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ABSTRACT 

Time-frequency (TF) representations have been widely used 
over the past decade to characterize the non-stationary con-
tent of signals in the joint time and frequency domain. Alt-
hough a number of effective TF analysis methods based on 
wavelet or Gabor transform have been developed, these 
methods use pre-determined basis functions and still require 
feature extraction methods to reduce redundancy and pre-
serve important TF information related to the application of 
interest. This paper explores a novel TF feature extraction 
algorithm using a modified dictionary learning approach. 
The proposed algorithm is developed to modify learned dic-
tionaries and derive TF features unique to each class. It em-
ulates the way joint dictionary learning algorithms use 
common dictionaries to promote discrimination between the 
data from different classes, thereby allowing for an im-
proved analysis of complex and multitask data. The pro-
posed method indicated a significant performance in identi-
fication of the discriminant vs. common structures of the TF 
data. 
 
Index Terms— non-stationary, time-frequency, feature 
extraction, dictionary learning 
 

1. INTRODUCTION 

Time-frequency (TF) representation [1,2] has found wide 
use in many challenging signal processing tasks including 
classification, interference rejection and retrieval [3-7]. Fur-
thermore, TF analysis offers a framework through which we 
can understand the underlying processes of complex, non-
linear and nonstationary systems. Developing effective fea-
ture extraction tools for modeling the TF representation is 
important for reducing dimensionality and redundancy, and 
obtaining the essential TF structure of the observed data that 
is necessary for understanding the data generation mecha-
nism.  
 In this paper, we propose a new TF feature extraction 
algorithm based on dictionary learning that can handle chal-
lenging scenarios where the data is multi-task with overlap-
ping classes and/or common structures. The proposed meth-
od obtains the TF dictionaries from each class and then 
modifies the class dictionaries to generate discriminant TF 
dictionaries for each signal category to promote separability, 
as well as a common dictionary to promote approximation. 
_______________ 
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This is extremely important, as it provides a deep connec-
tion to the behavior of real world signals, which are a non-
linear combination of overlapping tasks with some common 
baseline structure. The modified discriminant and class-
specific dictionaries are designed to represent the TF fea-
tures that are unique to each class. 
  
1.1. PRIOR WORK 
Although a number of effective TF analysis methods based 
on wavelet or Gabor transform [2] have been developed, 
these methods use pre-determined basis functions. Further-
more, they still require feature extraction methods to reduce 
redundancy and preserve important TF information related 
to the application of interest. Advances in TF analysis meth-
ods have led to the development of powerful techniques 
[4,8-10], which use matrix decomposition methods with 
different constraints such as independent component analy-
sis (ICA) [12], principal component analysis (PCA) [11] or 
non-negative matrix factorization (NMF) [13] to adaptively 
decompose the TF data into TF basis components and coef-
ficients. Instead of traditionally assuming the stationarity of 
the signal over short segments, these methods adaptively 
decompose the TF data into intervals with similar spectral 
characteristics. With this approach, relatively long durations 
of data are represented with a few basis components, which 
can be used as TF features because they represent spectral 
variations of the signal without any stationarity assumptions 
over predefined segments. However, the existing approaches 
are performed in a supervised fashion, meaning that the TF 
decomposition is performed separately for each category 
and then the TF features are used in a classifier to analyze 
the data. Hence, these approaches tend to fail to preserve the 
discriminative characteristics of each category and the 
common structures as separate TF bases, thereby, resulting 
in misrepresentation of the complex and multitask data. 
 

