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ABSTRACT

There is an achilles heel underlying the consensus literature.
It has been known for some time that measurement noise
causes the explosive growth of the consensus mode. Here
we state the noise problem; characterise the behaviour of the
noisy consensus system including its drift to∞; critique the
existing remedies and develop a new remedy.

Index Terms— consensus, adaptive.

1. INTRODUCTION

While there has been a considerable interest in consensus al-
gorithms over the past decade [1],[2] the effect of noise has
not received a lot of treatment.

Following early work of [3] interest in consensus type
algorithms was stimulated e.g. by [4],[2],[5],[6] with related
developments in gossip algorithms, rendezvous problems,
and adaptive distributed estimation [1],[7].

But early on a problem was noted when there is noise [8].
In that case the consensus mode explodes. No resolution was
presented in [8] however. Subsequently [9],[10] showed how
to deal with the problem by using decaying gains.

However in the adaptive signal processing and adaptive
control literatures [11],[12],[13] decaying gains have been
dismissed since they cause the adaptive algorithm to lose the
ability to adapt i.e. to lose the ability to track.

So the question is how to deal with the problem of noise
when gains are fixed. [14] present a solution which assumes
a very special measurement structure and only applies to very
special topologies. In this paper we propose a very general
solution; we develop a modification to the consensus control
law which produces bounded behaviour.

In section 2 we review the deterministic consensus theory.
In section 3 we formulate the problem of noise and charac-
terise its impact. In section 4 we present our new approach.
Conclusions are in section 5.

Notation & Acronyms. iid(0, σ2) denotes a sequence
of independent identically distributed random variables each
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with zero mean and variance σ2. AR(p) denotes an autore-
gressive process of order p. 1∗ denotes a vector of 1s.

2. DETERMINISTIC CONSENSUS

Consider a network of N nodes. At node i agent i updates
a state xi(t) according to dynamics dependent on the (noise
free measurements of the) states of nearby agents

ẋi(t) = βΣjaij(xj − xi)

where A = [aij ] is a symmetric adjacency matrix of non-
negative weights. We exclude self loops by taking akk =
0. If the adjacency matrix is binary and undirected then it is
symmetric [15].

Introduce the ’degree’ vector di = Σjaij = (A1)i and
D = diag(di). We then have a graph Laplacian L = D − A
obeying L1 = D1−A1 = d−d = 0 and which is symmetric.

Then we can write the equations in vector form as follows

ẋi(t) = βΣjaijxj − βdixi
⇒ ẋ = βAx− βDx

= −βLx (2.1)

Note the following positivity property of the Laplacian.

ΣiΣj(xi − xj)2aij
= ΣiΣjaij(x

2
i − 2xixj + x2j )

= Σidix
2
i − 2ΣiΣjxixjaij + Σjdix

2
j

= 2(xTDx− xTAx)

= 2xTLx

This shows that the Laplacian is positive semi-definite [15]
which means its eigenvalues are ≥ 0.

We introduce the following assumption.
Assumption C. The network is connected.
Then the 0 eigenvalue of L has multiplicity 1 [15].
To analyse the dynamic system we introduce the eigen-

vector decomposition (EVD) of L. Let L have possibly re-
peated eigenvalues λo = 0, 0 < λ1 ≤ λ2 ≤ · · · ≤ λN−1 and
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introduce Λ = diag[λi]. Then the EVD is

L = QΛQT = ΣN−10 λiqiq
T
i = ΣN−11 λiqiq

T
i , Q

TQ = I

Q = [qo, · · · , qN−1] is the matrix of eigenvectors. Since
QQT = I = QTQ we have qTi qj = δi,j . Note that L1∗ =
0⇒ qo = 1∗

1√
N

.
The solution to (2.1) is then

x(t) = e−βLtx(0)

= ΣN−10 e−βλitqiq
T
i x(0)

→ qoq
T
o x(0) as t→∞

= 1∗
1T∗ x(0)

N

This demonstrates consensus in that all nodes converge to the
same solution 1T∗ x(0)/N .

We sum this up as follows.
Result O. Consider the system (2.1) with L symmetric

and connected. Then all states xi(t)→ 1T∗ x(0)/N as t→∞.
Various versions of this type of result can be found in the

references cited earlier.

