
LINEAR NETWORK OPERATORS USING NODE-VARIANT GRAPH FILTERS

Santiago Segarra†, Antonio G. Marques∗, and Alejandro Ribeiro†

†Dept. of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
∗Dept. of Signal Theory and Communications, King Juan Carlos University, Madrid, Spain

ABSTRACT

We introduce node-variant graph filters, which allow the simulta-
neous implementation of multiple (regular) graph filters at different
nodes, and study their design to implement arbitrary linear transfor-
mations between graph signals. Node-variant graph filters can be
implemented distributedly, making them suitable for networked set-
tings. We determine spectral conditions under which a specific lin-
ear transformation can be implemented perfectly and, for the cases
where perfect implementation is infeasible, the design of optimal ap-
proximations for different error metrics is analyzed. We demonstrate
the practical relevance of the developed framework by studying the
application of node-variant graph filters for analog network coding.

Index Terms— Graph signal processing, Graph filter, Network
operator, Analog network coding.

1. INTRODUCTION

Networks and graphs can be understood as structures that encode
pairwise relationships between elements of a set. Often, networks
have intrinsic value and are themselves the object of study. In other
occasions, the network defines an underlying notion of proximity or
dependence, but the object of interest is a signal defined on top of
the graph, i.e., data associated with the nodes of the network. This is
the matter addressed in the field of graph signal processing [1, 2].

The problem that we investigate is how to design node-variant
graph filters – a novel, more flexible class of graph filters – to im-
plement a pre-specified linear transformation. Since graph filters
can be implemented distributedly, especial focus will be devoted to
network linear transformations. Without leveraging the particular
structure of a graph filter, several works have addressed the prob-
lem of distributed implementation of different linear operators in the
context of graph signal processing. Relevant examples include the
projection of graph-signals onto low-dimensional spaces [3], the ap-
proximation of graph Fourier multipliers using Chebyshev polyno-
mials [4], or graph-signal inpainting [5, 6]. Graph filters have been
used to implement distributedly specific linear transformations such
as fast consensus [7], projections onto the low-rank space of graph-
bandlimited signals [8], or interpolation of graph-bandlimited sig-
nals [9, 10]. More recently, the implementation of general linear
transformations using regular (node-invariant) graph filters was ad-
dressed in [11].

The contribution of this paper is threefold. Firstly, we introduce
the notion of a node-variant graph filter, a generalization of regular
graph filters that preserves locality and increases design flexibility
by allowing filter coefficients to vary across nodes (Section 3). Sec-
ondly, conditions under which a specific linear transformation can
be implemented perfectly using node-variant graph filters are identi-
fied and, for the cases where the conditions are not met, the design of

Work in this paper is supported by USA NSF CCF-1217963 and Spanish
MINECO TEC2013-41604-R.

optimal approximations for different error metrics is addressed (Sec-
tion 4). This broadens the analysis in [11], where node-invariant
graph filters were considered, paving the way for the implementa-
tion of a larger class of linear network transformations. Lastly, to
demonstrate the relevance of our results for the design of distributed
network operators, Section 5 applies the developed framework to
the problem of analog network coding (ANC) [12, 13], providing
support for our approach.1

2. GRAPH SIGNALS AND FILTERS

Let G denote a directed graph with a set of N nodes or vertices N
and a set of links E , such that if node i is connected to j, then (i, j) ∈
E . The (incoming) neighborhood of i is defined as the set of nodes
Ni = {j | (j, i) ∈ E} connected to i. For any given graph we define
the adjacency matrix A as a N × N matrix with nonzero elements
Aji if and only if (i, j) ∈ E . The value of Aji captures the strength
of the connection from i to j. The focus of this paper is not on
analyzing G, but graph signals defined onN . Formally, each of these
signals can be represented as a vector x = [x1, ..., xN]T ∈ RN
where the i-th component represents the value of the signal at node i.

