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ABSTRACT ations of implementation. Reducing the amount of information ex-
hange among the nodes alleviates bandwidth burden, improves sys-
m robustness, and enables fast information processing and decision
aking. In this paper, we propose a weighted alternating direction
ethod of multipliers (ADMM) to solveX), aiming at reducing the
communication cost.

In this paper, we propose a weighted alternating direction metho
of multipliers (ADMM) to solve the consensus optimization prob-
lem over a decentralized network. Compared with the convention
ADMM that is popular in decentralized network optimization, the
weighted ADMM is able to tune its weight matrices for the pur-
pose of reducm_g the communication cost spent in the_optlmlzatloq_l_ Related Works
process. We first prove convergence and establish linear conver-
gence rate of the weighted ADMM. Second, we maximize the depecentralized optimization algorithms that soldg include gradi-
rived convergence speed and obtain the best weight matrices oneat/subgradient methods(, 11] and their accelerated versior<],
given topology. Third, observing that exchanging information with diffusion methods13,14], dual averaging method4},16], Newton
all the neighbors is expensive, we maximize the convergence speegethods 17, 18], and ADMM [1,2,19]. Among these algorithms,
while limit the number of communication arcs. This strategy findsthe decentralized ADMM has shown fast convergence in both prac-
a subgraph within the underlying topology to fulfill the optimiza- tice and theory. Wheri] is a convex program, ADMM converges to
tion task and leads to a favorable tradeoff between the number ahe optimal solution at a sublinear rate@f1/k) with k being the
iterations and the communication cost per iteration. Numerical exnumber of iterations7]. Its linear rate of()(Tk), wherer € (0,1)
periments demonstrate advantages of the weighted ADMM over it§ a topology-dependent constant, is establishe®@h given that
conventional counterpart in expediting the convergence speed amfe local objective functions are strongly convex. ADMM is also
reducing the communication cost. able to utilize the special composite structures or introduce surro-
Acknowledgement. Qing Ling and Yaohua Liu are supported by gates of the Ipcal objectiv_e functipns so as to significantly simplify
NSF China grant 61573331 and NSF Anhui grant 1608085QF130.the computation, while still keep its favorable convergence proper-
ties [21,22,23,24).
1. INTRODUCTION Not surprisingly, convergence speed of the conventional decen-
tralized ADMM is determined by condition numbers of the local

Along with the rapid progress of data acquisition, communication®bjective functions, spectral properties of the underlying topology
and networking technologies, information processing and decisiognd stepsize of the dual gradient ascent s&. [ However, the
making over decentralized networks have attracted noticeable rgonventional ADMM is unable to achieve the best communication
search interest in these years. A group of geographically distributegfficiency due to two reasons. First, there is only one parameter, the
nodes, which are equipped with sensing, communicating and corfDMM stepsize, which can be tuned to maximize the convergence
puting abilities, collaboratively accomplish an information process-Speed and consequently minimize the required number of iterations.
ing or decision making task over an underlying network topology.Second, at every iteration, every node has to exchange its current
A typical task is decentralized consensus optimization, in which iterate with all of its neighbors, which leads to a large amount of
nodes solves information exchange per iteration.

mzin Zfi(z). 1) 1.2. Our Contributions and Paper Organization
i=1

This paper proposes a weighted ADMM to solve the decentralized
Herexz € RP? is the common optimization variable agfd : R? — optimization problem1) and address the two disadvantages of the
'R is the local objective function of node Such a problem formu- conventional ADMM as discussed above. Intuitively, one can assign
lation appears in various applications, for example, wireless comdifferent weights to different nodes and arcs. Tuning the weights
munications and networkindl[2], spectrum sensing of cognitive gives more flexibility to maximize the convergence speed than in the
radios B, 4], monitoring and optimization of smart grids§,[p], dis-  conventional ADMM. Furthermore, by setting some weights of arcs
tributed control of networked robotg,[8, 9], to name a few. as zeros, we are able to avoid information exchange over a subset of

