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ABSTRACT

Linear canonical transform (LCT) is an attractive and use-
ful tool in optics and signal processing. In previous work, a
generalization of the LCT with two extra parameters, called
offset LCT (OLCT), has been developed. In this paper, a dif-
ferent definition of OLCT is proposed, which has a more con-
cise form of inverse transform. We find a linear operator that
commutes with the proposed OLCT. We prove that the com-
muting operator and the proposed OLCT have the same set
of eigenfunctions with different eigenvalues. We also derive
the discrete version of the commuting operator to develop a
discrete OLCT. The proposed discrete OLCT has perfect re-
versibility property.

Index Terms— ABCD transform, fractional Fourier
transform, linear canonical transform, offset linear canoni-
cal transform, quadratic-phase integrals

1. INTRODUCTION

Linear canonical transform (LCT) is a parameterized general
linear integral transform. Fourier transform, Fresnel trans-
form and fractional Fourier transform are all its special cases
[1, 2]. It has four parameters and thus more important and
useful in optics [3, 4, 5] and many signal processing applica-
tions including filter design, radar system analysis, signal syn-
thesis, phase reconstruction, time-frequency analysis, pattern
recognition, encryption and modulation [6, 7, 8, 9, 10, 11].

In [12], the LCT is generalized by introducing two extra
parameters, corresponding to time shift and frequency mod-
ulation. This generalized LCT is called offset LCT (OLCT).
The eigenfunctions of the OLCT for all cases have been dis-
cussed in [12] in detail. In [13], the lossless uniform sampling
theorem of the OLCT is developed, and the effect of OLCT
in time-frequency plane is also discussed. In [14], the au-
thors develop the convolution and correlation theorems forthe
OLCT, and investigate the sampling theorem of the OLCT by
the convolution theorem. In [15], spectral of uniformly and
nonuniformly sampled signals in the OLCT domain is ana-
lyzed. Many applications of the LCT can be extended to the
OLCT. Some applications have been presented in [12, 16, 17].

In [18], a linear operator commuting with the LCT op-
erator is proposed. The commuting operator and the LCT
operator have the same set of eigenfunctions with different
eigenvalues. In this paper, we focus on the development of
the commuting operator of the OLCT. First, a different def-
inition of OLCT is proposed. The inverse transform of pro-
posed OLCT is more concise. And it is easier to find a linear
operator that commutes with the proposed OLCT. The eigen-
functions and eigenvalues of the commuting operator are dis-
cussed. We also derive the discrete version of the commuting
operator, the eigenvectors of which can be used to develop a
discrete OLCT with perfect reversibility property.

2. PRELIMINARY: COMMUTING OPERATOR OF
LINEAR CANONICAL TRANSFORM

Given an input signalx(t), the outputXM(u) of the linear
canonical transform (LCT) [5, 2] is given by

XM(u) = LM{x(t)}

=






√
1

j2πb

∞∫
−∞

ej
d
2b

u2
−j 1

b
ut+j a

2b
t2x(t) dt, b 6= 0

√
d ej

cd
2

u2

x(du), b = 0

, (1)

whereLM denotes the LCT operator, andM = [a, b; c, d] is
the2 × 2 LCT parameter matrix satisfyingdet(M) = ad −
bc = 1. The inverse LCT is equivalent to the forward LCT
with parameter matrixM−1:

[LM]
−1

= LM−1 . (2)

Let ω andν denote the frequency coordinates with respect to
t andu, respectively. [7] shows that the LCT can produce the
following affine transformation in time-frequency plane:

[
u
ν

]
=

[
a b
c d

] [
x
ω

]
. (3)

The eigenfunctions of the LCT for all cases have been dis-
cussed in [2]. In [18], the authors find a linear operatorCM
commuting with the LCT operator, i.e.CMLM = LMCM.
The commuting operator is given by

CM = bD2
t + j

a− d

2
(tDt +Dtt) + ct2, (4)
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whereDt =
d
dt

. It implies thatx(t) throughCM becomes

b
d2

dt2
x(t) +j

a− d

2

(
t
d

dt
x(t) +

d

dt
[tx(t)]

)
+ ct2x(t). (5)

It is proved thatCM andLM have the same set of eigenfunc-
tions with different eigenvalues.

