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ABSTRACT

When estimating the correlation/spectral structure of a locally sta-
tionary process, one should choose the so-called estimation band-
width, related to the effective width of the local analysis window.
The choice should comply with the degree of signal nonstationar-
ity. Too small bandwidth may result in an excessive estimation bias,
while too large bandwidth may cause excessive estimation variance.
The paper presents a novel method of adaptive bandwidth selec-
tion. The proposed approach is based on minimization of the cross-
validatory performance measure for a local vector autoregressive
signal model and, unlike the currently available methods, does not
require assignment of any user-dependent decision thresholds.

Index Terms— Locally stationary processes, selection of esti-
mation bandwidth, covariance and spectrum estimation.

1. INTRODUCTION

Estimation of the correlation structure of multivariate time series is
one of the fundamental techniques allowing one to “understand” ex-
perimental data, by revealing their internal relationships, in many
research areas such as telecommunications, econometrics, biology,
medicine, geophysics etc. Since in a majority of cases the inves-
tigated signals are nonstationary, evaluation of the corresponding
autocovariance functions is usually carried out using the local es-
timation approach, i.e., based on analysis of a short data segment ex-
tracted from the entire data set by a sliding window of a certain effec-
tive width. Under the local stationarity assumptions the revealed sig-
nal correlation structure can be further investigated in the frequency
domain using the concept of a time-varying signal spectrum [1].

One of the important decisions that must be taken when per-
forming correlation and/or spectral analysis of a nonstationary sig-
nal is the choice of the size of the local analysis interval, which is
inversely proportional to the so-called estimation bandwidth, i.e., the
frequency range in which parameter changes can be tracked “suc-
cessfully” [2]. Bandwidth optimization allows one to reach a com-
promise between the bias and variance of the corresponding esti-
mates – large bandwidth results in covariance estimates with large
variance but small bias, and small bandwidth causes the opposite
effect. When the rate of signal nonstationarity changes over time,
estimation bandwidth should be chosen in an adaptive way. The
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solution that has gained a considerable attention in recent years, pro-
posed in [3] and further developed in [4] and [5], is based on the
analysis of the intersection of the confidence intervals (ICI). The ICI
approach, developed originally for the purpose of polynomial signal
smoothing, was recently applied to covariance estimation in [6]. In
this paper we present a new solution to the problem of bandwidth
selection. The proposed method does not require assignment of any
user-dependent decision thresholds.

2. BASIC FACTS ABOUT THE VECTOR
AUTOREGRESSIVE REPRESENTATION

Consider a discrete stationarym-dimensional random signal {y(t), t =
. . . ,−1, 0, 1, . . .}, y(t) = [y1(t), . . . , ym(t)]T, where t denotes
the normalized (dimensionless) discrete time. Suppose that the first
n+ 1 autocovariance matrices of y(t) are known, namely

E[y(t)yT(t− i)] = Ri, i = 0, . . . , n. (1)

It is well-known from the Burg’s work [7], [8] and its refinements
[9], [10], that the maximum entropy (i.e., the most unpredictable)
stationary process subject to the constraints (1) is the Gaussian vec-
tor autoregressive (VAR) process of order n satisfying the equation

y(t) +

n∑
i=1

Aiy(t− i) = ε(t), cov[ε(t)] = ρ (2)

where {ε(t)} denotesm-dimensional white noise sequence with co-
variance matrix ρ, and Ai, i = 1, . . . , n are the m × m matrices
of autoregressive coefficients. The relationship between the autoco-
variance matrices (1) and parameters of the VAR model, known as
the Yule-Walker equations, takes the form

[I,A1, . . . ,An]RRR = [ρ,O, . . . ,O] (3)

where I and O denote the m×m identity and null matrices, respec-
tively, andRRR is the block Toeplitz matrix of the form

RRR =

 R0 . . . Rn

...
. . .

