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ABSTRACT

In this work, we show by means of the technique inspired by the
Banach-Steinhaus Thm., that typically the Fourier transform of an
integrable signal decays arbitrarily slowly toward the infinity, and
has an arbitrary weak worst continuity/smoothness behaviour. How-
ever, the corresponding characterization can only be given weakly by
means of the limit superior. Those statements gives therefore a tight-
ening of the famous Riemann-Lebesgue’s Lemma. Furthermore, we
give a construction of functions, whose Fourier transform decays
slowly than an arbitrary given decay rate. Inspired by that, we are
also able to give an alternative proof of the strong divergence of the
Shannon sampling series [1] for signals in the Paley-Wiener space
PW1

ωg , band-limited to an arbitrary ωg P R�. The correspond-
ing construction of signals is stronger than the existent one given by
Boche and Farell, and gives a new insight into the divergence phe-
nomenon of the Shannon sampling series

Index Terms— Fourier transform, Riemann-Lebesgue Lemma,
Decay behaviour, Smoothness/continuity behaviour, Divergence of
Sampling Series

1. INTRODUCTION

The Fourier series and Fourier transform (FT) is without doubt an
important tool not only in the field of modern signal - and informa-
tion processing, but also in other engineering sciences. For instance,
they contribute greatly to the sampling theory [2], time-frequency
analysis [3], and wavelet theory [4], which constitute the founda-
tions of today’s digital world [5, 6, 7]. One of the important results
concerning to the Fourier series and FT is the so called Riemann-
Lebesgue’s Lem. (RLL). Its version for the FT asserts that the FT
of an integrable signal f P L1pRq on the real line has a regular be-
haviour, in the sense that it is continuous, and vanishes at infinity, i.e.
it converges to 0 as |ω| Ñ 8. Analogously, for the Fourier series, it
says that the Fourier coefficients of a w.l.o.g. 2π-periodic functions,
which are each integrable on w.l.o.g r�π, πs, decay with increasing
index toward 0.

Thus, the RLL for FT might tempt someone to think optimisti-
cally, that time-limited signals, which is clearly integrable, are ap-
proximatively band-limited, since all of the frequencies sufficiently
far away from the origin might be approaching zero fastly. Anal-
ogously, the RLL for Fourier series might tempt someone to think,
that any given signal can be approximated very well by a few domi-
nant Fourier coefficients of low indexes, because most of the Fourier
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coefficients are near zero. We aim to show in this work that such
thoughtless conclusions are false. Specifically, we aim to show, that
there exists not only an f P L1pRq, whose FT decays arbitrarily
slowly toward 0, rather such f can be found, s.t. its time occupation
is essentially contained in w.l.o.g. r�π, πs (this result can be gener-
alized to any other r�tg, tgs, tg ¡ 0, by simple rescaling). We shall
even see, that such property is a ”typical” property for the consid-
ered signal spaces ( L1pRq, L1pr�π, πsq). Furthermore, since FT
and IFT are almost identical, those statements can easily modified,
as to give the statements concerning to the decay behaviour, among
others, of band-limited signals. Notice also later that this observa-
tion can also be transferred into the context of Fourier series. An
application of the spaces L1pr�π, πsq and L1pRq in engineering is
given for instance in optimal control [8].

As we shall see, the statements mentioned previously is in some
sense weak, since it can only be given by means of the limit su-
perior. So, it is natural to ask, whether at least one of those can
be strengthened. Specifically, we ask ourselves: Does there ex-
ists for a function M specifying a certain decay rate, a function
f P L1pRq, for which tMp|ω|q| pfpωq|uωPR diverges strongly, i.e.
lim|ω|Ñ8 Mp|ω|q| pfpωq| � 8? This question will be answered in
this work by means of a specific construction.

The so-called Shannon’s sampling series (SSS) [5] is probably
one of the prominent example of an reconstruction process in the
signal processing. Its significance is founded by the fact, that it en-
sures perfect reconstruction of band-limited square-integrable sig-
nals from its samples, taken by the best possible sufficiently high
rate - the Nyquist rate. Since this initial result, many sampling theo-
rems of different directions have been developed, aiming to broaden
the signal classes, for which the SSS holds. Furthermore, the modes
of convergence now constitutes an entire area of research. Some
excellent overviews concerning to those aspects can be found in
[9, 10, 11, 12, 13]. However, the convergence behaviour of the SSS
for the broad signal class PW1

