex func-
tions. We give a formal definition of Schur-convex functions
below:

Definition 2: A Schur-convex function, is a function f :
RM — R, for which @ ~ y implies f(z) > f(y).

With the definition of majorization and Schur-convex
functions, we are in a position to give the intuitive idea -
that an increasing spread in input will deteriorate the EMSE
- a mathematical form. Essentially, we need to show that if
A1 = X2 (i.e., A1 majorizes A2), then (A1) > ¢(A2) and vice
versa, or more simply that {(\) is a Schur-convex function.

There are various theorems to investigate the Schur-
Convexity of a function [9]. However, if the function f(x)
is symmetric (i.e., the elements of vector x can be arbitrarily
permuted without changing the value of the function f(x)),
then the test for Schur-convexity becomes simple and is out-
lined in the following lemma.

Lemma 1: The necessary and sufficient condition for a sym-
metric function f(x) to be Schur-convex is

of(x)  of(=x)
- SCAC/AES PACIA XY
(Il Ig) |: 81‘1 (91'2 = 0 (6)
It is clear from the expressions of the EMSE given in (3) and
(4)-that the EMSE of both the LMS and the NLMS are sym-
metric in A and hence, we can use Lemma I to check whether

Coms(A) and Cnpars(A) are Schur-convex or not, that is,

AC(A) AN
(M ”2)[ oA\ O ] 2 0. )

3. SCHUR-CONVEXITY OF EMSE OF THE LMS

In this section, we prove the Schur convexity of the LMS. To
this end, rewrite (3) as

aaiS(A)
(1 —pS(X)

. Now, take the partial derivative

Cems(A) = 3

where S(A) 2 "M

k=1 2—pXj
of (rLms(A) wrt. Ay, to get

5 AS(\) AS(\)
Binis(A) 2007 [ (1= nS(N) 3™ = nS) 53|
O (1— uS(N)?
)
Since, we have
as(y) 9 A N
8>\m B 8/\m 2 — H)\m b1 2— ,U/\k N (2 - ,U/\m)2 '
k;Zm
(10)
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Using (9), (10) and Lemma 1 (with appropriate replacements
of 1, x5 and A, by A1 and \5), we get the following inequal-
ity to test the Schur-convexity of the ¢rars((A))

202 B 1 B 1 !
e [
(1)

The first term - i.e., 2uo2(1 — pS(A))~2 - is always positive
and hence is insignificant in the test. Thus, the above test is
reduced to

1 1

=29 [~ T

} 2o, ap

In the aforementioned inequality, if A\; > Ao, then the first
difference is positive i.e., (Ay — A2) > 0. Similarly, (2 —
shA)? < (2= pAe)? = 1/(2 = pA1)? > 1/(2 = pha)?,
and hence the second difference is also positive, guarantee-
ing that the inequality is satisfied. By similar reasoning, we
note that if A\; < Ao, both differences are negative, and hence
their product (i.e., the left-hand-side of (12)) is again posi-
tive. Finally, the inequality is also satisfied if Ay = A5 and
(2 — spAp)? # 0 where p = 1,2. Note that, in the con-
text of LMS adaptive filter, the stability condition requires
that p < %m and hence (2 — puA,)? # 0 is true for any
1<p< M.

4. SCHUR-CONVEXITY OF EMSE OF THE NLMS

We now turn our attention to the NLMS algorithm. Consider

the EMSE expression in (4). To proceed, we need to express

the moment £ £ E [W]

by using the Taylor approximation with the first 3 terms only.
This allows us to write

in terms of Lambda. We do so

1
zf:ELNW]zEmmPf—wu2+ﬂ 13

It can be shown that proving (7) is equivalent to prove

0%, 0%
R W _ 27 ) >
(A —A) (3)\2' 5)\]-) >0 (14)

Next, take the partial derivative of (nrams(A) Wrt. Ay,
Since, derivative and expectation are linear operators, we can
interchange their position. Thus, we can show that

0¥y

o, P [2l[ul?|a(m)|* — 3la(m)[?]

M
:E[2Am|a(m)|4+2 S Aelak)Plaim)?
k=1,k#m

~3fa(m)|?] as)

Now, using the facts E[|@(m)|?] = 1, E[|a(m)|*] = 2E[|a(m)|?],

 E]
and f[l@(m)lQIﬂ(k)W = Blla(m)P|E[|a(k)[?] for m # k,
we obtain

0%, M
e = U + 2 Z e — 3 (16)
k=1,k#m

Next, using the fact Z,iw:l A = M, we add and subtract \,,
from the middle term to get

o
o,

Now, using (17) and Lemma I, we obtain the following in-
equality to test the Schur-convexity of the (nrars((A))
0¥y 0%y 9 !
A — A —_— - = 2(A1 —X2)°>0.(18
=) (G- 55L) = 2= Zo0.as)
It can be easily observed that (A; —\3)? > 0 forboth Ay > Ay
and A\; < Ao and hence the inequality is always satisfied.
Moreover, the inequality is also satisfied if A = Ay as (A —
A2) = 0 and hence confirming that the (nras((A)) Schur-
convex.