3. COMMUTING OPERATOR OF OFFSET LINEAR
CANONICAL TRANSFORM

In this section, a new definition of offset LCT (OLCT) is pro-
posed. The inverse transform of the proposed OLCT is more
concise, and it is easier to find a linear operator that commutes
with the proposed OLCT.

3.1. Offset Linear Canonical Transform

The conventional definition of OLCT [12, 13] is given by

X̃τ,η
M

(u) = L̃τ,η
M

{x(t)}

=


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,

(6)

where the two extra parametersτ andη correspond to time
shift and frequency modulation, respectively, and its inverse
transform is given by

[
L̃τ,η
M

]
−1

= ej
cd
2
τ2

−jadτη+j ab
2
η2 L̃−dτ+bη, cτ−aη

M−1 . (7)

In (7), there is a constant phase, and the parameters of time
shift and frequency modulation change. In the following, a
new definition of OLCT with more concise inverse transform
is proposed. It is easier to find a commuting operator from the
proposed OLCT than from the conventional one.

In time-frequency plane, conventional OLCT results in
[
u
ν

]
=

[
a b
c d

] [
x
ω

]
+

[
τ
η

]
. (8)

Consider another kind of time-frequency transformation:
[
u
ν

]
−
[
β
γ

]
=

[
a b
c d

]([
x
ω

]
−
[
β
γ

])
. (9)

LetLβ,γ
M

denote the OLCT operator corresponding to (9), and
assumeXβ,γ

M
(u) = Lβ,γ

M
{x(t)}. Then, (9) implies

e−jγuXβ,γ
M

(u + β) = LM

{
e−jγtx(t+ β)

}
. (10)

Based on (10), the OLCT operatorLβ,γ
M

can be derived from
the LCT operatorLM defined in (1):

Xβ,γ
M
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From (8) and (9), we can find out that

τ = (1 − a)β − bγ and η = (1− d)γ − cβ. (12)

These two relations show that the proposed OLCT in (11) is
equivalent to the conventional OLCT in (6) with some con-
stant phase difference. However, from (1), (2) and (10), the
inverse transform of the proposed OLCT is given by

[
Lβ,γ
M

]
−1

= Lβ,γ

M−1 , (13)

which is more concise than the inverse transform of the con-
ventional OLCT in (7).The OLCT mentioned in the rest of
this paper refers to the proposed OLCT defined in (11).

3.2. Commuting Operator of the Proposed OLCT

Assumeb 6= 0. The first derivative of the OLCT is given by

d
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M
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For simplicity, the equation above is rewritten as the follow-
ing operator form:

DtLβ,γ
M

= j

[
γ +

d

b
(t− β)

]
Lβ,γ
M

− j
1

b
Lβ,γ
M

(t− β), (15)

whereDt =
d
dt

. From (15), we have the Property 1:

(P1) Lβ,γ
M

(t− β) = [jb (Dt − jγ) + d(t− β)]Lβ,γ
M

. (16)

Since [Lβ,γ
M

]−1 = Lβ,γ

M−1 , replacingM = [a, b; c, d] by
M

−1 = [d,−b;−c, a] in (16) leads to
[
Lβ,γ
M

]
−1

(t− β) = [−jb (Dt − jγ) + a(t− β)]
[
Lβ,γ
M

]
−1

,

(17)

and it follows that

(t− β)Lβ,γ
M

= −jbLβ,γ
M

(Dt − jγ) + aLβ,γ
M

(t− β). (18)

Sincead − bc = 1, substituting the Property 1 in (16) to the
above equation leads to the Property 2:

(P2) Lβ,γ
M

(Dt − jγ) = [a (Dt − jγ)− jc(t− β)]Lβ,γ
M

. (19)

From Properties 1 and 2 in (16) and (19), the commuting op-
erator of the OLCT is given by

Cβ,γ
M

= b (Dt − jγ)
2
+ j

a− d

2
[(t− β) (Dt − jγ)

+ (Dt − jγ) (t− β)] + c(t− β)2. (20)

One can also prove thatCβ,γ
M

is also the commuting operator
for b = 0 case. Whenβ = γ = 0 (i.e. no offset),Cβ,γ

M
reduces

to the commuting operator of the LCT, i.e.CM, in (4).
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4. APPLICATIONS

4.1. Eigenfunctions of Commuting Operator of OLCT

SinceLM andCM commutes, they have the same set of eigen-
functions with different eigenvalues. Assume

LMEm(t) = λmEm(t), CMEm(t) = µmEm(t), (21)

where the eigenfunctionsEm(t) and eigenvaluesλm, µm

have been discussed in [2, 18] for all cases ofM. From the re-
lation between the LCT and the OLCT in (10),ejγ(t−β)Em(t−
β) are the eigenfunctions of the OLCT with the same eigen-
valuesλm:

Lβ,γ
M

ej(t−β)Em(t− β) = λmej(t−β)Em(t− β). (22)

Next, we will prove thatLβ,γ
M

andCβ,γ
M

share the same set of
eigenfunctions with different eigenvalues. From the definition
of CM in (4) andCβ,γ

M
in (20), we have

Cβ,γ
M

ej(t−β)Em(t− β)=ej(t−β)

{
bD2

t + j
a− d

2
[(t− β)Dt

+Dt(t− β)]+ c(t− β)2
}
Em(t− β)

=ej(t−β) [CMEm(t)]t→t−β . (23)

From (21), it follows that

Cβ,γ
M

ej(t−β)Em(t− β) = µmej(t−β)Em(t− β). (24)

Therefore,ejγ(t−β)Em(t − β) are also the eigenfunctions of
Cβ,γ
M

with the same eigenvalues asCM.
It has been shown in [18] that the eigenvaluesλm are com-

plex and|λm| = 1, while the eigenvaluesµm are all real and
distinct. Therefore, the set of eigenfunctions obtained from
the commuting operator is unique and orthogonal. For exam-
ple, when|a+ d| < 2, the eigenfunctions of the LCT and its
commuting operator are given by

hM,m(t)
∆
=

√
1√

π2mm!
Hm

(
t

σ

)
e−

1+jρ

2σ2 t2 , (25)

where σ2 =
2|b|√

4− (a+ d)
2
, ρ =

sgn(b)(a− d)√
4− (a+ d)

2
. (26)

Hm(t) is the Hermite polynomial of orderm. The eigenval-
uesλm andµm are given by

λm = e−j(m+ 1
2 )cos

−1( a+d
2 ), (27)

µm = −sgn(b)

√
4− (a+ d)

2

(
m+

1

2

)
. (28)

According to (22) and (24), the eigenfunctions of the OLCT
and its commuting operator are given by

hβ,γ
M,m(t)

∆
=

√
1√

π2mm!
Hm

(
t− β

σ

)
e−

1+jρ

2σ2 (t−β)2+jγ(t−β),

(29)

whereσ andρ are defined in (26). For two different eigen-
functions, sayhβ,γ

M,m1
(t) andhβ,γ

M,m2
(t) wherem1 6= m2, the

values ofµm1
andµm2

are different, but the values ofλm1

andλm1
will be the same if(m1 −m2) cos

−1
(
a+d
2

)
= 2kπ.