ωg , i.e. the space of signals, which
are band-limited to ωg ¡ 0 (see Sec. 2), is rather interesting. In
[14], it was shown that the SSS for PW1

ωg converges locally, while
in [15], it was shown that the SSS for PW1

ωg diverges globally, in
the sense that there exists a signal f P PW1

ωg (this behaviour holds
even for ”typical” signals in PW1

ωg , i.e. for residual sets (see Sec.
2) in PW1

ωg ), s.t.:

lim sup
NÑ8

sup
tPR

����� 1

ωg

Ņ

k��N

fp kπ
ωg
q sinpωgpt�

kπ
ωg

qq

t� kπ
ωg

����� � 8. (1)

Notice that the latter is given only weakly by means of the limit su-
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perior. A stronger result concerning to the divergence phenomenon
was given in [1]. Specifically, there it was shown, by means of a
specific construction, that there exists f P PW1

ωg , s.t.:

lim
NÑ8

sup
tPR

����� 1

ωg

Ņ

k��N

fp kπ
ωg
q sinpωgpt�

kπ
ωg

qq

t� kπ
ωg

����� � 8, (2)

i.e. that the SSS diverges strongly (globally). Excellent overviews
concerning to the divergence phenomenon of the SSS and its impor-
tance for the field of signal processing can be found in [16]. Mo-
tivated by the result mentioned in the previous paragraph, we shall
also give an alternative proof of the strong divergence of the SSS. Be-
sides, it shall be obvious, that the corresponding construction found
in this work is stronger than in [1].

For sake of completeness, we also aim to specify the second
statement of the RLL concerning to the continuity behaviour of the
FT of an integrable signal. Particularly, it shall be shown, that typi-
cally the FT of an integrable signal possesses an arbitrary weak con-
tinuity/smoothness behaviour.

2. NOTATIONS AND BASIC NOTIONS

An operator denotes simply a linear mapping between vector spaces.
Let X1 and X2 be normed spaces, and T : X1 Ñ X2. The norm
of the operator T is given by: }T} :� sup}x}X1

¤1 }Tx}X2
�

sup}x}X1
�1 }Tx}X2

. An operator is said to be bounded, if its norm
is finite. For operator is boundedness equivalent with continuity.
The space of all bounded operators between X1 and X2 is denoted
by BpX1,X2q. We call an operator mapping from a vector space X
to C, as functional on X . The space of functionals on X is denoted
by X�.

Let p P r1,8s, and X � R. We denote the Lebesgue space of
p-integrable functions on X by LppX q. For f P L1pRq, we define
the Fourier transform (FT) of f by pfpωq � ³�8

�8
fptqe�iωtdt and

the inverse Fourier transform (IFT) by qfptq � 1
2π

³�8
�8

fpωqeiωtdω.
For p P r1,8s and ωg P R�, we define the Paley-Wiener space
PWp

ωg as the space of signals f : R Ñ C, which is representable
as the IFT of a function pf P Lppr�ωg, ωgsq. PWp

ωg can be seen as
the space of signals band-limit ωg . In most cases, we treat signals
band-limited to π, since the results can easily be extended to any
other band-limit by some simple rescaling. A detailed treatment of
those basic functional analytic notions and Lebesgue spaces can be
found in [17, 18].

Let B be a Banach space. A set M � B is said to be nowhere
dense, if the inner of the closure of M is empty. One may visualize
a nowhere dense set as a set ”being perforated with holes” [19]. A
set M � B is said to be of 1. category, if it can be represented
as a countable union of nowhere dense sets. The complement of a
set of 1. category is defined as a residual set. Topologically, sets
of 1. category can be seen as a small set, and visualized as a set
”approximable” by sets ”being perforated by holes”. Accordingly,
residual sets, each as a complementary set of a set of 1. category,
can be seen as a large set. The Baire category Thm. ensures that this
categorization of sets of a Banach spaces is non-trivial, by showing
that the whole Banach space B is not ”small” in this sense, or can
even not be ”approximated” by such sets, i.e. it can not be written
as the union of sets of 1. category, and that the residual sets are
dense in B, and closed under countable intersection. A property
that holds for a residual subset of B is called a generic property.
A generic property might not holds for all elements of B, but for

”typical” elements of B. The so-called Banach-Steinhaus Thm. [20],
which is one of the central results in functional analysis, constitutes
a consequence of the Baire category Thm. . One of its version can
be expressed as follows:
Theorem 1 (The Principle of Condensation of Singularity): Let
B1 and B2 be Banach spaces. Given a family Φ in BpB1,B2q. If
it holds supTPΦ }T}B1ÑB2

� 8, then there exists an x� P B1 for
which supTPΦ }Tx�}B1

� 8. Furthermore, the set of such x� is a
residual set in B1.

