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ABSTRACT

In this paper, we propose a weighted alternating direction method
of multipliers (ADMM) to solve the consensus optimization prob-
lem over a decentralized network. Compared with the conventional
ADMM that is popular in decentralized network optimization, the
weighted ADMM is able to tune its weight matrices for the pur-
pose of reducing the communication cost spent in the optimization
process. We first prove convergence and establish linear conver-
gence rate of the weighted ADMM. Second, we maximize the de-
rived convergence speed and obtain the best weight matrices on a
given topology. Third, observing that exchanging information with
all the neighbors is expensive, we maximize the convergence speed
while limit the number of communication arcs. This strategy finds
a subgraph within the underlying topology to fulfill the optimiza-
tion task and leads to a favorable tradeoff between the number of
iterations and the communication cost per iteration. Numerical ex-
periments demonstrate advantages of the weighted ADMM over its
conventional counterpart in expediting the convergence speed and
reducing the communication cost.
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1. INTRODUCTION

Along with the rapid progress of data acquisition, communications
and networking technologies, information processing and decision
making over decentralized networks have attracted noticeable re-
search interest in these years. A group of geographically distributed
nodes, which are equipped with sensing, communicating and com-
puting abilities, collaboratively accomplish an information process-
ing or decision making task over an underlying network topology.
A typical task is decentralized consensus optimization, in whichn
nodes solves

min
x

n∑
i=1

fi(x). (1)

Herex ∈ Rp is the common optimization variable andfi : Rp →
R is the local objective function of nodei. Such a problem formu-
lation appears in various applications, for example, wireless com-
munications and networking [1, 2], spectrum sensing of cognitive
radios [3,4], monitoring and optimization of smart grids [5,6], dis-
tributed control of networked robots [7,8,9], to name a few.

In a decentralized algorithm that solves (1), every node holds
its local objective function, exchanges current iterate with a subset
of neighbors, carries on local computation, and eventually reaches
an optimal solution that is consensual to all the nodes. In this op-
timization process, communication cost is one of the key consider-

ations of implementation. Reducing the amount of information ex-
change among the nodes alleviates bandwidth burden, improves sys-
tem robustness, and enables fast information processing and decision
making. In this paper, we propose a weighted alternating direction
method of multipliers (ADMM) to solve (1), aiming at reducing the
communication cost.

1.1. Related Works

Decentralized optimization algorithms that solve (1) include gradi-
ent/subgradient methods [10,11] and their accelerated versions [12],
diffusion methods [13,14], dual averaging methods [15,16], Newton
methods [17, 18], and ADMM [1, 2, 19]. Among these algorithms,
the decentralized ADMM has shown fast convergence in both prac-
tice and theory. When (1) is a convex program, ADMM converges to
the optimal solution at a sublinear rate ofO(1/k) with k being the
number of iterations [2]. Its linear rate ofO(τk), whereτ ∈ (0, 1)
is a topology-dependent constant, is established in [20] given that
the local objective functions are strongly convex. ADMM is also
able to utilize the special composite structures or introduce surro-
gates of the local objective functions so as to significantly simplify
the computation, while still keep its favorable convergence proper-
ties [21,22,23,24].

Not surprisingly, convergence speed of the conventional decen-
tralized ADMM is determined by condition numbers of the local
objective functions, spectral properties of the underlying topology
and stepsize of the dual gradient ascent step [20]. However, the
conventional ADMM is unable to achieve the best communication
efficiency due to two reasons. First, there is only one parameter, the
ADMM stepsize, which can be tuned to maximize the convergence
speed and consequently minimize the required number of iterations.
Second, at every iteration, every node has to exchange its current
iterate with all of its neighbors, which leads to a large amount of
information exchange per iteration.

1.2. Our Contributions and Paper Organization

This paper proposes a weighted ADMM to solve the decentralized
optimization problem (1) and address the two disadvantages of the
conventional ADMM as discussed above. Intuitively, one can assign
different weights to different nodes and arcs. Tuning the weights
gives more flexibility to maximize the convergence speed than in the
conventional ADMM. Furthermore, by setting some weights of arcs
as zeros, we are able to avoid information exchange over a subset of
arcs and hence reduce the communication cost per iteration.

Section2 develops the weighted ADMM following this intu-
itive idea. Section3 proves convergence and establishes linear rate
of convergence for the weighted ADMM. We provide explicit ex-
pression of how the convergence speed is determined by the weight
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Algorithm 1 Weighted ADMM run by nodei

Require: Initialize local iterates tox0
i = 0 andλ0

i = 0.
1: for timesk = 0, 1, . . . do
2: Compute local iteratexk+1

i from

xk+1
i = arg min

xi

fi(xi) + 〈xi, λ
k
i − diix

k
i +

n∑
j=1

aijx
k
j 〉+ dii‖xi‖2.