In a decentralized algorithm that solvel,(every node holds arcs and hence reduce the communication cost per iteration.

its local objective function, exchanges current iterate with a subset Section2 develops the weighted ADMM following this intu-
of neighbors, carries on local computation, and eventually reachdtve idea. Sectior8 proves convergence and establishes linear rate
an optimal solution that is consensual to all the nodes. In this opef convergence for the weighted ADMM. We provide explicit ex-
timization process, communication cost is one of the key considempression of how the convergence speed is determined by the weight
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Algorithm 1 Weighted ADMM run by node In (2), D € D™*" is a diagonal matrix and it§, i)-th element is

Require: Initialize local iterates ta: — 0 andA? — 0. positive and denoted byi;; A € A™*™ is a symmetric matrix sat-
1: for timesk = 0,1, . .. do ' isfying that its(¢, j)-th element;; = 0 if nodes: and; are neither
2 Compute local iterate*" from neighbors nor the same. Given a matrix defineC; = {j|a:; #

L o, i 0,7 # j}, which guarantees; C ;.
T = arg min f; (i) + (@4, A — diaf + Z aijTly + diil|zi|). Splitting the computation in the matrix forn2)(to individual
v j=1 nodes, the update of nodés given by .
. o k1 ey k1 ; ) } : . .
3:  Transmitz; " and recelvenj. .from] €Ci CN;. 2P = argmin fi () + (@i, AF — dia® — Z aiﬂﬂ + diil|zi%,
4:  Update local Lagrange multiplied* ™ as i =1
n n
X b it =Y agal N it =Y agalt, ®)
j=1 j=1
5: end for

The algorithm can be implemented in a decentralized manner.
In the update ofz***, nodei needs to calculate the summation

matrices, which enables optimal design of the latter. Seetigines 2~ j—1 aijay, which only requires the previous iterates andz7,

two optimal design strategies. The first one simply maximizes thé € Ci, asai; = 0if j # i andj ¢ Ci. The objective function
convergence speed, while the second one confines the number b{:) and the previous Lagrange multipliey; are also locally
communication arcs for the sake of reducing the amount of informa@vailable. Similarly, in the update off*', agenti calculates the
tion exchange at every iteration. Numerical experiments in Sectioweighted summatiory_7_, ai;zit! of the current local iterates;

5 demonstrate advantages of the weighted ADMM over its conventhis can be done through communication with its neighbors. The
tional counterpart in reducing the communication cost. Proofs ofveighted ADMM is outlined in Algorithm 1.

theorems, detailed discussions and extra numerical experiments are ) . )

placed in a longer version of this pap@. 2.3. Connection of Weighted and Conventional ADMM

To see the connection between the proposed weighted ADMM and
2. ALGORITHM DEVELOPMENT the conventional one, observe tha€] gives the matrix form of the

2.1. Problem Statement conventional ADMM as

N_et_vvork modelConsider a bidirectiqnally connected network con- xkHl — grg min f(X) + (X, AR _ cUXk> + (X,cU + VX),
sisting ofn nodes and edges. Describe the network as a symmetric X
directed graptg = {V, £}, whereV is the set of nodes with car- A = A 4 cV7 XFTL 4)
dinality |V| = n and€ is the set of arcs with cardinalityf| = 2t. o ) )
Nodesi and; are neighbors of each other(i, j) € £ and, by the T_hereln,c is the ADMM stepsize;U and V' are the_ signless and_
symmetry of the network(j, i) € £. The set of nodé's neighbors signed Laplacian matrices of the networl_<, respectlvely. Compa_rlng
is denoted asV;, whose cardinality\;| is the degree of node (2) and @), we can find that the conventlor_1al ADMM is a special
Communication modeht every iteration, every nodecommu-  ¢ase of the weighted ADMM through setting = c(U + V)/2
nicates with a set of other nodés, sending and receiving current @ndA = ¢(U — V)/2. Note that such choices @9 and A satisfy
local iterates. The communication is assumed to be synchronizeéle requirements of the weighted ADMM. In this cagejs the de-
Furthermore, in order to guarantee that the algorithm is decentrafi'e® matrix whosgi, 7)-th elementl;; denotes the degree of notle
ized, every node is only allowed to communicate with those node¥hile A is the incidence matrix whosg, j)-th elements;; equals
in its neighbor set; namely, for every notlee must havet; C A;.  to oneif nodes andj are connected and zero otherwise.
Suppose that upon sending a message, every nogadcasts once _Exter?dlng. the conventlorjal ADMM to the We!ghted one is non-
to all the nodes iif; and at every iteration. If every node encodes itstrivial- First, in the conventional ADMM, updating; and A; in
local iterate withp bits, then the cost of sending;is and the cost nodei involves communication with all the neighbofsn ;, be-