The graph G is endowed with a graph-shift operator S [2]. The
operator S is aN×N matrix whose entry Sji can be nonzero only if
i = j or if (i, j) ∈ E . The sparsity pattern of the matrix S captures
the local structure of G, but we make no specific assumptions on
the values of the nonzero entries of S. Possible choices for S are
the adjacency [2] and the Laplacian [1] matrices of the graph. The
intuition behind S is to represent a linear transformation that can be
computed locally at the nodes of the graph. More rigorously, if y
is defined as y = Sx, then node i can compute yi provided that it
has access to the value of xj at j ∈ Ni. We assume henceforth that
S is diagonalizable, so that there exist matrices V and Λ, the latter
being diagonal, that can be used to decompose S as S = VΛV−1.
Given a graph signal x, we refer to x̂ := V−1x as the frequency
representation of x [2], which can be used to express x as a linear
combination of the columns of V. Finally, a linear graph (network)
operator is a transformation B : RN → RN between graph signals,
which can be represented by a square N ×N matrix.

2.1. Graph filters

Graph filters H : RN → RN are particular linear graph operators
of the form

H :=

L−1∑
l=0

clS
l, (1)

i.e., polynomials (of degree L − 1) of the graph-shift operator [2].
The graph filter H can also be written as H = V

(∑L−1
l=0 clΛ

l
)
V−1.

1Proofs of the results stated in this paper can be found online at http://www.
seas.upenn.edu/∼ssegarra/wiki/uploads/Research/ICASSP16 filters.pdf

4850978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

The diagonal matrix Ĥ :=
∑L−1
l=0 clΛ

l can then be viewed as the
frequency response of H and it can be alternatively written as
Ĥ = diag(ĉ), where vector ĉ collects the N filter responses to
each of the frequencies. Let λk denote the k-th eigenvalue of S and
define the N × L Vandermonde matrix Ψ such that Ψij = λj−1

i .
Upon defining the vector containing the coefficients of the filter as
c := [c0, . . . , cL−1]T , it holds that ĉ = Ψc and therefore

H =
∑L−1
l=0 clS

l =Vdiag
(
Ψc
)
V−1 =Vdiag(ĉ)V−1. (2)

This implies that if y is defined as y = Hx, its frequency repre-
sentation ŷ = V−1y satisfies ŷ = diag

(
Ψc
)
V−1x = diag

(
ĉ
)
x̂,

which demonstrates that the output at a given frequency depends
only on the value of the input and the filter response at that given fre-
quency. Note that while for the time-varying case the operator that
transforms the signals and the filter coefficients into the frequency
domain is the same – the Discrete Fourier Transform (DFT) –, when
a generic S is considered, matrices V−1 and Ψ are different.

A convenient property of graph filters is that they can be imple-
mented locally, e.g., with L − 1 exchanges of information among
neighbors. To see this, define the l-th shifted input signal as z(l) :=

Slx. Notice that node i can compute [z(l)]i locally based on the
values of [z(l−1)]j at j ∈ Ni. To emphasize this local property, we
define zi as an L× 1 vector collecting the entries of {z(l)}L−1

l=0 that
are known by node i, so that [zi]l := [z(l)]i. With y denoting the
output of a graph filter for the input signal x, it follows from (1) that
y = H x =

∑L−1
l=0 clS

lx =
∑L−1
l=0 clz

(l). Hence, the i-th entry of
vector y can be computed as yi =

∑L−1
l=0 cl[z

(l)]i = cT zi, showing
that if the nodes know the value of the filter coefficients, yi can be
computed using solely information available at node i.

3. NODE-VARIANT GRAPH FILTERS

This paper proposes a generalization of graph filters, called node-
variant graph filters, defined as operators Hnv : RN → RN of the
form [cf. (1)]

Hnv :=

L−1∑
l=0

diag(c(l))Sl. (3)

If vectors c(l) ∈ RN satisfy c(l) = cl1 for all l, (3) reduces to a
standard node-invariant graph filter. On the other hand, when the
entries in c(l) are different, the application of Hnv to x amounts
to implementing a transformation where each node applies different
weights to the shifted signals Slx. This additional flexibility enables
the design of more general operators without undermining the local
implementation. For notational convenience, the filter coefficients
associated with node i are collected in the L× 1 vector ci, such that
[ci]l = [c(l)]i, and we define the L×N matrix C := [c1, . . . , cN].
The graph filters in (3) can be viewed as a generalization of linear
time-varying filters whose impulse response changes with time.