...
RT
n . . . R0

 .
The maximum entropy (ME) extension of the autocovariance se-
quence (1) which stems from the VAR signal model (2)

R̂i = −
n∑
l=1

AiR̂i−l, i > n
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where R̂i = Ri for 0 ≤ i ≤ n, leads to the following definition of
the maximum entropy spectrum estimate

Ŝ(ω) =

∞∑
i=−∞

R̂ie
−jωi =AAA−1(ejω) ρAAA−T(e−jω) (4)

where j =
√
−1, ω ∈ [0, π] denotes the normalized angular fre-

quency, andAAA(z−1) = I +
∑n
i=1 Aiz

−i.
Since the sequence of autocovariance matrices {R̂i, i =

. . . ,−1, 0, 1, . . .}, R̂−i = R̂T
i , is by construction nonnegative

definite, the corresponding spectral density matrix is also nonegative
definite: Ŝ(ω) ≥ O, ∀ω ∈ [0, π] . The off-diagonal elements of
Ŝ(ω), which can be interpreted as cross-spectral densities of differ-
ent pairs of components of y(t), are in general complex-valued.

3. LOCAL ESTIMATION TECHNIQUE

When the investigated process is nonstationary, but its characteris-
tics vary slowly with time, the covariance/spectral analysis can be
carried out under the “local stationarity” framework. An elegant
theory of locally stationary processes, based on the concept of infill
asymptotics (in which a fixed-length time interval is sampled over
a finer and finer grid of points as the sample size increases) was
worked out by Dahlhaus [11], [1]. Without getting into mathemati-
cal details, we note that the probabilistic structure of such processes
at a selected time instant t can be examined using local estimation
techniques, e.g. by means of processing a fixed-length data seg-
ment {y(t− k), . . . ,y(t), . . . ,y(t+ k)} “centered” at t. The inte-
ger number k, which controls the size of the local analysis interval
[t − k, t + k], will be further referred to as a bandwidth parame-
ter. The local estimates of the autocovariance matrices (1) can be
obtained using the formula [12]

R̂i,k(t) =
1

Lk
Pi,k(t), i = 0, . . . , n (5)

where

Pi,k(t) =

k∑
l=−k+i

yk(t+ l|t)yT
k (t+ l − i|t) (6)

and yk(t−k|t), . . . ,yk(t+k|t) is the tapered data sequence: yk(t+
i|t) = y(t+ i)wk(i), i = −k, . . . , k.

The weights wk(i) are given by wk(i) = h(i/k), where
h : [−1, 1] → R denotes a symmetric data taper function h(x) =
h(−x) ≥ 0 taking its largest value at 0 [for convenience we will
assume that h(0) = 1] and smoothly decaying to 0 at the edges.

Finally, the normalizing constant in (5) takes the form

Lk =

k∑
i=−k

w2
k(i) ∼= k

∫ 1

−1

h2(x)dx. (7)

Based on the set of covariance estimates (5), the local VAR signal
model

y(t) +

n∑
i=1

Âi,k(t)y(t− i) = ε(t), cov[ε(t)] = ρ̂k(t) (8)

can be obtained by solving for Â1,k(t), . . . , Ân,k(t) and ρ̂k(t) the
corresponding Yule-Walker equations

[I, Â1,k(t), . . . , Ân,k(t)] R̂RRk(t) = [ρ̂k(t),O, . . . ,O] (9)

where R̂RRk(t) is a block Toeplitz matrix obtained by replacing the
true autocovariance matrices Ri, appearing in RRR, with their local
estimates R̂i,k(t). An efficient procedure for solving (9) is known
as the Whittle-Wiggins-Robins (WWR) algorithm [13], [14]. WWR
algorithm is a multivariate extension of the Levinson-Durbin algo-
rithm – for the discussion of its basic properties see Complement
C8.6 in [15].

Since in this paper we are primarily interested in analyzing
the evolution of the instantaneous (local) autocovariance function
{Ri(t), i = . . . ,−1, 0, 1, . . .} of y(t), and its instantaneous spec-
tral density function S(ω, t), the time-varying VAR model (8) will
be regarded – very much like in the maximum entropy approach –
as a “meta-model”, serving mainly both purposes mentioned above.
According to [1], both Ri(t) and S(ω, t) are well-defined quantities
which can be interpreted as characteristics of a stationary process
{y0(s)} ”tangent” to {y(s)} at the instant t.

The important property of the approximation (8) is that as long
as the matrix R̂RRk(t) is positive definite (which is always the case
when the estimates (9) are incorporated) the obtained model is al-
ways stable in the sense that all zeros zi of the characteristic poly-
nomial det[ÂAAk(z−1, t)], where

ÂAAk(z−1, t) = I +

n∑
i=1

Âi,k(t)z−i (10)

lie inside the unit circle in the complex plane: |zi| < 1, i =
1, . . . ,mn.

