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ABSTRACT In [18], a linear operator commuting with the LCT op-
Li ical t ¢ LCT) | tracti d erator is proposed. The commuting operator and the LCT
inear canonical transform (LCT) is an attractive and useq, o 4100 have the same set of eigenfunctions with different

ful tool Il'n c;ptlcsfatr;]d T_'gq_al p_)tLO(t:\zsmngt;. In prewotus work”, a igenvalues. In this paper, we focus on the development of
generalization ot the Wi 0 exira parameters, calleq, o commuting operator of the OLCT. First, a different def-

offset LCT (OLCT), has been developed. In this paper, a dif'inition of OLCT is proposed. The inverse transform of pro-

fgrent def|n|tl|on of OLCT s proposet_j, Wh'(f\h has amore con; osed OLCT is more concise. And it is easier to find a linear
cise form of inverse transform. We find a linear operator thaE

. perator that commutes with the proposed OLCT. The eigen-
cor?mutes W'tth the grtc;]posed OL%T'OVQ/(E:_IE)?VE trt':t the Comf'utnctions and eigenvalues of the commuting operator are dis
muting operator and the propose ave the same Sklissed. We also derive the discrete version of the commuting
of eigenfunctions with different eigenvalues. We also wkeri

. 8 i operator, the eigenvectors of which can be used to develop a
the discrete version of the commuting operator to develop

i te OLCT with fect ibilit ty.
discrete OLCT. The proposed discrete OLCT has perfect realscre e OLCT with perfect reversibility property

versibility property.
2. PRELIMINARY: COMMUTING OPERATOR OF
Index Terms— ABCD transform, fractional Fourier LINEAR CANONICAL TRANSFORM

transform, linear canonical transform, offset linear a@no
cal transform, quadratic-phase integrals Given an input signak(t), the outputXy(u) of the linear
canonical transform (LCT) [5, 2] is given by

1. INTRODUCTION Xnm(u) = Lm{z(t)}
Linear canonical transform (LCT) is a parameterized gdnera { ,/ﬂ% i ejz(*lb“z*j%mwﬁ%tzx(t) dt, b#0 )
linear integral transform. Fourier transform, Fresnehsra B jcjz% 7
form and fractional Fourier transform are all its speciales Vd el 5 a(du), b=0
[1, 2]. It has four parameters and thus more important andihere£y; denotes the LCT operator, abd = [a, b; ¢, d] is
useful in optics [3, 4, 5] and many signal processing applicathe2 x 2 LCT parameter matrix satisfyindet(M) = ad —
tions including filter design, radar system analysis, digga-  bc = 1. The inverse LCT is equivalent to the forward LCT
thesis, phase reconstruction, time-frequency analyatteqm  with parameter matriv —:
recognition, encryptl_on and mc_)dulatlon [6, 7, 8_, 9, 10, 11]. [ﬁM]_l = Lapr. )

In [12], the LCT is generalized by introducing two extra

parameters, corresponding to time shift and frequency mod-etw andv denote the frequency coordinates with respect to
ulation. This generalized LCT is called offset LCT (OLCT). ¢ @ndu, respectively. [7] shows that the LCT can produce the
The eigenfunctions of the OLCT for all cases have been digollowing affine transformation in time-frequency plane:
cussed in [12] in detalil. In [13], the lossless uniform sangpl u a bl [z
theorem of the OLCT is developed, and the effect of OLCT { ] = L d} { } ©)
in time-frequency plane is also discussed. In [14], the au- . . .
thors deve?optheycgnvolution and correlationtheE)re]mmRBr The elggnfunctlons of the LCT for _aII cases have been dis-
OLCT, and investigate the sampling theorem of the OLCT beSSEd n [2]'. In [18], the authors f'.nd a linear operator
the convolution theorem. In [15], spectral of uniformly and S°MMuting with the LCT operator, &y Ly = LmCy-
nonuniformly sampled signals in the OLCT domain is ana-The commuting operator is given by
lyzed. Many applications of the LCT can be extended to the
OLCT. Some applications have been presented in [12, 16, 17].

v wl|®

—d
On =D} +j o= (tDy + Dit) +c?,  (4)
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whereD; = %. It implies thatz(t) throughCn becomes From (8) and (9), we can find out that