3: Transmitxk+1
i and receivexk+1

j from j ∈ Ci ⊆ Ni.

4: Update local Lagrange multiplierλk+1
i as

λk+1
i = λk

i + diix
k+1
i −

n∑
j=1

aijx
k+1
j .

5: end for

matrices, which enables optimal design of the latter. Section4 gives
two optimal design strategies. The first one simply maximizes the
convergence speed, while the second one confines the number of
communication arcs for the sake of reducing the amount of informa-
tion exchange at every iteration. Numerical experiments in Section
5 demonstrate advantages of the weighted ADMM over its conven-
tional counterpart in reducing the communication cost. Proofs of
theorems, detailed discussions and extra numerical experiments are
placed in a longer version of this paper [25].

2. ALGORITHM DEVELOPMENT

2.1. Problem Statement

Network model.Consider a bidirectionally connected network con-
sisting ofn nodes andt edges. Describe the network as a symmetric
directed graphG = {V, E}, whereV is the set of nodes with car-
dinality |V| = n andE is the set of arcs with cardinality|E| = 2t.
Nodesi andj are neighbors of each other if(i, j) ∈ E and, by the
symmetry of the network,(j, i) ∈ E . The set of nodei’s neighbors
is denoted asNi, whose cardinality|Ni| is the degree of nodei.

Communication model.At every iteration, every nodei commu-
nicates with a set of other nodesCi, sending and receiving current
local iterates. The communication is assumed to be synchronized.
Furthermore, in order to guarantee that the algorithm is decentral-
ized, every node is only allowed to communicate with those nodes
in its neighbor set; namely, for every nodei we must haveCi ⊆ Ni.
Suppose that upon sending a message, every nodei broadcasts once
to all the nodes inCi and at every iteration. If every node encodes its
local iterate withp bits, then the cost of sending ispn and the cost
of receiving isp

∑n
i=1 |Ci| per iteration.

2.2. Weighted ADMM

In the weighted ADMM, every nodei maintains a local variablexi ∈
Rp, which is a copy of the optimization variablex in (1). Nodei also
keeps a local variableλi ∈ Rp, which plays the role of Lagrange
multiplier as we will explain in Subsection2.3. Bothxi andλi are
updated using information collected from the nodes inCi. However,
only xi is transmitted to the nodes inCi; λi is kept private.

Collect all local variablesxi andλi in two matrices

X , [xT
1 ; · · · ; xT

n ] ∈ Rn×p, Λ , [λT
1 ; · · · ; λT

n ] ∈ Rn×p.

Define an aggregate objective functionf(X) =
∑n

i=1 fi(xi). The
matrix form of the weighted ADMM update is given by

Xk+1 = arg min
X

f(X) + 〈X, Λk − (D + A)Xk〉+ 〈X, DX, 〉,
Λk+1 = Λk + (D −A)Xk+1. (2)

In (2), D ∈ Dn×n is a diagonal matrix and its(i, i)-th element is
positive and denoted bydii; A ∈ An×n is a symmetric matrix sat-
isfying that its(i, j)-th elementaij = 0 if nodesi andj are neither
neighbors nor the same. Given a matrixA, defineCi = {j|aij 6=
0, i 6= j}, which guaranteesCi ⊆ Ni.

Splitting the computation in the matrix form (2) to individual
nodes, the update of nodei is given by

xk+1
i = arg min

xi

fi(xi) + 〈xi, λ
k
i − diix

k
i −

n∑
j=1

aijx
k
j 〉+ dii‖xi‖2,

λk+1
i = λk

i + diix
k+1
i −

n∑
j=1

aijx
k+1
j . (3)

The algorithm can be implemented in a decentralized manner.
In the update ofxk+1

i , node i needs to calculate the summation∑n
j=1 aijx

k
j , which only requires the previous iteratesxk

i andxk
j ,

j ∈ Ci, asaij = 0 if j 6= i andj /∈ Ci. The objective function
fi(xi) and the previous Lagrange multiplierλk

i are also locally
available. Similarly, in the update ofλk+1

i , agenti calculates the
weighted summation

∑n
j=1 aijx

k+1
j of the current local iterates;

this can be done through communication with its neighbors. The
weighted ADMM is outlined in Algorithm 1.