Since Sl and diag(c(l)) are not simultaneously diagonalizable
(i.e., their eigenvectors are not the same), the neat frequency in-
terpretation succeeding (1) does not hold true for the filters in (3).
However, the spectral decomposition of S can still be used to under-
stand how the output of the filter at a given node i depends on the
frequency components of the input. To be specific, let us write the
filter in (3) as Hnv =

∑L−1
l=0 diag(c(l))VΛlV−1. Next, to analyze

the effect of Hnv on the value of the output signal at node i, consider
the i-th row of Hnv, given by

hTi := eTi Hnv =

L−1∑
l=0

[ci]le
T
i VΛlV−1, (4)

where ei is the i-th N × 1 canonical basis vector (all entries of ei
are zero except for the i-th one, which is one). Defining the vectors
ui := VT ei and ĉi := Ψci, we can rewrite (4) as

hTi =

L−1∑
l=0

[ci]lu
T
i ΛlV−1 = uTi

(L−1∑
l=0

[ci]lΛ
l
)
V−1

= uTi diag(Ψci)V
−1 = uTi diag(ĉi)V

−1. (5)

The expression in (5) reveals that the output of the filter at node i,
which can be written as hTi x, can be viewed as an inner product
of V−1x (the frequency representation of the input) and ui (how
strongly the different frequencies are expressed by node i), modu-
lated by ĉi (the frequency response associated with the coefficients
used by node i).

4. IMPLEMENTATION OF LINEAR OPERATORS

The objective in this section is to implement pre-specified linear
transformations using node-variant graph filters [cf. (3)]. More
specifically, given a desired linear transformation B we want to
design the coefficient vectors c(l) for l = 0, . . . , L− 1 so that

B =

L−1∑
l=0

diag(c(l))Sl. (6)

We first identify the conditions under which (6) can be solved ex-
actly, and then analyze approximate solutions.

4.1. Conditions for perfect implementation

Defining the vectors bi := BT ei and b̃i := VTbi, the conditions
under which the equivalence in (6) can be achieved are given in the
following proposition and the subsequent corollary.

Proposition 1 The linear transformation B can be implemented
using the node-variant graph filter Hnv in (3) if the three following
conditions hold for all i:
a) [b̃i]k = 0 for those k such that [ui]k = 0.
b) For all (k1,k2) such that λk1 = λk2 , it holds that [b̃i]k1/[ui]k1 =

[b̃i]k2/[ui]k2 .
c) The degree L− 1 of Hnv satisfies L ≥ D.

The conditions in Proposition 1 detail how the spectral proper-
ties of S impact the set of linear transformations that can be im-
plemented. Condition a) states that if node i is unable to express a
given frequency k, only linear operators whose i-th row is orthogo-
nal to the k-th frequency basis vector can be implemented. Condi-
tion b) states that if two frequencies k1 and k2 are indistinguishable
for the graph-shift operator, then the projection of the i-th row of
B onto these two frequency basis vectors must be proportional to
how strongly node i expresses frequencies k1 and k2 for every node
i. Finally, condition c) requires that the order of the filter has to be
high enough to have enough degrees of freedom to design the linear
operator and to allow the original signal x to percolate through the
network. Conditions a) and b) are necessary while c) details a suffi-
cient filter degree for general implementation. However, filters with
lower degree may be able to implement a specific linear transforma-
tion. The following result follows as a corollary of Proposition 1.

Corollary 1 Any linear transformation B can be implemented by a
node-variant filter of the form

∑N−1
l=0 diag(c(l))Sl if the graph-shift

operator S = VΛV−1 satisfies the following two properties:

4851

a) all the entries of V are non-zero.
b) all the eigenvalues {λk}Nk=1 are distinct.