For more detailed treatment of the Baire category Thm., and the
Banach-Steinhaus Thm., we refer to standard textbooks such as [19,
17, 21, 18]

3. THE DECAY BEHAVIOUR OF THE FT

Without doubt, the following Thm. is of fundamental significance in
the signal processing:
Theorem 2 (Riemann-Lebesgue Lemma (RLL)): Let f P L1pRq.
The FT pf of f is continuous. Furthermore, it vanishes at infinity, in
the sense that lim|ω|Ñ8

pfpωq � 0.

The RLL asserts that the FT of an integrable function possesses in
some sense a regular behaviour. It is natural to ask, how ”regular”
the FT of such a function might be. Firstly, we ask ourselves how
fast might be the decay of the FT of such functions. In the following
Thm., we give the corresponding answer, even for the case where the
signal is (almost) concentrated to the intervall w.l.o.g. r�π, πs:
Theorem 3: Let M : R�0 Ñ R�0 be an arbitrary monotonically non-
decreasing function, with limωÑ8 Mp|ω|q � �8. Then there exists
a function f� P L1pRq, with f�ptq � 0, for a.e. |t| ¡ π, such that it
holds:

lim sup
|ω|Ñ8

Mp|ω|q| pf�pωq| � 8. (3)

Furthermore, the set of such function is a residual set inL1pr�π, πsq.
Sketch of proof: Let be ω P R. Define Ψω P L1pr�π, πsq1 by
Ψωf :� ³π

�π
fptqe�iωtdt. It is not hard to see that:

}Ψω} � sup
}f}

L1pr�π,πsq
¤1

|Ψωf | � 1. (4)

By means of the function sequence of functions fn, n P N, given
by fnptq � n, for |t| ¤ 1{2n, and fnptq � 0 else, one can show
the non-trivial part of above statement, i.e. }Ψω} ¥ 1. Now, the
statement (4) asserts that the norm of Ψω,M P L1 pr�π, πsq� given
by Ψω,Mf :� Mp|ω|qΨωpfq � Mp|ω|q pfpωq, is }Ψω,M} � Mpωq.
Thus, it yields sup

ωPR�0
}Ψω,M} � 8, since by assumption

sup
ωPR�0

Mpωq � limωÑ8 Mpωq � 8. Thm. 1 asserts, that there

exists a function f� P L1pr�π, πsq s.t. lim sup|ω|Ñ8 |Ψω,Mf | �
8, and correspondingly the set of such functions is residual in
L1pr�π, πsq.
Remark 1: Since the FT and the IFT behave almost equally, Thm.
3 can be applied up to a minor modification to describe the decay
behaviour of band-limited signals. also other discussions found in
this section can appropriately be modified.

Notice that by simply changing the domain of Ψω and Ψω,M, from
L1pr�π, πsq toL1pRq, in the proof of Thm. 3, the statement in Thm.
3 can be modified as follows: The set of functions f� P L1pRq,
for which (3) holds, is a residual set in L1pRq. Furthermore, Thm.
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3 might by some efforts also be modified, as to give the follow-
ing more general statement: Let p P r1,8s, and M is a function
fulfilling the requirements given in Thm. 3. Then there exists a
signal f� P LppRq, with f�ptq � 0, for a.e. |t| ¡ π, such that
lim|ω|Ñ8 Mp|ω|q| pf�pωq| � 8. Furthermore, the set of such func-
tions is a residual set in Lppr�π, πsq. Thm. 3 and the latter discus-
sions assert that generically time-limited (or equivalently regarding
to Rem. 1: band-limited -) signals are even not approximatively
band-limited (resp.: band-limited), where f P Lppr�π, πsq is ap-
proximatively band-limited means, that @ε ¡ 0, there exists ωε ¡ 0,
s.t. |fpωq| ¤ ε, @ |ω| ¡ ωε.