2. MATERIALS AND METHODS 

2.1. Dictionary Learning 
The foundation of our approach stems from dictionary learn-
ing techniques for sparse representations [16], which have 
gained popularity in signal and image analysis during the 
past decade. We begin by considering a matrix 𝐃"×$ =
𝐃&, 𝐃(, … , 𝐃*  representing an over-complete dictionary of 
𝑚 samples [14-16], each of 𝑛 -dimensions, drawn from 𝑝 
separate classes. Given a test sample	𝒙, which belongs in the 
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qth class, its linear representation is obtained as	𝒙 = 𝐃𝒂, 
where 𝒂 ∈ 𝑅" is a sparse coefficient vector whose entries 
are mostly zero, except for those associated with the qth 
class. We can obtain the sparse solution as follows: 

𝒂 ≜ argmin
1
2
𝐃𝒂 − 𝒙 2

2 + 𝜆‖𝒂‖&	 (1) 

where ‖𝒂‖& = 𝒂@  and the ℓ1-norm minimization ap-
proach promotes sparse solutions and can be reformulated as 
a convex linear programming optimization method. 𝜆 is a 
regularization parameter which is can be adjusted to achieve 
sparser solutions. An applied penalty through the regulariza-
tion term enforces sparsity and can be used for feature selec-
tion, excellent classification, and more interpretable solu-
tions. Orthogonal Matching Pursuit (OMP) [17] is a popular 
method for solving for the sparse coefficients. Given the 
sparse coefficient vector 𝒂, minimum reconstruction error 
can be used to classify a test sample to class 𝑝. 
 Classical dictionary learning techniques for sparse repre-
sentation consider a finite training set of signals and opti-
mize the following empirical cost function to build an over-
complete dictionary to approximate the data in a sparse 
fashion.  

D∗ ≜
1
𝑛
	

1
2

"

@C&

𝒙𝒊 − 𝐃𝒂
2
2 + 𝜆‖𝒂‖&  (2) 

K-SVD [16] is an iterative dictionary learning method, 
where at each iteration, training samples are first sparsely 
coded using the current dictionary estimate, and then dic-
tionary elements are updated one at a time while keeping 
others fixed. Each new dictionary element is a linear combi-
nation of training samples. Rubinstein et al. [18] imple-
mented an efficient implementation of K-SVD using Batch 
OMP.  

In this paper, we use non-negative KSVD (NN-KSVD) 
[19] for learning the initial class-specific dictionaries. NN-
KSVD is our preferred method due to the way it allows sig-
nals in the TF domain to decompose into additive models of 
non-negative atoms, making them a more accurate represen-
tation of the non-negative data. Enforcing a non-negative 
constraint upon both the dictionary and the resulting coeffi-
cients also forces the dictionary elements to become sparser 
due to its inability to subtract, resulting in a more natural 
decomposition. 
 
2.1. The Proposed TF Feature Extraction Algorithm 
The proposed method is inspired by the joint dictionary 
learning algorithm proposed in [20] to obtain a common 
dictionary for images. The TF domain of a signal can be 
considered as an image where the intensity at each pixel is 
the energy of the signal at the corresponding time and fre-
quency. In image analysis, the image data is often divided 
into smaller patches for further processing since only the 
intensity of a pixel matters; however, the same cannot be 
done for energy in different patches of data in the TF image 
because the time and/or the frequency of the pixel also con-

tains important information about the structure of the data. 
Therefore, appropriate methods need to be developed in 
order to extract relevant and important information from TF 
images. 
 The proposed method takes in learned dictionaries of 𝑝 
classes and returns a modified and “discriminant” dictionary 
of each class along with a “common” dictionary. The modi-
fied dictionaries retain only TF data unique to that class. 
Any portions of data that are shared with another class are 
extracted and placed in the common dictionary.  
 The training data consist of subsamples of size j×k of TF 
signals of size j×l representing unique classes. The data used 
to train the dictionaries must have the same range in fre-
quency, as well as the same dimensionality. Having the 
same frequency range ensures that all of the data between 
dictionaries are compatible. Making sure that each diction-
ary is comprised of the same number of atoms, ensures that 
the dimensionality of each dictionary is uniform.  
________________________________________________ 
Algorithm 1 Unique Feature Extraction 
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

Input: Dictionaries {Di} of size n×m , i = 1,…,z data subsample 
sizes j and k, section size s, threshold value T 

1. Resize all D such that every dictionary is size j×(k*m) 
2. Make a copy {Fi} of all {Di}  
3. repeat {Di} 
4. repeat {Initialize r = 1} 
5. Extract a s by (k*m) section for all D beginning at row r. 
6. Collapse the extracted section back into size equal to (s*k) 

by m. 
7. Find all unique atoms that have a correlation above T with 

at least one atom of another section. 
8. Iterate through the corresponding section of {Fi}i=h and set 

the value all found atoms to zero. 
9. Pad the unique atoms with zeros to line up its frequencies 

with that of an atom from D and add it to dictionary C. 
10.  Increment r 
11. until  r is equal to n-s 
12. for  i = 1,…,z 

Output: Discriminant Feature Dictionaries F, Common Feature 
Dictionary C 

 
The details of the method are outlined in Algorithm 1. 