3. NOISY CONSENSUS

Now we introduce measurement noise. The update becomes

ẋi(t) = βΣjaij(xj + εji − xi) (3.1)

where εji are node-wise independent white noises and at
each node are iid(0, σ2

ji). More formally we introduce
iid Brownian motions Wji(t) with increment variances
V ar(dWji(t)) = var(εji(t)dt) = σ2

jidt. Since aii = 0
there is no self noise εii.

In vector form we get

ẋ = −βLx+ βn (3.2)
ni = Σjaijεji

var(nidt) = Σja
2
ijσ

2
jidt = σ2

n,idt

So ndt has diagonal covariance matrix Dndt = diag[σ2
n,i]dt.

Note that if we have a binary adjacency matrix and all
measurement noise variances are the same i.e. σ2

ji = σ2 then

σ2
n,i = Σjaijσ

2 = diσ
2

It is crucial to point out here that our noise model differs
in an important way from that in [8]. Certainly they work in
discrete time whereas we work in continuous time. But that
is not the issue here. We model measurement noise in a nat-
ural way by adding noise directly to the states. This is not
what [8] does. They do not model measurement noise but
rather just add a noise directly to (2.1) giving indeed (3.2).
But their noise is unaffected by the structure of the graph;

whereas our noise is intimately affected by the graph struc-
ture. This not only makes their system different but makes
their analysis simpler whereas our analysis is more difficult.

To analyse what happens in our case we take a modal
view. Introduce the modes ξj = qTj x. Multiplying through
the state equation by qTj we get

ξ̇j = −βλjξj + βνj

νj = qTj n

var(νjdt) = qTj Dnqjdt = σ2
ν,jdt

This means that for j 6= 0 the modes are continuous time
AR(1) processes (aka Ornstein Uhlenbeck processes). We
note that since λo = 0 the 0th mode ξo =

1T∗ x√
N

obeys

ξ̇o = βνo = β1T∗ n/
√
N

This leads to the following result.

Result I. Noisy Modal Behaviour. For the noisy consen-
sus system (3.1) with network state x(t) and modes ξj(t) =
qTj x(t),

(a) ξo is an integrated white noise i.e. a Brownian motion
and so explodes e.g. its variance is

var(ξo) = β2σ2
ν,ot where σ2

ν,o =
Σiσ

2
n,i

N

(b) The other modes do not explode but are continuous
time AR(1) processes and have steady state variances

var(ξj) =
βσ2

ν,j

2λj

To understand what happens to the network in the pres-
ence of this explosion we need to shift our focus and look at
consensus from a different point of view. In the presence of
noise what we can hope is that the nodes stay nearby each
other. To measure this we compute the consensus distance
(c.f. [8] in discrete time)

∆ =
√

ΣiΣj(xi − xj)2

Now we have the following result.
Lemma D.

∆2 = 2N(xTx− ξ2o) = 2NΣN−11 ξ2j

Proof. We have

ΣiΣj(xi − xj)2 = ΣiΣj(x
2
i − 2xixj + x2j )

= 2NΣix
2
i − 2Nξ2o

= 2N(xTx− ξ2o)

= 2N(xTQQTx− ξ2o)

= 2N(ξT ξ − ξ2o)

= 2NΣN−11 ξ2j
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where we have used the fact that ξo = Σixi/
√
N .

Now we have the following result.

Result II. Noisy consensus. For the noisy consensus sys-
tem (3.1) with network state x(t) and modes ξj(t) = qTj x(t),

(a) The consensus distance has finite mean:
E(∆) ≤

√
E(∆2) where

E(∆2) = βΣN−11

σ2
ν,j

2λj

(b) The network mean x̄(t) = 1T∗ x/N = ξo/
√
N is a

Brownian motion.

(c) var(xi − x̄(t)) ≤ β(ΣN−11
σν,j√
2λj

)2.

Proof. (a),(b) follow from the calculations above. For (c)
consider that

E(x− 1∗1
T
∗ x

N
)(x− 1∗1

T
∗ x

N
)T

= E(ΣN−10 qjq
T
j x− qoqTo x)(·)T

= E(ΣN−11 qjξj)(Σ
N−1
1 qjξj)

T

= ΣN−11 ΣN−11 qjqkE(ξjξk)

Let ui be a vector of 0s but with a 1 in position i. Then
note that |uTi qj | ≤‖ ui ‖‖ qj ‖= 1. Using this and noting
xi = uTi x we find

var(xi − x̄(t)) = ΣN−11 ΣN−11 uTi qju
T
i qkE(ξjξk)

≤ ΣN−11 ΣN−11 |uTi qj ||uTi qk||E(ξjξk)|

≤ ΣN−11 ΣN−11

√
E(ξ2j )

√
E(ξ2k)

= (ΣN−11

√
E(ξ2j ))2

and using Result Ib delivers the result.
Note that the size of E(∆) is determined by measurement

noise and mode time constants the only free parameter being
β.