Besides, the attentive readers would recognize that Thm. 3 can
be modified as to give a characterization of the decay behaviour of
the Fourier coefficients of a periodic function f , integrable on the
intervall r�π, πq, i.e. f P L1pTq, in the following sense: Let
M : N0 Ñ R�0 be an arbitrary monotonically increasing function
(or equivalently: a monotonically increasing sequence), for which
limnÑ8 Mpnq � 8. Then there exists a function f� P L1pTq,
for which it holds lim sup|n|Ñ8 Mp|n|q| pf�pnq| � 8, where in this

case pf�pnq denotes the fourier coeff. of f�. Furthermore, the set of
such functions f� is a residual set in L1pTq.

4. CONSTRUCTION OF A FUNCTION STRONGLY
DECAYING SLOWER THAN A FIXED RATE

Next, we shall show, that even for some functions f generally in
L1pRq strong divergence may occur for Mp|ω|q| pfpωq|, where M is
a fixed decay rate. To do this, we first need the following Thm.:
Theorem 4: Let G : R�0 Ñ R� be an arbitrary a monotonically de-
creasing continuous function, for which limωÑ8 Gpωq � 0 holds.
Then there exists a function f P L1pRq such that | pfpωq| ¥ Gp|ω|q,
for all ω P R. Furthermore, the function f can be found s.t. pf is real
and non-negative.

Sketch of proof: For n P N, consider the Fejèr kernel gn (see text-
books, e.g. [22, 23]), whose FT is given by xgnpωq, for |ω| ¤ 2n,
and 0 else. It is well-known that

³8
�8

gnptqdt � 1, and therefore:
}gn}L1pRq � 1. Now, for each n P N, define the function g�n by
g�n :� 2gn�1 � gn. For n P N, one can give the FT of g�n ex-
plicitly by xg�npωq � 1, for |ω| ¤ 2n, xg�npωq � 1 � |ω�2n|

2n�1�2n
, for

2n   |ω| ¤ 2n�1, and 0 else. Furthermore, by the triangle in-
equality, and by the fact that }gn}L1pRq � 1, for each n P N, we
can conclude that

��g�n��L1pRq ¤ 3, @n P N. Next, take an arbi-
trary function G, which fulfills the requirement given in the Thm.
. For each steps k P N, choose nk P N sufficiently large enough,
s.t. nk ¡ nk�1 and Gp2nk q ¤ 1

2
Gp2nk�1q, where n0 � 0.

One can easily show by induction involving the fact that G vanishes
at infinity, that the choice is possible. Further, define the function
fk :� fk�1 � Gp2nk�1qg�nk , where f0 � 0. Observe by induction
that by this procedure, we have a pointwise monotonically increas-
ing sequence of real and non-negative functions txfnu, which fulfills:

@k P N : xfkpωq ¥ Gp|ω|q, @ |ω| ¤ 2nk (5)

Now, notice that, @k P N, fk can be written as fk �
°k
l�1 Gp2nlqg�nl .

Correspondingly, one may easily obtain for k, k
1 P N, k ¥ k

1

:

��fk � fk1
��
L1pRq ¤

ķ

l�k
1
�1

Gp2nlq ��g�nl��L1pRq ¤ 3Gp0q
ķ

l�k
1
�1

1
2l
,

Thus from above computations and from the fact that the se-
ries

°8
k�1 1{2k converges, one can easily conclude, that tfku is

a Cauchy sequence in L1pRq, and accordingly, completeness of
L1pRq asserts the existence of f P L1pRq, for which limnÑ8 fn �
f w.r.t. the norm of L1pRq. By the continuity of the FT seen as
an element of operator between L1pRq and C0, it follows that xfk
converges uniformly to pf , and clearly also pointwise. Now, let
ω P R be arbitrary but fixed. There exists of course an k0 P N,
s.t. |ω| ¤ 2k0 . From the fact that txfnpωqun is monotonically
increasing, xfnpωq converges to pfpωq, and (5), we have as desiredpfpωq ¥ pf2

nk0 pωq ¥ Gp|ω|q.
Theorem 5: Let M : R�0 Ñ R� be an arbitrary monotonically in-
creasing continuous function, with Mp0q ¡ 0 and lim|ω|Ñ8 Mpωq �
�8. Then there exists a function f� P L1pRq, for which it holds:

lim
|ω|Ñ8

|xf�pωq|Mp|ω|q � �8.

Further, f� can be chosen, s.t. xf� is real and non-negative.

Proof: Define the function G :� 1{?M. Notice that G fulfills
the requirements given in Thm. 4. Thence, there exists a function
f�, for which |xf�pωq|Mp|ω|q ¥

a
Mp|ω|q, for all ω P R, which

immediately gives the desired statement.