The algorithm filters any non-unique features from each 
class dictionary by checking how closely correlated a fea-
ture is with each feature in every other dictionary. This re-
sults in the modification of the original dictionaries such 
that the modified dictionaries only contain features unique 
to their own class. All non-unique features found are ex-
tracted and placed into a “common” dictionary of shared 
features. Step 5 is especially important because it defines the 
difference between image and TF data. In images, it is pos-
sible to compare any image patch with any other image 
patch. This cannot be done for TF signals because TF do-
main holds information on both time and frequency in addi-
tion to energy, making its position matter. This prevents a 
valid comparison of data when neither the time nor frequen-
cy is the same due to the lack of reference. Step 5 circum-
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vents this issue by regulating the data such only data of sim-
ilar frequencies are compared. 

The parameter selection is application dependent and 
has to be tuned empirically. However, the size of the data 
and number of atoms can be tuned before implementing the 
algorithm through use of NN-KSVD reconstruction and 
classification errors. Defining the optimal size of an extract-
ed section, as defined in step 4, can only be done through 
the algorithm though. The size of the section is particularly 
important because when it is combined with the subsampled 
training data, it provides a partitioned sample similar to that 
of an image patch that would be otherwise impossible to 
make. Keeping track of and regulating information by fre-
quency allows for unique TF features to be found within a 
class regardless of the time or frequency. 

 
3. RESULTS 

3.1. Experimental Setup 
A non-stationary synthetic dataset (see Figure 1) inspired 
by previous work in the literature [21] was generated for 
testing. The dataset is comprised of four classes, and several 
test signals. Each generated signal is multiplied by a Gaussi-
an envelope, allowing for signals to be concatenated without 
discontinuities in frequency. The spectrogram of each signal 
is generated in MATLAB with a window of 128, a non-
overlap of 125, and a cyclical frequency of 128. A total of 
two hundred signals are generated for each class. A total of 
one hundred fifty windows, each comprised of thirty col-
umns, are then randomly selected and extracted from each 
signal. This resulted in a total of 30,000 samples used as 
training data. 
 Test signals were generated by concatenating relevant 
Class x, Class y, Class z, and Class xy signals, as well as 
relevant combinations of pairs of classes. The test signals 
are shifted in the time domain to make sure that the algo-
rithm is time-shift invariant. A window size of thirty col-
umns and dictionary size of one hundred thirty atoms is 
found through cross-validation while training dictionaries to 
find reconstructions of the test signals with the lowest error. 

The trained dictionaries generated for each class are used 
as inputs to test the algorithm. The algorithm returns a “dis-
criminant” dictionary for each class, along with a “com-
mon” dictionary containing all non-unique features. The 
new dictionaries returned by the algorithm are then concate-
nated to form a single combined dictionary and used to line-
arly decompose the test signal into a sparse linear represen-
tation of each signal through the orthogonal matching pur-
suit algorithm [22]. The linear decomposition of the test 
signal ensures that the sparse representation is organized 
such that each row corresponds to a single atom, thus repre-
senting a single class. Relevant portions of the sparse repre-
sentation of the signal are then used to reconstruct the test 
signal by class. The reconstructed signals by class should 
contain features unique to only that class.  

The experiment is repeated under three different condi-
tions. In the first experiment, two dictionaries are the input 

to the algorithm, trained by class x and class y respectively. 
In the second and third experiments, three dictionaries are 
the input to the algorithm, trained by class x, class y, class z, 
and class x, class y, class xy, respectively. 