As already mentioned, the time-varying VAR meta-model opens
several interesting analytical opportunities. First, it allows one to
evaluate the ME-like extension of the autocovariance function for
the lags i > n, i.e. beyond the range of estimation

R̂i,k(t) = −
n∑
l=1

Âl,k(t)R̂i−l,k(t), i > n. (11)

Second, the VAR model can serve as a basis for evaluation of the
instantaneous signal spectrum

Ŝk(ω, t) =

∞∑
i=−∞

R̂i,k(t)e−jωi

= ÂAA
−1

k (ejω, t) ρ̂k(t) ÂAA
−T

k (e−jω, t). (12)

We note that when the local stationarity assumptions, given in [1],
are met, the time-varying spectral density function

S(ω, t) =AAA−1(ejω, t) ρAAA−T (e−jω, t)

governed by a stable VAR model is uniquely defined in the rescaled
time domain. In the non-rescaled case, considered e.g. by Priest-
ley in his work on evolutionary spectra [16], such uniqueness is not
guaranteed.

Finally, the VAR model is a useful tool for analysis of the inter-
nal causality structure of y(t) = [y1(t), . . . , ym(t)]T. The Granger
(predictive) causality [17] can be checked by examining the matri-
ces of autoregressive coefficients. In recent years exploration of the
statistical relationship between different signals became an impor-
tant tool in many research areas. For example, in neuroscience the
study of the so-called functional connectivity (i.e., the statistical de-
pendence structure) based on analysis of neuroimaging data [elec-
troencephalographic (EEG) signals, functional magnetic resonance
imaging (fMRI) signals] obtained from different brain regions, sig-
nificantly enriched our knowledge about the organization of brain
networks [18], [19], [20], [6].
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4. SELECTION OF THE ESTIMATION BANDWIDTH

So far we have assumed that the bandwidth parameter k is fixed prior
to autocovariance/spectrum estimation. For a nonstationary process
with constant-known “degree of nonstationarity” the optimal value
of k, i.e., the one that minimizes the mean-squared estimation er-
ror, can be found analytically [21]. Unfortunately, in practice such a
prior knowledge is seldom available. Additionally, the degree of sig-
nal nonstationarity may itself change with time. On the qualitative
level, it is known that the optimal value of the bandwidth parameter
increases as the identified signal becomes more and more stationary,
and conversely – when the degree of signal nonstationarity is high,
short analysis windows may be required to guarantee the best trade-
off between the bias component of the mean-squared error (which
grows with k) and its variance component (which decays with k).

Rather than trying to design a single estimation algorithm
equipped with an adjustable bandwidth-controlling parameter, we
will consider a parallel estimation scheme made up of K simul-
taneously working algorithms with different bandwidth settings:
ki, i = 1, . . . ,K. The results yielded by the competing algorithms
will be combined in a way that takes into account their locally
assessed performance.

4.1. Approach 1 – cross-validatory analysis

As a local performance measure we will use the sum of “squared”
leave-one-out interpolation errors

e◦k(t) = y(t)− ŷ◦k(t)

where ŷ◦k(t) denotes the estimate of y(t) based exclusively on k
samples preceding and k samples succeeding y(t). To derive the
suitable interpolation formula, we will first define the “holey” coun-
terpart of the VAR model (8)

y(t) +

n∑
i=1

Â◦i,k(t)y(t− i) = ε◦(t), cov[ε◦(t)] = ρ̂◦k(t) (13)

obtained in an analogous way as (8), except that the central sample
y(t) is excluded from the estimation process. The corresponding
parameter estimates can be obtained by solving the modified set of
Yule-Walker equations

[I, Â◦1,k(t), . . . , Â◦n,k(t)] R̂RR
◦
k(t) = [ρ̂◦k(t),O, . . . ,O] (14)

where the matrix R̂RR
◦
k(t) is made up of “holey” covariance estimates

[note that, according to our earlier assumptions, wk(0) = 1]

R̂◦i,k(t) =
1

L◦k
P◦i,k(t)

P◦i,k(t) = Pi,k(t)|y(t)=0 (15)

L◦k =

k∑
i=−k
i 6=0

w2
k(i) = Lk − 1.