Remark 2: Similar to Rem. 1, Thm. 4 and Thm. 5 can appropriately
be modified to handle functions on the frequency domain.

5. A NEW PROOF OF THE STRONG DIVERGENCE OF
SHANNON’S SAMPLING SERIES (SSS)

In this section, we aim to give a construction of functions in PW1
ωg ,

where ωg P R�, whose corresponding SSS diverges strongly. To be
more specific, we want construct a universal function f P L1pRq,
such that for each ωg P R�, we can in turn construct another func-
tion f� by means of f , such that the SSS of the band-limited inter-
polation qf�,ωg of the IFT of f�, strongly diverges, i.e. (2) holds forqf�,ωg . Notice that, as the adjective ”strong” asserts, this sort of di-
vergence, in comparison to the lim sup/weak divergence of SSS (see
(1)) abdicts the existence of a subsequence tNlul, for which:

lim
kÑ8

sup
tPR

����� 1

ωg

Nļ

k��Nl

qf�,ωg p kπωg q sinpωgpt�
kπ
ωg

qq

t� kπ
ωg

�����   8, (6)

and hence the convergence of the series given in (6) to qf�,ωg . For
signal processing aspect, (2) abnegates the existence of an adaptive
method, based on clever choice of such subsequence tNlul, to re-
construct signals in PW1

π by means of SSS. This construction is
clearly stronger than the existent one given in [1], because it is there
given for each ωg P R� by an explicit construction.

To fulfill this task, first suppose that we have a function G :
R�0 Ñ R� fulfilling the conditions given in Thm. 4 (we shall soon
discuss about the choice of such function), for which the following
holds:

lim
NÑ8

Ņ

k�0

G
�
kπ
ωg

	
1

N�
1
2
�k

� 8, @ωg P R�. (7)

Thm. 4 and Rem. 2 asserts that we can find a function f P L1pRq,
whose IFT is real and non-negative, and fulfills qfptq ¥ Gp|t|q, for
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all t P R. In particular, we have for every ωg P R�:

qf � kπ
ωg

	
¥ G

���� kπωg
���	 , @k P Z. (8)

Now, let ωg P R� be fixed. Define another function f� by
f�pωq :� fpω � ωgq, t P R. It is not hard to see that f� P L1pRq,
and that the following holds:

qf� � kπωg
	
� p�1qk qf � kπ

ωg

	
, k P Z. (9)

Of course we can give the band-limited interpolation qf�,ωg P
PW1

ωg of |f�, for which it holds:

qf�,ωg � kπωg
	
� qf� � kπωg

	
, (10)

by setting: f�,ωgpωq :� °�8
k��8 f�pω � 2ωgkq, @ |ω| ¤ ωg , and 0

else (see e.g. [24]).
Notice that for N P N, the finite SSS of qf�,ωg (2) at the time

instance t̃N :� tN pπ{ωgq, where tN :� pN � p1{2qq can be writ-
ten as

°N
k��N

qf�,ωg p kπωg q sinpπptN�kqq
πptN�kq

. Now, by the addition Thm.
for trigonometric functions and the relations (10) and (9), one may
obtain:

Ņ

k��N

qf�,ωg p kπωg q sinpπptN�kqq
πptN�kq

� sinpπtN q
π

Ņ

k��N

qfp
kπ
ωg

q

N�
1
2
�k
.

By giving explicitly the value of sinpπtN q in above expression,
noticing that qf is non-negative, and by (8), we have:�����

Ņ

k��N

qf�,ωg p kπωg q sinpπptN�kqq
πptN�kq

����� ¥ 1
π

Ņ

k�0

Gp kπ
ωg

q

N� 1
2
�k
,

Collecting all the previous observations, and by assumption (7), it is
not hard to see that (2) holds for qf�,ωg , as desired. Of course, by
(10), (2) holds also for f�.

Now, it remains to construct the function G, for which (7)
holds. Notice that it is sufficient to require that @ωg P R�,
limNÑ8 G ppNπq{ωgq logpN � 2q � 8. For instance, the
function G given by Gptq � 1, for t ¤ 10, and for t ¡ 10,
Gptq � logplogp10qq{ logplogptqq, fulfills above condition and
hence (7).