 
Figure 1. Synthetic Dataset. The TF structures of Class x (A), 
Class y (B), Class z (C), and Class xy (D) are shown in this figure. 
Each class consists of two distinct signals. Class x and y contain a 
uniformly distributed tone between 0.15 and 0.3Hz, and a linear 
chirp signal starting at 0.4Hz and ending at a random frequency 
uniformly distributed between 0.1 and 0.2Hz for class x, and be-
tween 0.25 and 0.25Hz for class y. Class z contains the same uni-
formly distributed tone, with a chirp signal beginning at a random 
frequency uniformly distributed between 0.25 and 0.35Hz and 
ending at 0.4Hz. Class xy is comprised of one linear chirp signals 
from class x and one from class y. 
 
3.2. Two Class Data with One Common Feature 
The unique features of class x and class y, characterized by a 
line with a steep slope and a more horizontal slope, respec-
tively, are successfully extracted through a partial recon-
struction of the signal using the modified class x and class y 
dictionaries (see Figure 2). The horizontal uniformly dis-
tributed tone between 0.15 and 0.3Hz common to both clas-
ses is successfully separated from the unique features of 
both classes and put into the “common” feature dictionary, 
allowing for a partial reconstruction of only the non-unique 
features. While the reconstructions are not perfect represen-
tations of the features represented by each dictionary, they 
are significantly improved compared to those of unmodified 
dictionaries. 
 
3.3 Three Class Data with One Common Feature 
The proposed algorithm is able to modify more than two 
dictionaries, such that the partial reconstructions using indi-
vidual dictionaries with derived TF features are unique to 
the class it was representing (see Figure 3). The most suc-
cessful unique feature extraction occurred for classes x and 
z. While the reconstruction of features unique to class y is 
not wrong, there are imprints of the feature present in the 
partial reconstruction using the Common Feature dictionary. 
This can be attributed to the fact that because the class can 
be attributed to the fact that because the class y feature has a 
smaller slope, it is sometimes confused with the horizontal 
common features.  
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Figure 2. Reconstruction of Unique Features in classes x and y. 
A sparse representation of the test signal (A), comprised of a mix 
of class x and y signals, was used in partial reconstructions with 
each modified dictionary to obtain TF features unique to class x 
(B), class y (C), neither (D). 

 
Figure 3. Extraction of Unique Features Between Class x, y and z. 
A sparse representation of the test signal (A), comprised of a mix 
of x, y, and z signals, was used in partial reconstructions with each 
modified dictionary to obtain features unique to class x (B), class y 
(C), class z (D), and neither (E). 

3.4 Three Class Data with No Unique Features 
Classes x, y, and xy all share at least one feature with one 
another. Consequently, the algorithm should not find any 
features unique to a class, ideally modifying the class dic-
tionaries to be empty and placing everything within the 
“common” feature dictionary. While the results are not per-
fect (see Figure 4), they are successful and can be useful for 
classification. The reconstruction of features unique to clas-
ses x and y through their respective dictionaries yield no 
recognizable patterns or features, while the reconstruction of 
class xy though its dictionary yielded only light partial im-
prints of the class. The reconstruction of the “common” fea-
ture dictionary results in a nearly complete reconstruction of 
the test signal, showing that the classes do not contain 
unique features. 

 
Figure 4. Extraction of Unique Features Between Class x, y and 
xy. A test signal (A), comprised of a mix of x, y, and xy signals and 
the estimated representation of class x (B), class y (C), class xy 
(D), and neither (E). 

4. CONCLUSION 

In this paper, a novel TF feature extraction algorithm was 
developed to extract features unique to each class. The ap-
plication of the proposed algorithm on a synthetic dataset 
with two or three overlapping classes demonstrated its effec-
tiveness for a better analysis of the characteristics that com-
prise a class. This method can be modified to organize the 
common information in several dictionaries to highlight 
what classes the shared features represent, or combined with 
NMF to improve the accuracy of TF feature extraction. Fur-
thermore, since this algorithm offers better discrimination 
between class dictionaries, it can be used improve the classi-
fication performance for TF feature-based applications.  
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