of receiving isp 3.7, |C;| per iteration. cause of the structures &f and V. Therefore, the conventional
=1 ADMM has a fixed communication cost of receivipd ;- | |N;]
2.2. Weighted ADMM per iteration given the network topology. Contrarily, the weighted

ADMM is able to reduce the communication cost of receiving by let-
ting every node communicate with less neighbors; this can be done
through wisely choosing the matrit such thaty~" | |C;] is less
thand""_, |NVi|. Second, the conventional ADMM can optimize its
convergence speed through tuning the stepsisencelU andV are
fixed given the network topology. Whereas, the weighted ADMM
has the flexibility of tuning two matriced) and A. Consequently,

the weighted ADMM has the potential to achieve faster convergence

X2l 2ller™®, A2 AT e R speed than its conventional counterpart.

In the weighted ADMM, every nodemaintains a local variable; €
RP, which is a copy of the optimization variabiten (1). Nodei also
keeps a local variabla; € RP, which plays the role of Lagrange
multiplier as we will explain in Subsectich3 Bothx; and\; are
updated using information collected from the nodesS;inHowever,
only z; is transmitted to the nodes @h; \; is kept private.

Collect all local variables:; and\; in two matrices

Define an aggregate objective functigX) = 37, fi(z:). The 3. CONVERGENCE AND LINEAR RATE
matrix form of the weighted ADMM update is given by

Xkt argm)}nf(X) (X, A" — (D + A)X*) + (X, DX,), 3.1. Assumptions
k41 & 41 Unless otherwise stated, the convergence results in this section are
A =A+(D-A)XT @ given under Assumptions frorh through4. Assumptionsl and?2
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are basic, requiring that the underlying network to be connected andiffusion process while the others contribute less. Intuitively, we ex-

the solution set not null, respectively. pect to identify those important nodes and arcs and give them higher
Assumption 1 (Network connectivity). The network of, nodes is weights, which expedites propagation of “useful” information and
bidirectionally connected. reduces exchange of “less useful” messages.

Assumption 2 (Solution existence) The solution set t¢l), denoted

by X*, is nonempty. 4. MINIMIZING COMMUNICATION COST

Assumptior supposes that the local objective functions are dif- g section investigates how to minimize the communication cost
f_erer_mable and have Lipschitz continuous gradle_nts. This assUMp e weighted ADMM through optimizing the spectral properties
tion is necessary to prove convergence of the weighted ADMM. Tyt o \yeight matrice® and A. Observe that the diagonal elements
further establish linear rate of convergence, we require the local 0s¢ 1 andA correspond to the nodes and the off-diagonal elements of
jective functions to be strongly convex, as stated in Assumption 4 correspond to the arcs. df; anda; are both zero angl j, then
Assumption 3 (Lipschitz continuous gradient). The local objec-  nodes: andj have no information exchange even though there ex-
tive functionsf; are proper closed convex, differentiable, and haveists a communication link between nodesnd;. Therefore, given a
Lipschitz continuous gradients. Ther'e is a positive consignt- 0 predefined network topolog, £), we propose two different strate-
such that for any nodeand for any pair of points:, andz itholds  gies of tuningD and A. The first strategy allows evewy;; to be
IV fi(xza) — Vfi(zs)|| < Lgllza — x| nonzero as long asc N; (see Subsectiof.1). The second strategy
Assumption 4 (Strong convexity). The local objective functions lets somen;; be zeros even thoughe A/, which is equivalent to
fi are strongly convex. There is a positive constapt> 0 such  selecting a subset of neighba?s from A/; and hence reduces the
that for any nodei and for any pair of pointsc, andx, it holds  amount of information exchange per iteration (see Subsedt@)n
(Ta — @b, Vfi(za) — Vfi(ws)) > prllza — s
. 4.1. Maximizing Speed
3.2. Convergence Properties
According to the theoretical analyses in Secti®into maximize
the convergence speed of the weighted ADMM through tuning the
weight matricesD and A, the optimization model is