Based on (13), one arrives at the following interpolation formula
borrowed from the theory of stationary VAR processes [22]

ŷ◦k(t) = −

[
n∑
i=0

[Â◦i,k(t)]TÂ◦i,k(t)

]−1 n∑
i=0

[Â◦i,k(t)]Tv◦i,k(t)

(16)

where

v◦i,k(t) =

n∑
l=0
l 6=i

Â◦l,k(t)y(t+ i− l), i = 0, . . . , n. (17)

Interpolation errors will be accumulated over a local evaluation win-
dow T (t) = [t− d, t+ d] of width D = 2d+ 1 > m, forming the
matrix

Q◦k(t) =
∑
s∈T (t)

e◦k(s)[e◦k(s)]T.

At each time instant t the bandwidth parameter will be chosen from
the set K = {ki, i = 1, . . . ,K} so as to “minimize” the matrix
Q◦k(t), namely

k̂◦(t) = arg min
k∈K

tr [Q◦k(t)] . (18)

The corresponding competitive spectral density estimate will take
the form

Ŝ(ω, t) = Ŝk̂◦(t)(ω, t). (19)

Remark
The procedure described above is based on the technique known
in statistics as cross-validation. In this approach the quality of the
model obtained for a given (training) dataset is judged by checking
its ability to “explain”, e.g. predict, data samples excluded from the
estimation process (validation dataset) [23]. When only one sample
is excluded at a time – as in the case considered – the procedure is
known as a leave-one-out cross-validation. Note that the decision
rule (18) does not require assignment of any decision threshold.

4.2. Approach 2 – full cross-validatory analysis

To reduce the estimation bias caused by the fact that the “central”
sample y(t) is zeroed in (15), after calculating the leave-one-out sig-
nal interpolation y◦k(t), one can recompute the covariance estimates
setting y(t) to ŷ◦k(t) instead of 0:

R̂•i,k(t) =
1

Lk
P•i,k(t) (20)

where P•i,k(t) = Pi,k(t)|y(t)=ŷ◦
k
(t). The corresponding VAR

model can be obtained by solving

[I, Â•1,k(t), . . . , Â•n,k(t)] R̂RR
•
k(t) = [ρ̂•k(t),O, . . . ,O] (21)

where the block Toeplitz matrix R̂RR
•
k(t), made up of the estimates

(20), has the same structure as R̂RR
◦
k(t). Note that, similar to the model

resulting from (14), the corrected model is also “holey” in the sense
that its parameters do not depend on the central sample y(t). The
idea of the correction described above goes back to Bunke et al. [24]
where it was the cornerstone of the so-called full cross-validatory
analysis.

Using the corrected model, one can compute [in the same way
as described before – see (16) and (17)] the corrected signal in-
terpolation ŷ•k(t) and the associated interpolation error e•k(t) =
y(t) − ŷ•k(t). Then, using the errors e•k(t) in lieu of e◦k(t), one
can select k in the following way

k̂•(t) = arg min
k∈K

tr [Q•k(t)] (22)

Q•k(t) =
∑
s∈T (t)

e•k(s)[e•k(s)]T

leading to

Ŝ(ω, t) = Ŝk̂•(t)(ω, t). (23)
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4.3. Selection of design parameters

Following [2], one can argue that to maximize robustness of the
parallel estimation scheme, the consecutive bandwidth parameters
ki should form a geometric progression, e.g. ki+1 = 2ki, i =
1, . . . ,K − 1 (bandwidth doubling rule).

The width D > m of the local evaluation window T (t) should
be sufficiently large to avoid erratic behavior of the model selection
rule but, at the same time, sufficiently small to preserve its ability
to locally adapt to the degree of signal nonstationarity. The recom-
mended choice is D ∈ [21, 51].