Under the conditions in Corollary 1, there is a unique set of filter
coefficients {ci}Ni=1 leading to perfect implementation, which can
be found as

ci = Ψ−1diag(ui)
−1VTbi, (7)

for all i. Proposition 1 and Corollary 1 confirm that the class of linear
transformations that can be implemented using (3) is significantly
broader than the one that can be implemented using (1) [11]. More
specifically, the restrictive condition of simultaneous diagonalization
of B and S in [11, Proposition 1] is not required for the more general
node-variant filters in (3).

4.2. Approximate implementation

In general, if the conditions in Proposition 1 are not satisfied, perfect
implementation of B is not feasible. In such cases, the filter can be
designed to minimize a pre-specified error metric. Upon defining the
error matrix as the difference D := Hnv − B, two prevalent error
norms used in the context of matrix estimation and reconstruction are
the 2-norm, which is related to the worst-case error (WCE), and the
Frobenius norm, which is related to the mean squared error (MSE)
[14]. Hence, we will cast our approximate-filter-design problem as
that of finding the coefficients c that minimize either ‖D‖2 or ‖D‖F.

To minimize the Frobenius norm of D, let us start by defining
the per-node vector difference di := DT ei = hi − bi, so that
we can write ‖D‖F =

∑
i ‖di‖

2
2. This shows that the optimal co-

efficients c∗i can be designed separately across nodes. We accom-
plish this in the following proposition, where we also present the
design to minimize ‖D‖2. Recall that C = [c1, . . . , cN] and de-
fine the matrices Ũ := [diag(u1), diag(u2), . . . , diag(uN)]T and
Φi := (V−1)T diag(ui)Ψ.

Proposition 2 The optimal filter coefficients defined as {c∗i,F}Ni=1:=

argmin{ci}Ni=1
‖Hnv − B‖F and {c∗i,2}Ni=1 := argmin{ci}Ni=1

‖Hnv −B‖2 are, respectively, given for all i by

c∗i,F = Φ†ibi = (ΦT
i Φi)

−1ΦT
i bi, (8)

where the second equality holds if Φi has full-column rank, and

{C∗2, s∗} = argmin{C,s} s (9)

s. to

[
sI (I�ΨC)T ŨV−1−B

((I�ΨC)T ŨV−1−B)T sI

]
� 0,

where � denotes the Khatri-Rao product.

While the choice of the element-wise error metric ‖D‖F leads to a
decoupled optimization, (9) confirms that minimizing ‖D‖2 requires
joint optimization of the filter coefficients across nodes.

Whenever prior knowledge of the input signal x is available,
it can be incorporated into the design of the filter coefficients. In
such a case, the goal is to minimize an error metric of the differ-
ence vector d := Hnvx − Bx. A case of particular interest is
when x is drawn from a zero-mean distribution with known covari-
ance Rx := E[xxT]. In this case, the error covariance is given by
Rd := E[ddT] = (Hnv − B)Rx(Hnv − B)T . Our objective is
to design filter coefficients to minimize some metric of the error co-
variance matrix Rd. Two common approaches that can be linked
to the designs in Proposition 2 are the minimization of Trace(Rd)
and λmax(Rd). The former is equivalent to minimizing the MSE
of d, while the latter minimizes the WCE achievable by all possible
realizations of x [15].

Proposition 3 The optimal filter coefficients defined as {c∗i,Tr}Ni=1:=

argmin{ci}Ni=1
Trace(Rd) and {c∗i,λ}Ni=1 := argmin{ci}Ni=1

λmax(Rd) are, respectively, given for all i by

c∗i,Tr = (R1/2
x Φi)

†R1/2
x bi = (ΦT

i RxΦi)
−1ΦT

i Rxbi, (10)

where the second equality holds if R1/2
x Φi has full-column rank, and

{C∗λ, s∗} = argmin{C,s} s (11)

s. to

[
sI (I�ΨC)T ŨV−1−B

((I�ΨC)T ŨV−1−B)T sR−1
x

]
� 0.

Whenever the signal entries are uncorrelated, i.e. Rx = σ2I, Propo-
sitions 2 and 3 are equivalent.

Once optimal filter designs have been presented, the ensuing
section illustrates the use of node-variant filters for the implemen-
tation of analog network coding.