If so, all the linear combinationsc1h
β,γ
M,m1

(t) + c2h
β,γ
M,m2

(t)
with arbitraryc1 andc2 are also the eigenfunctions of OLCT.
There will be many orthogonal sets of eigenfunctions for the
OLCT, but there’s only one set for the commuting operator.

4.2. Self-Imaging Phenomena

The eigenfunctions of the OLCT are useful for analyz-
ing the self-imaging phenomena and the resonance phe-
nomena of spherical mirror pair systems in optics [12].
For example, Fig. 1 shows an optical system consisting of
a lens with focal lengthf shifted upward with distance
x0, a free space with distancez0, and a prism with re-
fractive indexn and ratio of bottom width to height be-
ing ρ. According to [12], the light propagation through
this system can be modeled by the conventional OLCT
with M = [1 − z0/f, z0/k;−k/f, 1], τ = z0x0/f and
η = kx0/f − k(n − 1)ρ, wherek = 2π/λ andλ is the
wavelength. And from (12), it can also be modeled by the
proposed OLCT with the sameM, β = x0 − (n − 1)ρf
andγ = −k(n − 1)ρ. When |a + d| < 2, all the inputs
resulting in self-imaging phenomena can be expressed by the
eigenfunctions in (29).

x

z

lens prism
Input

x0
free space  z0

Output

bottom width

hight
= ρ

Fig. 1. An optical system with a shifted lens, a free space and
a prism.

4.3. Discrete OLCT

The eigenfunctions of the OLCT can form an orthonormal
set. Therefore, the eigenfunctions can be used to implement
the OLCT. For example, when|a+ d| < 2, express the input
signalx(t) in terms ofhβ,γ

M,m(t) as follows:

x(t) =
∞∑

m=0

amhβ,γ
M,m(t), am=

∞∫

−∞

x(t)hβ,γ
M,m(t)dt. (30)

Since hβ,γ
M,m(t) are the eigenfunctions of the OLCT with

eigenvaluesλm given in (27) when|a+ d| < 2, the OLCT of
x(t) can be obtained from

Xβ,γ
M

(u) =

∞∑

m=0

amLβ,γ
M

{
hβ,γ
M,m(t)

}
=

∞∑

m=0

λmamhβ,γ
M,m(u).

(31)
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(a)

1st, 6th and 11th eigenvectors of C
β,γ
M
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Fig. 2. Time-frequency distributions: (a) 1st, (b) 6th and (c)
11th eigenvectors ofCβ,γ

M
used to approximate the sampled

OLCT eigenfunctionshβ,γ
M,m(n∆) with m = 0, 5, 10, where

M = [0.53, 0.63;−0.67, 1.09], β = −2, γ = 3, N = 127
and∆ =

√
2π/N .

However, for the discrete case, we cannot digitally implement
the OLCT by sampling (30) and (31) with some sampling pe-
riod∆ directly. The sampled eigenfunctions,hβ,γ

M,m(n∆), are
no longer orthogonal to each other. Therefore, we need to find
an orthogonal set of discrete functions that can approximate
hβ,γ
M,m(n∆). A simple solution is to develop the discrete ver-

sion ofCβ,γ
M

, denoted byCβ,γ
M

, and then find an orthonormal
set of discrete eigenfunctions (i.e. eigenvectors) fromC

β,γ
M

.
To obtainCβ,γ

M
, a method similar to that in [19] is used.

Assume the sampling period is∆ =
√
2π/N , and the dis-

crete input is given byx[n] = x ((n− (N − 1)/2)∆) where
0 ≤ n ≤ N − 1. In (20),Cβ,γ

M
is composed of two kinds of

operators,t − β andDt − jγ. It is straightforward to define
the discrete version oft − β as anN × N diagonal matrix
T− βI, whereI is the identity matrix and

[T]kn =

{ (
n− N−1

2

)√
2π
N
, n = k

0, n 6= k
, (32)

where0 ≤ n, k ≤ N−1. LetF denote the Fourier transform.
It is well known thatFDt = jtF . Therefore,Dt − jγ =
jF−1tF − jγ and its discrete version can be designed as
jFH