2.3. Connection of Weighted and Conventional ADMM

To see the connection between the proposed weighted ADMM and
the conventional one, observe that [20] gives the matrix form of the
conventional ADMM as

Xk+1 = arg min
X

f(X) + 〈X, Λk − cUXk〉+ 〈X, c
U + V

2
X〉,

Λk+1 = Λk + cV Xk+1. (4)

Therein,c is the ADMM stepsize;U and V are the signless and
signed Laplacian matrices of the network, respectively. Comparing
(2) and (4), we can find that the conventional ADMM is a special
case of the weighted ADMM through settingD = c(U + V )/2
andA = c(U − V )/2. Note that such choices ofD andA satisfy
the requirements of the weighted ADMM. In this case,D is the de-
gree matrix whose(i, i)-th elementdii denotes the degree of nodei,
while A is the incidence matrix whose(i, j)-th elementaij equals
to one if nodesi andj are connected and zero otherwise.

Extending the conventional ADMM to the weighted one is non-
trivial. First, in the conventional ADMM, updatingxi and λi in
nodei involves communication with all the neighborsj in Ni, be-
cause of the structures ofU and V . Therefore, the conventional
ADMM has a fixed communication cost of receivingp

∑n
i=1 |Ni|

per iteration given the network topology. Contrarily, the weighted
ADMM is able to reduce the communication cost of receiving by let-
ting every node communicate with less neighbors; this can be done
through wisely choosing the matrixA such that

∑n
i=1 |Ci| is less

than
∑n

i=1 |Ni|. Second, the conventional ADMM can optimize its
convergence speed through tuning the stepsizec, sinceU andV are
fixed given the network topology. Whereas, the weighted ADMM
has the flexibility of tuning two matrices,D andA. Consequently,
the weighted ADMM has the potential to achieve faster convergence
speed than its conventional counterpart.

3. CONVERGENCE AND LINEAR RATE

3.1. Assumptions

Unless otherwise stated, the convergence results in this section are
given under Assumptions from1 through4. Assumptions1 and2
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are basic, requiring that the underlying network to be connected and
the solution set not null, respectively.

Assumption 1 (Network connectivity). The network ofn nodes is
bidirectionally connected.
Assumption 2 (Solution existence).The solution set to(1), denoted
byX ∗, is nonempty.

Assumption3 supposes that the local objective functions are dif-
ferentiable and have Lipschitz continuous gradients. This assump-
tion is necessary to prove convergence of the weighted ADMM. To
further establish linear rate of convergence, we require the local ob-
jective functions to be strongly convex, as stated in Assumption4.

Assumption 3 (Lipschitz continuous gradient). The local objec-
tive functionsfi are proper closed convex, differentiable, and have
Lipschitz continuous gradients. There is a positive constantLf > 0
such that for any nodei and for any pair of pointsxa andxb it holds
‖∇fi(xa)−∇fi(xb)‖ ≤ Lf‖xa − xb‖.
Assumption 4 (Strong convexity). The local objective functions
fi are strongly convex. There is a positive constantµf > 0 such
that for any nodei and for any pair of pointsxa and xb it holds
〈xa − xb,∇fi(xa)−∇fi(xb)〉 ≥ µf‖xa − xb‖2.

3.2. Convergence Properties

In Theorem1, we shall show that the sequence{Xk} generated by
the weighted ADMM converges toX∗, one of the optimal solutions.
HereX∗ ,

[
(x∗1)

T ; · · · ; (x∗n)T
] ∈ Rn×p is consensual, that is,

x∗1 = · · · = x∗n and they are optimal to (1).

Theorem 1. Under Assumptions2and3and given that the weighted
matricesD ∈ D and A ∈ A are chosen such thatD + A º 0,
D − A º 0 and Null(D − A) = e wheree = [1; · · · ; 1] is an all-
one vector, the sequence{Xk} generated by the weighted ADMM
converges to an optimal solutionX∗.

Provided that the local objective functions not only have Lip-
schitz continuous gradients but also are strongly convex, Theorem
2 further establishes linear rate of convergence. In particular, we
obtain the convergence speed that is explicitly determined by the
condition numbers of the local objective functions and the spectral
properties of the weight matricesD andA.