2
b%m(t) +j¥ (t%z(t} + % [m(t)}) + ct2a(t). (5) T=(1-a)f-by and n=(1-dy-cb (12)
These two relations show that the proposed OLCT in (11) is
Itis proved thaCn and Ly have the same set of eigenfunc- equivalent to the conventional OLCT in (6) with some con-
tions with different eigenvalues. stant phase difference. However, from (1), (2) and (10), the
inverse transform of the proposed OLCT is given by
3. COMMUTING OPERATOR OF OFFSET LINEAR 5] s
CANONICAL TRANSFORM {EI\F] =Lyl (13)

In this section, a new definition of offset LCT (OLCT) is pro- which is more concise than the inverse transform of the con-
posed. The inverse transform of the proposed OLCT is morgentional OLCT in (7).The OLCT mentioned in the rest of
concise, and it is easier to find a linear operator that coramut this paper refers to the proposed OLCT defined in (11).

with the proposed OLCT.

3.1 Offset Linear Canonical Transform 3.2. Commuting Operator of the Proposed OLCT

The conventional definition of OLCT [12, 13] is given by Assume) 7 0. The first derivative of the OLCT is given by

XTI () = LT {o(t d T 7. U B) i (U B2 — i L (u—B) (£—
() = Ly O{c ()} 2 X (w)= /j%b /em B)+ g (u—B)’— (u—B)(t—B)
V el [ el (D I IS C () dt, b £ O ~oo
= . zoo , ’ a2 _ ) d 1
\/aejnuey?d(ufr) l’(du—dT), b=0 g5 (t=B) =i (t ﬁ)j |:’Y+Z(u—ﬂ)—g(t—ﬁ) I(t)dt
(6) J ; 1
where the two extra parametersand correspond to time = J[”/ +p(u— 5)})(1\/?(”) =gt =Pt} (14)

shift and frequency modulation, respectively, and its inge

transform is given by For simplicity, the equation above is rewritten as the follo

ing operator form:

LRy = j {7 + %z(t - 6)] L3y — jéﬁﬁ&”(t = p), (19)

~ -1 ced 2 cab 2 5.
TN _ it —jadrn+ji4 —d7+bn, cT—an
[['M] —el 3 jadtn+jgn L:M—l . )

In (7), there is a constant phase, and the parameters of timeD
shift and frequency modulation change. In the following, AvhereD, =
new definition of OLCT with more concise inverse transform )

is proposed. It is easier to find a commuting operator from the(P1) £} (t — 8) = [jb (D — jy) + d(t — 8)] L5;.  (16)
proposed OLCT than from the conventional one.

%. From (15), we have the Property 1:

Since [Eﬁ;ﬂ]*l =[5, replacingM = [a,b;c,d] by
-1

In time-frequency plane, conventional OLCT results in e | Il\r/]r(lls) loads o
= , —0i—¢C,a
E- L)+ @[] .
v le dilw] [£30] ™~ 8) = b (@2 — ) +alt - B) [ch7]
Consider another kind of time-frequency transformation: (17)

E-EAEE) e

(t — B)Lay = —jbLay (Dy — jy) + alhy (t — B). (18)

dSinceacl — be = 1, substituting the Property 1 in (16) to the
above equation leads to the Property 2:

Let Eﬁ” denote the OLCT operator corresponding to (9), an
assumeX ;" (u) = L {x(t)}. Then, (9) implies

—jyu v B, o —j~t
e XN (ut B) = Lv{e M+ B} (10 (p2) LEN(D, — ) = [a(Ds — jv) — jelt — B)| L2 (19)
Based on (10), the OLCT op_eratﬁﬁ;ﬁ can be derived from  From Properties 1 and 2 in (16) and (19), the commuting op-
the LCT operatorCy; defined in (1): erator of the OLCT is given by
XE (u) = L5 {at 5 a—d .
M () = Eu’ {20 Ci = b0y — ) + 552 (- 8) (D — )
L[ eiv(u=B)tigs(u=B)%—jg(u—B)(t—B) .
Ve e " b + (D — j7) (t = B)] + et — B)?. (20)

= . :ZZL”Z:B) ;iW(t;f)f(t)dtv b#0 (1) One can also prove thaf;” is also the commuting operator
Vet 7 (e Py g forb = 0 case. Whe = v =0 (i.e. no of‘fset)C{f/{* reduces
@ (d(u—pB)+5),b=0 to the commuting operator of the LCT, i@y, in (4).
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4. APPLICATIONS whereos andp are defined in (26). For two different eigen-
_ _ _ functions, sayxf,f_’ml (t) andhf,ﬁmQ (t) wherem; # mo, the
4.1. Eigenfunctions of Commuting Operator of OLCT values ofy,,, andpu,,, are different, but the values of,,,

— a+d) _
SinceL andCy commutes, they have the same set of eigend"dAm: Will be the same i, — mQ) cos ™t (43¢ ) 2k,

functions with different eigenvalues. Assume If so, all the linear combinations i3y, () + cahyi,,, (1)
with arbitraryc; andc, are also the elgenfunctlons of OLCT.