5. SIMULATION RESULTS

To check performance of the proposed method, 3 sets of artificially
generated stereo speech signals were prepared, using 3 different
“ground truth” VAR models (further referred to as A, B and C) of
the form

y(t) +

n∑
i=1

Ai,k(t) = ρ
1/2
k (t)ξ(t), k ∈ {50, 200, 800} (24)

where ξ(t) denotes bivariate white noise with unity covariance ma-
trix and ρ

1/2
k (t) denotes the symmetric square root of ρk(t). For

each bandwidth parameter k the matrices Ai,k(t), i = 1, . . . , n and
ρk(t) were obtained by means of identifying, using the local estima-
tion technique described in Section 2, the 20-th order time-varying
VAR model of a 15 seconds long fragment of a real stereo speech sig-
nal sampled at the rate of 22050 Hz. The Epanechnikov kernel [25]
was used for the purpose of data tapering: h(x) =

√
1− x2, x ∈

[−1, 1]. Each of the 3 resulting ground truth VAR models was used
to generate 20 independent realizations of a synthetic speech signal,
with known time-varying spectral density functions. The real speech
signal and a typical realization of its synthetic version (obtained for
k = 200) are shown in Fig. 1

As an instantaneous spectral distortion measure we adopted the
relative entropy rate (RER)

dRER(S, Ŝ) =
1

4π

∫ π

−π

{
tr
[(

S(ω)− Ŝ(ω)
)
Ŝ−1(ω)

]
− log det

[
S(ω)Ŝ−1(ω)

]}
dω (25)

which can be regarded as a multivariate extension of the classical
Itakura-Saito (IT) measure [26]. The RER measure was originally
proposed in [27] for analysis of multivariate stationary Gaussian pro-
cesses. Note that in the case of scalar spectra (m = 1) it holds that
dRER(S, Ŝ) = (1/2)dIS(S, Ŝ), where

dIS(S, Ŝ) =
1

2π

∫ π

−π

[
S(ω)

Ŝ(ω)
− log

S(ω)

Ŝ(ω)
− 1

]
dω.

It is also well-known that for small spectral distortions the Itakura-
Saito measure is approximately proportional to another agreeable
distortion measure, usually referred to as the mean-square log (MSL)
spectral distance [28] : dIS(S, Ŝ) ∼= (1/2)dMSL(S, Ŝ), where

dMSL(S, Ŝ) =
1

2π

∫ π

−π

[
logS(ω)− log Ŝ(ω)

]2
dω.

During the simulation experiment the time-varying signal spectrum
S(ω, t) and its estimates Ŝk(ω, t), obtained for each realization of
the synthetic speech signal and 2 different values of k ∈ K =

−1

0

1

s L
(t
)

0 3 6 9 12 15
−1

0

1

t[s]

y L
(t
)

Fig. 1. A fragment of the left channel of the analyzed stereo speech
signal (top plot) and its typical VAR-model based resynthesized ver-
sion (bottom plot).

{150, 300}, were evaluated at 128 equidistant frequencies using the
FFT-based procedure, similar to that described in [29]. The obtained
scores – 256-point approximations of (25) – were next averaged over
all time instants and all realizations. The same evaluation was made
for the switched estimators of the first and second kind, governed
by (18) and (22), respectively (D = 31). Finally, the accumulated
scores (Σ), combining results obtained for all three ground truth
models (A, B and C) were computed. The obtained results, sum-
marized in Table I, clearly demonstrate usefulness of the proposed
approach. Note that in the case considered the more advanced full
cross-validatory approach does not yield performance improvement
over the simpler scheme based on the classical cross-validation.

Table 1. Comparison of different bandwidth selection strategies for
3 different ground truth models (A, B, C) of a speech signal, using
the relative entropy rate (RER) spectral distortion measure. All RER
scores were obtained by means of joint time and ensemble averaging.

estimation A B C Σ
bandwidth

k1 1.24 0.53 0.49 2.26

k2 1.27 0.39 0.22 1.88

k̂◦(t) 1.25 0.38 0.22 1.85

k̂•(t) 1.23 0.39 0.24 1.86

6. RELATION TO PRIOR WORK

The proposed method, based on minimization of the local cross-
validatory performance measure, was originally used for signal
smoothing [30]. Later on, it was extended to the problem of non-
causal identification of nonstationary finite impulse response (FIR)
systems using the Kalman filter approach [31] and the basis function
approach [32]. Even though derived from the same general modeling
principles, none of the solutions presented in the abovementioned
papers is directly applicable to the problem of covariance/spectrum
estimation. It should be also noted that the approach pursued in
this paper, based on the time-domain analysis, differs from the
frequency-domain cross-validatory approach which was proposed in
[33] and [34] for the purpose of spectrum estimation of stationary
univariate processes.
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