We can now summarize the behaviour of the noisy net-
work.

(i) (c) shows that the nodes fluctuate with bounded vari-
ance around the network mean

(ii) (b) shows the network mean is a Brownian motion and
drifts randomly and unboundedly.

(iii) (a) is consistent with (b),(c) in that the relative distance
between the nodes remains bounded.

This overall behaviour is clearly unsatisfactory.

4. REVERTING CONSENSUS

The main previous remedy has been to abandon fixed gains
and consider decaying gains [9],[10].

As mentioned in the introduction this is not an accept-
able solution since the algorithm then loses it ability to track.
Also as noted earlier [14] have found a special kind of noisy
measurement regime suited to a few applications where fixed
gains can be used and drifting can be avoided.

Here we seek a general resolution. In particular we now
investigate the following very simple scheme. We add a self
reverting term to each update.

The new scheme is

ẋi(t) = −αβxi + βΣjaij(xj + εji − xi) (4.1)

where α > 0 and other quantities are as in section 3. Note the
scaling of the reversion gain by β. This simplifies design and
subsequent interpretation. In vector form this becomes

ẋ = −αβx+ βLx+ βn

We now proceed to analyse this system in a similar manner to
section 3.

The modal equations are now

ξ̇j = −β(α+ λj)ξj + βνj

Note that the 0th mode is no longer a Brownian motion but an
AR(1) with bounded variance.

We now have the following results.
Result III. Noisy Modal Behaviour. For the reverting

consensus system (4.1), the modes do not explode but have
steady state variances

var(ξj) = β
σ2
ν,j

2(α+ λj)
, 0 ≤ j ≤ N − 1

Result IV. Noisy consensus. For the reverting consensus
system (4.1),

(a) The consensus distance has finite mean

E(∆) ≤
√
E(∆2) =

√
βΣN−11

σ2
ν,j

2(α+ λj)

(b) The network mean x̄(t) = 1T∗ x/N = ξo/
√
N is an

AR(1) process with variance β
σ2
ν,o

2α where again σ2
ν,o =

1
NΣiσ

2
n,i.

(c) var(xi − x̄(t)) ≤ β(ΣN−11
σν,j√

2(α+λj)
)2.

Proof. Follows much as before.
Now that we have stopped the network drifting unbound-

edly the question now is how to choose α.
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Consider the case of a binary adjacency matrix where all
node measurement variances are the same = σ2. Then σ2

ν,o =

σ2 1
NΣdi − dav the average degree. Also σ2

ν,j ≤ dmaxσ2.
We should like the average consensus distance to be much

smaller than the fluctuation standard deviation of the mean i.e.

1

N
ΣN−11

davσ
2

2(α+ λj)
= ε2

dmaxσ
2

2α

where e.g. ε = .1 is a small fraction. Cancelling σ2 and
subsuming dmax/dav into ε gives

1

N
ΣN−11

α

α+ λj
= ε2

We illustrate with some examples.

Example RING. Ring with N nodes; [15][section 5.3],[8].
The eigenvalues of the Laplacian are given by

λk = 2(1− cos(2πk

N
)), k = 0, 1, 2, · · ·

So we require

1

N
ΣN−11

α

α+ 2(1− cos( 2πk
N )

= ε2

For large N the sum can be approximated by an integral giv-
ing∫ 1

0

α

α+ 2(1− cos(2πθ))
dθ =

α

2π

∫ 2π

0

dφ

α+ 2− 2cos(φ)

This integral is known, so we get

α√
(α+ 2)2 − 22

= ε2 ≡ α2 = ε4[α2 + 2α] ≡ α ≈ 2ε4

5. CONCLUSIONS

We have reviewed the deterministic consensus algorithm and
then characterised its behaviour in the presence of measure-
ment noise. This behaviour is catastophic. While the nodal
states remain near each other their centre is a random walk
and drifts off to∞. We have presented a simple local remedy
which stops the unbounded drift by adding a reverting term at
each node. In future work we will investigate the possibility
of an optimal remedy.
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