LmEnm(t) = AmEm(t),  CMmEm(t) = pmEm(t), (21)  There will be many orthogonal sets of eigenfunctions for the

where the eigenfunctiong,, () and eigenvalues\,, i, OLCT, but there’s only one set for the commuting operator.

have been discussed in [2, 18] for all caseNhfFrom the re-
lation between the LCT and the OLCT in (16);*~# E,,, (t—

/) are the eigenfunctions of the OLCT with the same eigenThe eigenfunctions of the OLCT are useful for analyz-
values\,,: ing the self-imaging phenomena and the resonance phe-

B _i(t—B) (-5 nomena of spherical mirror pair systems in optics [12].
Ly'e’ Em(t—B) = Ame’ En(t—=5).  (22)  For example, Fig. 1 shows an optical system consisting of
a lens with focal lengthf shifted upward with distance
xo, a free space with distance), and a prism with re-
fractive indexn and ratio of bottom width to height be-
ing p. According to [12], the light propagation through
a—d (t— B)D this system can be modeled by the conventional OLCT

“OP with M = [1 — 20/f.20/k: —k/f.1], 7 = zoz0/f and

_ _B)? _ n = kxo/f — k(n — 1)p, wherek = 27/X and X is the
”?t(t Al et }E (t=5) waveleng/th. An(d from) (12), it can also {)e modeled by the
=/ CMmEL ()], 5. (23)  proposed OLCT with the sam®l, 3 = zo — (n — 1)pf
From (21), it follows that andy = —k(n — 1)p. When|a + d| < 2, all the inputs
’ ) resulting in self-imaging phenomena can be expressed by the
Coi B (t = B) = pme’ P E (t— B). (24)  eigenfunctions in (29).

4.2, Self-Imaging Phenomena

Next, we will prove thatCy;” andCy;” share the same set of
eigenfunctions with different eigenvalues. From the dééini
of Cu in (4) andCy;” in (20), we have

Cf,ﬂej(tfﬁ)Em(t —B)=elt=P) {b’Df

Thereforeg’"*~AE,, (t — () are also the eigenfunctions of x A
C{f,ﬁ with the same eigenvalues @g;. lens prism
. : Input Output
It has been shown in [18] that the eigenvaligsare com-
p!e>_< and\,,,| = 1, while the elge_nvalue/sm_ are all re_al and - - free space Z -
distinct. Therefore, the set of eigenfunctions obtaineanfr - i X0 - >
the commuting operator is unique and orthogonal. For exam- - - =z
ple, when|a + d| < 2, the eigenfunctions of the LCT and its bottom width
commuting operator are given by hight -
1 . Fig. 1. An optical system with a shifted lens, a free space and
A L _1lt+ipy2 .
hvm(t) = H,|—)e 22", 25 a prism.
Mo (f) V/m2mm) (a> © (25)
2 4.3. Discrete OLCT
where o2 = _ b, sen(b(e—d) . (26) _ i
The eigenfunctions of the OLCT can form an orthonormal
(a+ d (a+ d . . .
set. Therefore, the eigenfunctions can be used to implement
H,,(t) is the Hermite polynomial of ordern.. The eigenval- the OLCT. For example, when + d| < 2, express the input
ues\,, andu,, are given by signalx(t) in terms ofhﬁ;ﬁm(t) as follows:
— *j(er.l)cos’l(“fd) > < [
Am = e AT e @D e = S anhf 1), am= / w(OREY (B)dt. (30)
1 — : :
fim = —sgn(b)\/4 — (a + d)* (m + 5) . (28) m=0 —s0

) ) ) Since hﬁ;ﬁm(t) are the eigenfunctions of the OLCT with
According to (22) and (24), the eigenfunctions of the OLCTeigenvaIu'es\m given in (27) wherja + d| < 2, the OLCT of
and its commuting operator are given by «(t) can be obtained from