Theorem 2. Under Assumptions2, 3 and 4 and given that the
weighted matricesD ∈ D and A ∈ A are chosen such that
D + A º 0, D − A º 0 and Null(D − A) = e, the sequence
{Xk} generated by the weighted ADMM converges at the linear
rateO

(
(1 + δ)−k

)
to the unique optimal solutionX∗. Specifically,

the convergence speedδ is any positive constant no larger than

min





σ̃min(D −A)

θσmax(D + A)
,

2µf

σmax(D + A) +
θLf

2

(θ−1)σ̃min(D−A)



 . (5)

Theorem2 shows that the weighted ADMM converges linearly
and its theoretically achievable speed is given by (5), which is de-
termined by the Lipschitz gradient and strong convexity constants of
the local objective functions (Lf andµf ) and the spectral properties
of the weight matricesD andA (σmax(D + A) andσ̃min(D−A)).
Suppose that the local objective functions are given a prior such that
Lf andµf are fixed. The theoretically achievable speed is monoton-
ically decreasing inσmax(D+A) while increasing iñσmin(D−A).
Hence, to accelerate the convergence speed and reduce the commu-
nication cost, we have the flexibility of tuning the weight matricesD
andA so as to minimizeσmax(D+A) and maximizẽσmin(D−A).
Note that tuning the elements inD andA changes the weights of
the individual nodes and arcs. This helps because in a given topol-
ogy some nodes and arcs may contribute more to the information

diffusion process while the others contribute less. Intuitively, we ex-
pect to identify those important nodes and arcs and give them higher
weights, which expedites propagation of “useful” information and
reduces exchange of “less useful” messages.

4. MINIMIZING COMMUNICATION COST

This section investigates how to minimize the communication cost
of the weighted ADMM through optimizing the spectral properties
of the weight matricesD andA. Observe that the diagonal elements
of D andA correspond to the nodes and the off-diagonal elements of
A correspond to the arcs. Ifaij andaji are both zero andi 6= j, then
nodesi andj have no information exchange even though there ex-
ists a communication link between nodesi andj. Therefore, given a
predefined network topology(V, E), we propose two different strate-
gies of tuningD andA. The first strategy allows everyaij to be
nonzero as long asi ∈ Nj (see Subsection4.1). The second strategy
lets someaij be zeros even thoughi ∈ Nj , which is equivalent to
selecting a subset of neighborsCj from Nj and hence reduces the
amount of information exchange per iteration (see Subsection4.2).

4.1. Maximizing Speed

According to the theoretical analyses in Section3, to maximize
the convergence speed of the weighted ADMM through tuning the
weight matricesD andA, the optimization model is

min
D,A

{σmax(D + A),−σ̃min(D −A)} , (6)

s.t. D ∈ D, A ∈ A, D + A º 0, D −A º 0, Null(D −A) = e.

However, the multi-objective optimization problem (6) is difficult to
solve. Therefore, we propose an alternative approach that confines
σmax(D + A) to be less than a positive constantρ while minimizes
−σ̃min(D −A). This way, we have a single-objective problem

min
D,A

− σ̃min(D −A), (7)

s.t. D ∈ D, A ∈ A, D + A º 0, D −A º 0, Null(D −A) = e,

σmax(D + A) ≤ ρ.

The optimization problem (6) is convex since the objective function
and the set of constraints are both convex [26]. We solve (6) with
CVX, a popular optimization toolbox [27].

4.2. Maximizing Speed Using Limited Communication Arcs

The overall communication cost of the weighted ADMM is deter-
mined by the product of the number of iterations and the communi-
cation cost per iteration. On a fixed topology, utilizing all the avail-
able communication arcs shall definitely achieve the fastest conver-
gence speed, and hence reduce the number of iterations to reach a
given accuracy. However, this strategy brings high communication
cost per iteration. Indeed, some communication arcs are less impor-
tant than the others and can be disconnected to reduce the amount
of information exchange iteration-wise, as pointed out in Section
3. Therefore, in this subsection we propose an alternative strategy
that maximizes the convergence speed under the constraint of lim-
ited communication arcs.

Observe that the number of communication arcs required in the
weighted ADMM equals to the number of nonzero off-diagonal el-
ements inA. Denote OffDiag(A) as a matrix whose off-diagonal
elements are identical to those ofA and diagonal elements are zeros.
Also denote the pseudò0 norm ‖OffDiag(A)‖0 as the number of
nonzero elements of OffDiag(A). Suppose that we expect to use at
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Fig. 1. A graph with two clusters of nodes.
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Fig. 2. Communication costs on the graph with two clusters.

most2s arcs (namely, at mosts edges due to the symmetry ofA),
the optimization ofD andA turns to

min
(D,A)∈Ω

− σ̃min(D −A), (8)

s.t. ‖OffDiag(A)‖0 ≤ 2s,

whereΩ is the feasible set of (7). The new formulation (8) is non-
convex. We to utilize ADMM to find a suboptimal solution of (8) be-
cause it has had successful applications in many optimization prob-
lems with`0 norm constraints [28,29]. Observe that here ADMM is
used to split the nonconvex constraint and the rest convex part, while
in decentralized optimization ADMM is used to split the computa-
tion of the nodes. The algorithm to solve (8) is given in [25].