In Theoreml, we shall show that the sequenf&*} generated by
the weighted ADMM converges t& *, one of the optimal solutions.
HereX* £ [(21)"; - ;(z5)"] € R™7? is consensual, that is, N
z} = --- =z} and they are optimal tdl. it {omax(D + A), =0min(D — A)}, (6)
Theorem 1. Under Assumptiondand3 and given that the weighted ’t DEDACADLAS0.D—A>0 Nul(D— A) =

matricesD € D and A € A are chosen such thab + A > 0, st ’ D+AzD, -7 ( )=e

D — A= 0andNul(D — A) = ewheree = [1;--- ;1] isan all-  However, the multi-objective optimization proble®) (s difficult to

one vector, the sequendex "} generated by the weighted ADMM sglve. Therefore, we propose an alternative approach that confines
converges to an optimal solutioki*. omax(D + A) to be less than a positive constanihile minimizes

Provided that the local objective functions not only have Lip- —omin(D — A). This way, we have a single-objective problem

schitz continuous gradients but also are strongly convex, Theorer]?lw1in — Gun(D — A) @)

2 further establishes linear rate of convergence. In particular, we,A i ’

obtain the convergence speed that is explicitly determined by the,y D eD Aec A, D+ A>0,D— A= 0,Null(D — A) =,
condition numbers of the local objective functions and the spectral D A) <

properties of the weight matricés and A. Tmax(D +A4) < p.

Theorem 2. Under Assumption®, 3 and 4 and given that the The optimization problemg) is convex since the objective function
weighted matricesD € D and A € A are chosen such that and the set of constraints are both conveg][ We solve 6) with
D+ A»0,D-A > 0andNul(D — A) = e, the sequence CVX, a popular optimization toolbox2[7).

{X"} generated by the weighted ADMM converges at the linear

rateO((l + 6)*’“) to the unique optimal solutioX *. Specifically, 4.2. Maximizing Speed Using Limited Communication Arcs

the convergence speéds any positive constant no larger than _— . .
g P ye ¢ The overall communication cost of the weighted ADMM is deter-

Fmin(D — A) 2 mined by the product of the number of iterations and the communi-
min 90 max(D + A)’ D+ A oL ,2 cation cost per iteration. On a fixed topology, utilizing all the avail-
Tmax(D + A) + (0—1)G min(D—A) able communication arcs shall definitely achieve the fastest conver-

Theorem2 shows that the weighted ADMM converges linearly gence speed, and hence reduce the number of iterations to reach a
and its theoretically achievable speed is given By which is de-  given accuracy. However, this strategy brings high communication
termined by the Lipschitz gradient and strong convexity constants afost per iteration. Indeed, some communication arcs are less impor-
the local objective functions(; andy.y) and the spectral properties tant than the others and can be disconnected to reduce the amount
of the weight matrice® and A (omax (D + A) andomin (D — A)). of information exchange iteration-wise, as pointed out in Section
Suppose that the local objective functions are given a prior such th& Therefore, in this subsection we propose an alternative strategy
Ly andpy are fixed. The theoretically achievable speed is monotonthat maximizes the convergence speed under the constraint of lim-
ically decreasing irmax (D + A) while increasing ifomin (D — A). ited communication arcs.