SN 1 t— B\ Lty 8, B (18,
02 (15 )e e, 35000 Sl 1500} - S

(29) (31)
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1st, 6th and 11th eigenvectors of Cy’ Input xfn] TFD of z[n]

1
0.5 / ~
0

-10 0 10 -10 0 10 -10 0 10 s
(@ (b) (c) T -0 -5 0 5 10 -10 -5 0 5 10
Fig. 2. Time-frequency distributions: (a) 1st, (b) 6th and (c) Output(a;@,,[k] TFD O(fb)Xa,W[k]
. M M

11th eigenvectors o@‘/ ' used to approximate the sampled
OLCT e|genfunct|ons§zﬁ i (nA) with m = 0,5,10, where
M = [0@3063—067109}57—2773 N = 127

andA = /27/N.

However, for the discrete case, we cannot digitally impletne
the OLCT by sampling (30) and (31) with some sampling pe-
riod A directly. The sampled elgenfunctlonhefnW (nA), are T o o - - -imag. T E—

no longer orthogonalto each other. Therefore, we need to find © C)

an orthogonal set of discrete functions that can approxmat~ig. 3. (a) Discrete input:[n], (b) time-frequency distri-
hM (nA). A simple solution is to develop the discrete ver- pution of 2[n], (c) outputXﬂ 7[k] of the discrete OLCT
sion ofCl‘v[”, denoted b)CM’, and then find an orthonormal and (d) time-frequency distribution 6€2; M k], whereM =
set of discrete eigenfunctions (i.e. eigenvectors) f(bfq . [0.53,0.63; —0.67,1.09], 8 = =2, = 3andN = 127.

To obtaincﬁ,p’, a method similar to that in [19] is used.
Assume the sampling period is = /27/N, and the dis-
crete input is given by:[n] = z ((n — (N —1)/2)A) where Xf/iy[k} — Z )\mamh/f/’f’m[k}, Uy = fo[n]hﬁ/ﬂm["]~
0<n<N-1.1In (20),(3‘1‘3,'[” is composed of two kinds of =0 ' - ’
operators{ — 3 andD; — jv. Itis straightforward to define
the discrete version aof — 5 as anN x N diagonal matrix
T — SI, wherel is the identity matrix and

5

\

Mag.

Therefore, a discrete OLCT can be developed as follows

This discrete OLCT features perfect reconstruction bexzaus
hﬁ;ﬂm[n]’s are orthonormal. In the following, a simulation
is given, using the same parameters as in Fig. 2. The dis-

(n— M) o — crete inputz[n] is real, containing a rectangular function
[T],,, —{ "3 N =R (32) and a trapezoidal function, as shown in Fig. 3(a). The time-
0, n#k frequency distribution of:[n] is depicted in Fig. 3(b). The

where0 < n,k < N—1. LetF denote the Fourier transform. output X;”[k] of the discrete OLCT is shown in Fig. 3(c),
It is well known thatFD, = jtF. ThereforeD, — jy =  andits time-frequency distribution is depicted in Fig.)3(d
P I . .

JjF~'tF — jv and its discrete version can be designed as 5 CONCLUSION

JFHTF — jyI, whereF is anN x N centered DFT matrix:
In this paper, a different definition of OLCT is proposed. The
51)("*¥), 0<n,k<N-—1. (33) proposed OLCT has a more concise form of inverse trans-
form than the conventional definition of OLCT. A linear op-
Accordingly, the discrete version 6f;” is given by erator that commutes with the proposed OLCT is derived.
The eigenfunctions and eigenvalues of the commuting opera-
[(T /51)( F/TF tor are analyzed. We prove that the commuting operator and
. . . the proposed OLCT share common eigenfunctions with dif-
—j70) + (JFTF — joT) (T — BI)] o(T = B1)*. (34) ferent eigenvalues. We also derive the discrete versioheof t
Performing eigendecomposition oﬁiﬁ . the N or- commuting_operator, the eigenvectors of v_vhich can be used to
develop a discrete OLCT. The proposed discrete OLCT has an
important property: perfect reversibility.

[F]kn = eij%(

Cly = b(jFITF — ~/I)2+j

thonormal eigenvectors, denoted bf(,ﬂm [n], can approx-
imate h 1. (nA) with some constant difference. For ex-
ample, assumM = [0.53,0.63; —-0.67,1.09], 8 = — 6. ACKNOWLEDGMENTS
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