5. ANALOG NETWORK CODING

In the context of multi-hop communication networks, network cod-
ing is a scheme where routing nodes, instead of simply relaying the
received information, combine the packets (symbols) received from
different sources to perform a single transmission. Even though net-
work coding was originally conceived for transmission of digital
data in the form of packets [16,17], extensions to the transmission of
analog signals have been developed under the name of ANC [12,13].
In this section, we show how node-variant graph filters can be lever-
aged to design ANC schemes. Apart from traditional communica-
tion networks, the results presented here are also relevant for se-
tups where there exists an inherent diffusion dynamic that percolates
the information across the network, as, for example, in the case of
molecular and nano communication networks [18, 19].

The filter design framework presented before has to be slightly
modified to account for the particularities of ANC. So far, we have
considered B to be a desired transformation encompassing the whole
set of nodes. However, in ANC we are interested in the transmission
of information from sources to sinks that are, in general, a subset of
the nodes in a graph. To be precise, denote by S := {s1, . . . , sS}
the set of S sources and by R := {r1, . . . , rR} the set of R sinks
or receivers. Since every source can have one or more receivers, we
also define the surjective function s : R → S, which identifies the
source for each receiver. In ANC one is interested in transformations
B = Banc where the i-th row of Banc is equal to the canonical vec-
tor eTs(i) for all i ∈ R. Since the values of Banc for rows i /∈ R are
not relevant for the performance of ANC, one can define the reduced
R × N matrix BR := ET

RBanc, where ER := [er1 , . . . , erR].
Hence, the goal of ANC boils down to designing a filter Hnv such
that ET

RHnv is as close to BR as possible. Most ANC setups con-
sider that only source nodes have signals to be transmitted, so that
the input signal at all other nodes can be considered zero. The graph-
filter design can leverage this fact to yield a better approximation. In-
deed, in such a case, upon defining matrices ES := [es1 , . . . , esS]

and BSR := BRES ∈ RS×R, the goal for ANC is to design Hnv

such that ET
RHnvES is as close to BSR as possible.

Although the propositions presented throughout the paper need
to be modified to accommodate for the introduction of BR and
BSR, the main results and the structure of the proofs remain the
same. To be specific, consider first the case where the nodes that are
not sources do not inject any input, so that the goal is to approximate
the S × R matrix BSR. Then, defining Φri,S := ET

SΦri and
denoting the i-th row of BSR as bTi,S , we can find the coefficients

4852

Number of exchanges
0 1 2 3 4 5 6 7 8 9

E
rr

or

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

(a)
Number of exchanges

0 1 2 3 4 5 6 7 8 9

E
rr

or

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node-var. B
SR

Node-var. B
R

Node-invar. B
SR

Node-invar. B
R

(b)
Number of exchanges

0 1 2 3 4 5 6 7 8 9

E
rr

or

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
;=0
;=0.2
;=0.4
;=0.6
;=0.8
;=1

(c)

Fig. 1: ANC applied to 100-node Erdős-Rényi graphs with S = R = 5. (a) Error at each of the sinks (different colors) as a function of the
filter degree for node-variant (solid line) and node-invariant (dashed line) filters. (b) Mean recovery error for node-variant and node-invariant
filters when approximating BR and BSR. (c) Mean recovery error for different levels of correlation ρ among the values at different sources.

that minimize ‖ET
RHnvES −BSR‖F as [cf. (8)]

c∗ri,F = Φ†ri,Sbi,S = (ΦT
ri,SΦri,S)−1ΦT

ri,Sbi,S , (12)

for all ri ∈ R, where the second equality holds if Φri,S has full-
column rank. For a given filter length, the L coefficients in c∗ri,F
specify the optimal weights that sink node ri must give to the orig-
inal signal and the first L − 1 shifted versions of it to resemble as
close as possible (in terms of MSE) the desired linear combination
of source signals bi,S . When it cannot be assumed that the initial
input signal at the routing nodes is zero, the goal is to approximate
the R × N matrix BR. In that case, the previous expressions for
the optimal filter coefficients still hold true. The only modifications
required is to substitute BSR = BR and ES = I ∈ RN×N into the
definitions of Φri,S and bi,S . Further, when every node acts as both
a source and a sink, (12) reduces to the original formulation in (8).
Although not presented here, expressions analogue to that in (12) for
the remaining optimal filter-design criteria can be derived too.