Hence, to accelerate the convergence speed and reduce the commu- Observe that the number of communication arcs required in the
nication cost, we have the flexibility of tuning the weight matri¢es weighted ADMM equals to the number of nonzero off-diagonal el-
andA so as to minimizermax (D + A) and maximiz&rmin (D — A). ements inA. Denote OffDiagA) as a matrix whose off-diagonal
Note that tuning the elements i and A changes the weights of elements are identical to those 4fand diagonal elements are zeros.
the individual nodes and arcs. This helps because in a given topahlso denote the pseud norm ||OffDiag(A)||o as the number of
ogy some nodes and arcs may contribute more to the informationonzero elements of OffDidgl). Suppose that we expect to use at
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Fig. 2. Communication costs on the graph with two clusters.  Fig. 4. Communication costs of the weighted ADMM on the opti-
mized subgraph and the conventional one on the complete graph.

most2s arcs (namely, at most edges due to the symmetry df),

the optimization ofD and A turns to In the first experiment, we only maximize the convergence speed
min — Gamin(D — A) @) of the weighted ADMM. Interestingly, the conventional ADMM per-
(D,A)eQ mn ’ forms almost the same as the weighted one on most graphs, such as

line, circle, star, complete, and random. But we observe that if the
graph has several clusters of nodes (see Ffgr an example of two
whereQ is the feasible set of7j. The new formulation§) is non-  clusters), then the weighted ADMM outperforms its conventional
convex. We to utilize ADMM to find a suboptimal solution &)pe- counterpart (see FigR). This is reasonable because in the conven-
cause it has had successful applications in many optimization profional ADMM, the cluster heads do not distinguish the neighboring
lems with¢, norm constraintsd8, 29]. Observe that here ADMM is  ordinary nodes and the neighboring cluster heads. Through optimiz-
used to split the nonconvex constraint and the rest convex part, whil@g the weight matrices, the weighted ADMM properly emphasizes
in decentralized optimization ADMM is used to split the computa-the importance of the cluster heads to their neighboring peers, and

s.t. ||OffDiag(A)l|o < 2s,

tion of the nodes. The algorithm to solv@ s given in R5). hence achieves better communication efficiency.
In the second experiment, we let the conventional ADMM run
5. NUMERICAL EXPERIMENTS on a complete graph, but limit the number of communication arcs for

the weighted ADMM. Optimally picking 50 arcs ¢ = 75 in (8))
This section compares the weighted and conventional ADMMsout of 2450 possible ones, the resulting subgraph is given by Eig.
We first show that through maximizing the convergence speed, thEhe communication costs of the two algorithms, in terms of sending
weighted ADMM achieves better communication efficiency than theand receiving, are demonstrated in Fig The conventional ADMM
conventional one on some graphs. The saving on the communicatiamorks on the complete graph so that its convergence is very fast,
cost by the weighted ADMM becomes more significant when weand consequently, the communication cost of sending is low. How-
maximize the convergence speed under the constraint of commurever, at every iteration every node must receive messages from all
cation arcs. In the conventional ADMM, we hand-tune its stepsize tdhe other nodes, which is unaffordable in practice. As a comparison,
the optimal value. We let every nodéas a local objective function the weighted ADMM provides a favorable tradeoff between the con-
filz) = (1/2)||y: — Miz||?, whereM; € R™*? andy, € R™ for  vergence speed and the communication cost per iteration. A notice-
everyi and their elements are generated following the standard noable byproduct of the weighted ADMM is that the selected subgraph
mal distribution. In the numerical experiments,det= 50 (number is naturally load-balanced though we do not explicitly consider this
of the nodes)p = 3 (length ofx;), m = 3 (length ofy;), andp = 1 metric in 8). Most of the nodes hav& neighbors and some hage
(scale ofomin (D — A)). Quality of the local iterates at timeis  or 4, which is beneficial to the robustness of the network. We shall
evaluated by accuracy, which is definedasx; ||zF — z*||. investigate this phenomenon in our future research.
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