TF− jγI, whereF is anN ×N centered DFT matrix:

[F]kn = e−j 2π
N (k−N−1

2 )(n−N−1

2 ), 0≤ n, k ≤N − 1. (33)

Accordingly, the discrete version ofCβ,γ
M

is given by

C
β,γ
M

= b
(
jFH

TF− jγI
)2
+ j

a− d

2

[
(T− βI)

(
jFH

TF

−jγI) +
(
jFH

TF− jγI
)
(T− βI)

]
+ c(T− βI)2. (34)

Performing eigendecomposition onCβ,γ
M

, the N or-
thonormal eigenvectors, denoted byhβ,γ

M,m[n], can approx-

imate hβ,γ
M,m(n∆) with some constant difference. For ex-

ample, assumeM = [0.53, 0.63;−0.67, 1.09], β = −2,
γ = 3 andN = 127. The sampled OLCT eigenfunctions
hβ,γ
M,m(n∆) for m = 0, 5, 10 are approximated by the 1st, 6th

and 11th eigenvectors ofCβ,γ
M

, the time-frequency distribu-
tions of which are shown in Fig. 2(a), (b) and (c).

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5
Input x[n]

(a)

TFD of x[n]

(b)
−10 −5 0 5 10

−10

−5

0

5

10

−10 −5 0 5 10
−1.5

−1

−0.5

0

0.5

1

1.5
Output X

β,γ
M

[k]

(c)

 

 

Mag.
Real
Imag.

TFD of X
β,γ
M

[k]

(d)
−10 −5 0 5 10

−10

−5

0

5

10

Fig. 3. (a) Discrete inputx[n], (b) time-frequency distri-
bution of x[n], (c) outputXβ,γ

M
[k] of the discrete OLCT

and (d) time-frequency distribution ofXβ,γ
M

[k], whereM =
[0.53, 0.63;−0.67, 1.09],β = −2, γ = 3 andN = 127.

Therefore, a discrete OLCT can be developed as follows

Xβ,γ
M

[k] =

N−1∑

m=0

λmamhβ,γ
M,m[k], am =

∑

n

x[n]hβ,γ
M,m[n].

This discrete OLCT features perfect reconstruction because
hβ,γ
M,m[n]’s are orthonormal. In the following, a simulation

is given, using the same parameters as in Fig. 2. The dis-
crete inputx[n] is real, containing a rectangular function
and a trapezoidal function, as shown in Fig. 3(a). The time-
frequency distribution ofx[n] is depicted in Fig. 3(b). The
outputXβ,γ

M
[k] of the discrete OLCT is shown in Fig. 3(c),

and its time-frequency distribution is depicted in Fig. 3(d).

5. CONCLUSION
In this paper, a different definition of OLCT is proposed. The
proposed OLCT has a more concise form of inverse trans-
form than the conventional definition of OLCT. A linear op-
erator that commutes with the proposed OLCT is derived.
The eigenfunctions and eigenvalues of the commuting opera-
tor are analyzed. We prove that the commuting operator and
the proposed OLCT share common eigenfunctions with dif-
ferent eigenvalues. We also derive the discrete version of the
commuting operator, the eigenvectors of which can be used to
develop a discrete OLCT. The proposed discrete OLCT has an
important property: perfect reversibility.

6. ACKNOWLEDGMENTS
This work was supported by the Ministry of Science and
Technology, Taiwan, under Contracts MOST 104-2221-E-
002-096-MY3, MOST 104-2221-E-002-006 and MOST 104-
2917-I-002-042.

4868



7. REFERENCES

[1] J.-J. Ding,Research of fractional Fourier transform and
linear canonical transform, Ph.D. thesis, Ph. D. Thesis,
National Taiwan University, 2001.