= Wy +2(M—Ap) -3 (17)

5. SIMULATION RESULTS

In this section, we provide numerical results to support our
findings. First, we demonstrate the inadequacy of eigenvalue-
spread to precisely capture the the spread in input signal. Sub-
sequently, we provide numerical examples to demonstrate the
Schur-convexity of the EMSE for the LMS and NLMS.

5.1. Experiment 1: Eigenvalue-Spread

We simulate an LMS adaptive filter with tap length M =
5 for 1500 iterations. The signal-to-noise ratio SNR is
kept fixed at 20dB. The optimal weight vector is w® =
[0.227, 0.460, 0.688, 0.460, 0.227]7. The taps of the ini-
tial estimate (i.e., w_;) are chosen to be all zeros. The
filter is excited with two distinct complex Gaussian regres-
sors with eigenvalues A\; = [50, 37.75, 25.5, 13.25, 1]¥ and
X2 =[50, 1, 1, ,1, 1] respectively. Note that the two regres-
sors have the same eigenvalue-spread i.e., p; = p2 = 50. The
algorithm is run with step-size ¢ = 0.005 and the learning
curves are averaged over 500 independent runs. The results
of this experiment are shown in Fig. 1.

It is clear from the results in Fig. 1 that even though the
two regressors have the same eigenvalue-spread, there is a
significant gap (approximately 5dB) in the MSE performance
of the LMS algorithm.

5.2. Experiment 2: Majorization and Schur-Convexity

In this experiment, we analyze the effect of majorization on
the MSE of LMS and NLMS algorithms. Specifically, we se-
lect four sets of eigenvalues such that A1 = Ao = A3 = A4 (see
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Fig. 1. MSE performance of LMS algorithm for two inputs
with eigenvalue-spread p; = p2 = 50 and set of eigenvalues
Al and AQ.

Table. 1) and study the respective MSE. We do so by using a
filter tap length M = 5, the step-size ;. = 0.2 for LMS and
p = 1 for NLMS and SNR= 20dB. The steady-state values
of MSE (obtained by averaging last 100 values from the MSE
via simulations) are highlighted in Table. 1 and simulation re-
sults - obtained by averaging over 500 independent runs - are
shown in Fig. 2.

— A - [4.8889 0‘.1000 0.0‘100 0. 0014‘3 0.0001]
)\2 =[3.6000 0.8900 0.3000 0.2000 0.0100]|

_ )\3=[2 8000 1.1000 0.6000 0.4500 0.0500]

_— )\4=[1.2090 1.0910 1.0000 0.9000 0.8000]
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Fig. 2. MSE performance of LMS algorithm for four inputs
with set of eigenvalues A; > A2 > As > A4 as given in Ta-
ble. 1.

From the values of the MSE given in Table. 1, we note that
MSE of both the LMS and the NLMS algorithms preserve the
order of majorization i.e., ((A1) > ((A2) > ¢(A3) > ((Aq),
as expected. Further, we can see from the simulation results
(in Fig. 2 and Fig. 3) that as the spread in input increases, not
only the steady-state MSE increases, but variation in the en-
semble averaged performance (around the stead-state MSE)
also increases.

f— A :‘[4 8889 0‘1000 0,01‘00 0.0010‘00001]
= [3.6000 0.8900 0.3000 0.2000 0.0100]| |
= [2.8000 1.1000 0.6000 0.4500 0.0500]
= [1.2090 1.0910 1.0000 0.9000 0.8000]

6 u=1,SNR520dB |

MSE (dB)
|
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Fig. 3. MSE performance of NLMS algorithm for four in-
puts with set of eigenvalues A1 > A2 > Az > A4 as given in
Table. 1.

6. CONCLUSION

It is well known that input correlation is the main factor
that effects the performance of steepest descent adaptive
algorithms and their stochastic gradient versions. Specif-
ically, we investigated the impact of input- spread on the
MSE performance of the LMS and the NLMS algorithms
and demonstrated that the condition number - that is usu-
ally used to order regressors - is not the best predictor of
MSE performance. Rather, ordering regressors using the ma-
jorization concept is a more accurate measure of the spread.
Moreover, it turns out the MSE of both the LMS and the
NLMS are Schur-convex, which means that majorization also
reflects the MSE performance order. By investigating the
learning curves, one also notices that majorization not only
predicts the steady state performance but also says a lot about
performance of the learning curves throughout most of the
adaptation process. To the best of our knowledge, this is the
first work that connects adaptive filtering performance with
the concepts of majorization and Schur convexity.

Eigenvalues CLms | CNLMsS
Al = [4.4445, 0.5000, 0.0500, 0.0050, 0.0005] | -12.2 | -13.75
A2 = [3.6000, 0.8900, 0.3000, 0.2000, 0.0100] | -15.0 -15.85
A3 = [2.8000, 1.1000, 0.6000, 0.4500, 0.0500] | -15.5 -16.05
A4 = [1.2090, 1.0910, 1.0000, 0.9000, 0.8000] | -16.8 -16.30

Table 1. MSE Performance (in dB) of the LMS and the
NLMS algorithms for the sets of eigenvalues As that follow
the majorization order A1 > A2 > Az > As.
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