6. ON THE SMOOTHNESS OF THE FT

The RLL (Thm. 2) asserts besides that the FT of an integrable func-
tion is continuous. The following Thm. gives the corresponding
specification of this statement:
Theorem 6: Let µ : R� Ñ R� an arbitrary monotonically increas-
ing continuous function, with µp0q :� limhÑ0� µphq � 0. Given
an arbitrary point ω� P R. Then the set of all f P L1pRq, for which:

lim sup
hÑ0

| pfpω��hq� pfpω�q|
µphq

� �8,

holds, is a residual set.

Sketch of proof: For fixed ω P R, we have pfpω� � hq � pfpω�q :�³�8
�8

fptqe�iω�tpeiht � 1qdt, where h ¡ 0. We aim to analyze
for ω� P R and h ¡ 0, the behaviour of Ψω�,h P L1pRq�, given
by: Ψω�,hf :� ³�8

�8
fptqe�iω�tpeiht � 1qdt. Now, for c P R�,

define the function fc, by fcptq :� ceiω�t, for |t| ¤ 1{2c, and
fcptq :� 0 else. By simple computations, one obtains: Ψω�,hfc ��
sinc

�
h
2c

�� 1
�
. For a fixed choice of h ¡ 0, set c� � h{2π, which

yields the estimation
��Ψω�,hfc�

�� � 1, implying
��Ψω�,h

�� ¥ 1, @h P
R�. Now let µ be an arbitrary function fulfilling the requirements
given in this Thm. . Define Ψω�,h,µ P L1pRq� by Ψω�,h,µf :�
pΨω�,hfq{µphq. From the latter estimation of

��Ψω�,h

��, we have��Ψω�,h,µ

�� ¥ 1{µphq, and correspondingly limhÑ0

��Ψω�,h,µ

�� ¥
limhÑ0 1{µphq � �8. Thus suph¡0

��Ψω�,h,µ

�� � �8, and cor-
respondingly by Thm. 3, we obtain the desired result.

Remark 3: Let be ω P R, g : R Ñ C be a continuous function,
and let γg,ω denotes the (local) modulus of continuity (MOC) of g
at ω, i.e. a continuous monotonically increasing function γg,ω :
R� Ñ R� vanishing at 0, and for which it holds: @h ¡ 0 :
|gpω � hq � gpωq| ¤ γg,ωp|h|q. In some sense, MOC specifies the
continuity behaviour of the function g at ω, and gives a measure on
the smoothness of g at the point ω. So we may alternatively formu-
late Thm. 6 as follows: Given a frequency ω� P R, and a function
µ satisfying the conditions in that Thm.. Then typically functions in
L1pRq have a FT, which does not admit µ as the MOC at ω�.

Remark 4: We are also capable to give a stronger result than that,
given in Thm. 6, in the following sense:

”Let µ be a function fulfilling the requirements given in Thm. 6.
The set Dµ of all f P L1pRq, such that the set:

Ppµq
Div pfq :�

"
ω P R : lim sup

hÑ0

| pfpω�hq� pfpωq|
µphq

� �8
*

is a residual set in R, forms a residual set in L1pRq.”
Roughly, this means that typically the FT of an integrable func-

tion is arbitrarily weak continuous on typical points on the real line.
The corresponding proof shall be given in the subsequence work.

7. DISCUSSION - OUTLOOK - RELATIONS TO PRIOR
WORKS

In this work, we are able to show, by means of the technique inspired
by the Banach-Steinhaus Thm., some tightening of the famous RLL,
which constitutes one of the important foundation of signal process-
ing: the FT of an integrable signal does typically not behave regu-
larly, in the sense, that generically the FT of a integrable signal de-
cays arbitrarily slowly toward 0 and has arbitrarily weak continuity
behaviour, although the results are given weakly by means of limit
superior. Up until now, it was uncertain, whether the RLL can be
tightened, without giving further constraints to the considered sig-
nals (e.g. differentiability). Furthermore, the behaviour concerning
to the decay of the FT given in this work holds also even for the more
restrictive class Lppr�ωg, ωgsq, ωg ¡ 0, and p P r1,8s of concen-
trated signals. All the results found in this work holds of course
also for the IFT of integrable signals, as to give insight to the decay
behaviour and continuity behaviour of i.a. band-limited signals.

Also, we are able to give a construction of a signal, which
strongly has an arbitrarily slow decay behaviour. However, as [25]
might assert, the set of such signals is topologically small in L1pRq.
The corresponding technique for proving that result gives also new
sight to the strong divergence phenomenon [1] of the SSS and a
stronger proof for the divergence of SSS for band-limited signals
f P PW1

ωg , where ωg P R�.
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