[2] S.-C. Pei and J.-J. Ding, “Eigenfunctions of linear
canonical transform,”IEEE Transactions on Signal Pro-
cessing, vol. 50, no. 1, pp. 11–26, 2002.

[3] M. Nazarathy and J. Shamir, “First-order opticsa canon-
ical operator representation: lossless systems,”JOSA,
vol. 72, no. 3, pp. 356–364, 1982.

[4] M. J. Bastiaans, “Propagation laws for the second-order
moments of the wigner distribution function in first-
order optical systems,”Optik, vol. 82, no. 4, pp. 173–
181, 1989.

[5] H. M. Ozaktas, M. A. Kutay, and Z. Zalevsky,The frac-
tional Fourier transform with applications in optics and
signal processing, New York: Wiley, 2001.

[6] B. Barshan, M. A. Kutay, and H. M. Ozaktas, “Optimal
filtering with linear canonical transformations,”Optics
communications, vol. 135, no. 1-3, pp. 32–36, 1997.

[7] S.-C. Pei and J.-J. Ding, “Relations between fractional
operations and time-frequency distributions, and their
applications,”IEEE Transactions on Signal Processing,
vol. 49, no. 8, pp. 1638–1655, 2001.

[8] M. J. Bastiaans and K. B. Wolf, “Phase reconstruction
from intensity measurements in linear systems,”JOSA
A, vol. 20, no. 6, pp. 1046–1049, 2003.

[9] B. M. Hennelly and J. T. Sheridan, “Optical encryption
and the space bandwidth product,”Optics communica-
tions, vol. 247, no. 4, pp. 291–305, 2005.

[10] K. K. Sharma and S. D. Joshi, “Signal separation us-
ing linear canonical and fractional fourier transforms,”
Optics communications, vol. 265, no. 2, pp. 454–460,
2006.

[11] S.-C. Pei and S.-G. Huang, “Reversible joint hilbert and
linear canonical transform without distortion,”IEEE
transactions on signal processing, vol. 61, no. 17-20,
pp. 4768–4781, 2013.

[12] S.-C. Pei and J.-J. Ding, “Eigenfunctions of the off-
set fourier, fractional fourier, and linear canonical trans-
forms,” JOSA A, vol. 20, no. 3, pp. 522–532, 2003.

[13] A. Stern, “Sampling of compact signals in offset linear
canonical transform domains,”Signal, Image and Video
Processing, vol. 1, no. 4, pp. 359–367, 2007.

[14] Q. Xiang and K. Qin, “Convolution, correlation, and
sampling theorems for the offset linear canonical trans-
form,” Signal, Image and Video Processing, vol. 8, no.
3, pp. 433–442, 2014.

[15] S. Xu, Y. Chai, and Y. Hu, “Spectral analysis of sam-
pled band-limited signals in the offset linear canonical
transform domain,”Circuits, Systems, and Signal Pro-
cessing, pp. 1–19, 2015.

[16] Q. Xiang, K.-Y. Qin, and Q.-Z. Huang, “Multichannel
sampling of signals band-limited in offset linear canon-
ical transform domains,”Circuits, Systems, and Signal
Processing, vol. 32, no. 5, pp. 2385–2406, 2013.

[17] S. Xu, Y. Chai, Y. Hu, C. Jiang, and Y. Li, “Re-
construction of digital spectrum from periodic nonuni-
formly sampled signals in offset linear canonical trans-
form domain,” Optics Communications, vol. 348, pp.
59–65, 2015.

[18] S.-C. Pei and C.-L. Liu, “Differential commuting opera-
tor and closed-form eigenfunctions for linear canonical
transforms,” JOSA A, vol. 30, no. 10, pp. 2096–2110,
2013.

[19] S.-C. Pei and Y.-C. Lai, “Signal scaling by centered
discrete dilated hermite functions,”IEEE Transactions
on Signal Processing, vol. 60, no. 1, pp. 498–503, 2012.

4869