Illustrative simulations: In the following experiments, we consider
100-node Erdős-Rényi graphs with edge probability 0.1 and where
every edge is assigned a random weight drawn from a uniform dis-
tribution with support [0.5, 1.5]. We randomly select S = 5 sources
and, to each of these sources, we assign a sink so that R = 5 and
BSR = I. We set the graph-shift operator equal to the weighted ad-
jacency matrix S = A. Denoting by x the S-sparse input signal con-
taining the values to be transmitted by the source nodes (drawn from
a standard Gaussian distribution) and by y = Hx the filtered signal,
we define the error ei at sink node ri as ei := |yri−xsi |/|xsi |. Fig-
ure 1a shows one realization of the evolution of ei as a function of
the filter degree for i = 1, . . . , 5 (different colors) for node-variant
filters (solid lines) and compares it with the error achieved using reg-
ular node-invariant filters (dashed lines) in [11]. For the node-variant
case, we obtain perfect recovery at every sink node after 6 local inter-
actions. For the node-invariant case, there is an overall error reduc-
tion as the filter degree increases, but its performance is markedly
weaker than that of the node-variant case. This is not surprising
since the number of degrees of freedom to design the coefficients of
a node-invariant filter is much lower.

The next goal is to evaluate the difference in terms of error per-
formance between approximating BR and BSR. Recall that the
later assumes that the nodes that are not sources inject a zero input,
while the former does not. Since the size of BR isN/S times larger
than the size of BSR, the performance is expected to be consider-
ably lower. To corroborate this, in Figure 1b we plot the mean error
across 1,000 graphs for node-invariant [11] (red) and node-variant
(blue) filters when the coefficients are designed to approximate BR

(∗ marker) and BS,R (◦ marker). The remaining parameters are the
same than in the previous test-case (S = R = 5) and the error
is defined as e := ‖ERy − ESx‖2/‖ESx‖2, i.e., the normalized
difference between the signal injected at the sources and the one re-
covered at the sinks. Notice that if the sources are known and the
relay nodes inject a zero signal, after 7 local exchanges the mean
error for node-variant filters is 0. For this same filter degree the er-
ror when approximating BR is 0.93. Eventually, the latter error also
vanishes, but filters of degree close toN = 100 are needed. By con-
trast, when node-invariant filters are used to approximate BR [11],
the error improvement associated with increasing filter degree for
the selected interval (0 ≤ L− 1 ≤ 9) is negligible. Finally, by com-
paring the plots for node-variant and node-invariant filters when the
coefficients are designed to approximate BSR, we corroborate the
trend observed in Figure 1a, where node-variant filters achieve zero
error after a few interactions, while node-invariant filters exhibit a
slow reduction of the overall error with the filter degree.

Correlation among the injected signals at source nodes can be
leveraged to reduce the error at the receivers. To illustrate this, for
different values of ρ ∈ {0, 0.2, . . . , 1}, we build a S×S covariance
matrix Rx,ρ defined as R

1/2
x,ρ := I+ρ(11T − I)+0.1ρZ where the

elements in the symmetric matrix Z are drawn from a standard mul-
tivariate Gaussian distribution. In this way, the correlation between
injected signals increases with ρ and, in each realization, is corrupted
by additive zero-mean random noise. In Figure 1c, we plot the mean
error across 1,000 graphs as a function of the node-variant filter de-
gree parametrized by ρ. Notice that, as ρ increases, the achieved
error for a given filter degree decreases considerably. The reason
for this is that high correlation can be leveraged by sink nodes to
build accurate estimates of their intended source signals based on all
injected signals.

6. CONCLUSIONS

The optimal design of node-variant graph filters – a novel general-
ization of regular graph filters – for distributed implementation of
linear network operators was investigated. We stated conditions for
perfect implementation of linear operators and, for the cases where
these conditions were not met, we provided optimal designs for the
minimization of different error metrics. Finally, the practical rel-
evance of our approach for distributed setups was emphasized by
particularizing our results to the implementation of analog network
coding.

4853

7. REFERENCES

[1] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks
and other irregular domains,” IEEE Signal Process. Mag.,
vol. 30, no. 3, pp. 83–98, Mar. 2013.

[2] A. Sandryhaila and J. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, no. 7, pp. 1644–
1656, Apr. 2013.

[3] S. Barbarossa, G. Scutari, and T. Battisti, “Distributed signal
subspace projection algorithms with maximum convergence
rate for sensor networks with topological constraints,” in IEEE
Intl. Conf. Acoust., Speech and Signal Process. (ICASSP), Apr.
2009, pp. 2893–2896.

[4] D. I. Shuman, P. Vandergheynst, and P. Frossard, “Distributed
signal processing via Chebyshev polynomial approximation,”
CoRR, vol. abs/1111.5239, 2011.

[5] X. Wang, P. Liu, and Y. Gu, “Local-set-based graph signal re-
construction,” IEEE Trans. Signal Process., vol. 63, no. 9, pp.
2432–2444, Sept. 2015.

[6] S. Chen, A. Sandryhaila, and J. Kovacevic, “Distributed algo-
rithm for graph signal inpainting,” in IEEE Intl. Conf. Acoust.,
Speech and Signal Process. (ICASSP), Brisbane, Australia,
Apr. 19-24, 2015.

[7] A. Sandryhaila, S. Kar, and J. Moura, “Finite-time distributed
consensus through graph filters,” in IEEE Intl. Conf. Acoust.,
Speech and Signal Process. (ICASSP), May 2014, pp. 1080–
1084.

[8] S. Safavi and U. Khan, “Revisiting finite-time distributed al-
gorithms via successive nulling of eigenvalues,” IEEE Signal
Process. Lett., vol. 22, no. 1, pp. 54–57, Jan. 2015.

[9] S. Segarra, A. G. Marques, G. Leus, and A. Ribeiro, “Interpola-
tion of graph signals using shift-invariant graph filters,” in Eu-
ropean Signal Process. Conf. (EUSIPCO), Nice, France, Aug.
31 - Sept. 4, 2015.

[10] ——, “Reconstruction of graph signals through percolation
from seeding nodes,” arXiv preprint arXiv:1507.08364, 2015.

[11] S. Segarra, A. G. Marques, and A. Ribeiro, “Distributed im-
plementation of network linear operators using graph filters,”
in 53rd Allerton Conf. on Commun. Control and Computing,
Univ. of Illinois at U-C, Monticello, IL, Sept. 30- Oct. 2 2015.

[12] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless
interference: Analog network coding,” SIGCOMM Comput.
Commun. Rev., vol. 37, no. 4, pp. 397–408, Oct 2007.

[13] S. Zhang, S. C. Liew, and P. P. Lam, “Physical-layer network
coding,” in Intl. Conf. Mobile Comp. and Netw. (MobiCom),
2006, pp. 358–365.

[14] M. Gavish and D. L. Donoho, “Optimal shrinkage of singular
values,” arXiv preprint arXiv:1405.7511, 2014.

[15] F. Pukelsheim, Optimal Design of Experiments. SIAM, 1993,
vol. 50.

[16] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network in-
formation flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp.
1204–1216, Jul 2000.

[17] S.-Y. Li, R. Yeung, and N. Cai, “Linear network coding,” IEEE
Trans. Inf. Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[18] T. Nakano, M. Moore, F. Wei, A. Vasilakos, and J. Shuai,
“Molecular communication and networking: Opportunities
and challenges,” IEEE Trans. Nanobiosci., vol. 11, no. 2, pp.
135–148, June 2012.

[19] M. S. Kuran, H. B. Yilmaz, T. Tugcu, and B. Ozerman, “En-
ergy model for communication via diffusion in nanonetworks,”
Nano Communication Networks, vol. 1, no. 2, pp. 86 – 95,
2010.

4854