5. NUMERICAL EXPERIMENTS

This section compares the weighted and conventional ADMMs.
We first show that through maximizing the convergence speed, the
weighted ADMM achieves better communication efficiency than the
conventional one on some graphs. The saving on the communication
cost by the weighted ADMM becomes more significant when we
maximize the convergence speed under the constraint of communi-
cation arcs. In the conventional ADMM, we hand-tune its stepsize to
the optimal value. We let every nodei has a local objective function
fi(x) = (1/2)‖yi −Mix‖2, whereMi ∈ Rm×p andyi ∈ Rm for
everyi and their elements are generated following the standard nor-
mal distribution. In the numerical experiments, letn = 50 (number
of the nodes),p = 3 (length ofxi), m = 3 (length ofyi), andρ = 1
(scale ofσ̃min(D − A)). Quality of the local iterates at timek is
evaluated by accuracy, which is defined asmaxi ‖xk

i − x∗‖.
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Fig. 3. The subgraph optimized by the weighted ADMM.
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Fig. 4. Communication costs of the weighted ADMM on the opti-
mized subgraph and the conventional one on the complete graph.

In the first experiment, we only maximize the convergence speed
of the weighted ADMM. Interestingly, the conventional ADMM per-
forms almost the same as the weighted one on most graphs, such as
line, circle, star, complete, and random. But we observe that if the
graph has several clusters of nodes (see Fig.1 for an example of two
clusters), then the weighted ADMM outperforms its conventional
counterpart (see Fig.2). This is reasonable because in the conven-
tional ADMM, the cluster heads do not distinguish the neighboring
ordinary nodes and the neighboring cluster heads. Through optimiz-
ing the weight matrices, the weighted ADMM properly emphasizes
the importance of the cluster heads to their neighboring peers, and
hence achieves better communication efficiency.

In the second experiment, we let the conventional ADMM run
on a complete graph, but limit the number of communication arcs for
the weighted ADMM. Optimally picking150 arcs (s = 75 in (8))
out of2450 possible ones, the resulting subgraph is given by Fig.3.
The communication costs of the two algorithms, in terms of sending
and receiving, are demonstrated in Fig.4. The conventional ADMM
works on the complete graph so that its convergence is very fast,
and consequently, the communication cost of sending is low. How-
ever, at every iteration every node must receive messages from all
the other nodes, which is unaffordable in practice. As a comparison,
the weighted ADMM provides a favorable tradeoff between the con-
vergence speed and the communication cost per iteration. A notice-
able byproduct of the weighted ADMM is that the selected subgraph
is naturally load-balanced though we do not explicitly consider this
metric in (8). Most of the nodes have3 neighbors and some have2
or 4, which is beneficial to the robustness of the network. We shall
investigate this phenomenon in our future research.

4824



6. REFERENCES

[1] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc
WSNs with noisy links - Part I: Distributed estimation of de-
terministic signals,” IEEE Transactions on Signal Processing,
vol. 56, pp. 350–364, 2008

[2] G. Giannakis, Q. Ling, G. Mateos, I. Schizas, and H. Zhu,
“Decentralized learning for wireless communications and net-
working,” Preprint athttp://arxiv.org/pdf/1503.
08855v1.pdf

[3] F. Zeng, C. Li, and Z. Tian, “Distributed compressive spec-
trum sensing in cooperative multi-hop wideband cognitive net-
works,” IEEE Journal of Selected Topics on Signal Processing,
vol. 5, pp. 37–48, 2011

[4] J. Meng, W. Yin, H. Li, E. Hossain, and Z. Han, “Collabo-
rative spectrum sensing from sparse observations in cognitive
radio networks,” IEEE Journal of Selected Areas on Commu-
nications, vol. 29, pp. 327–337, 2011

[5] G. Giannakis, N. Gatsis, V. Kekatos, S. Kim, H. Zhu, and
B. Wollenberg, “Monitoring and optimization for power sys-
tems: A signal processing perspective,” IEEE Signal Process-
ing Magazine, vol. 30, pp. 107–128, 2013

[6] X. Li and A. Scaglione, “Robust decentralized state estima-
tion and tracking for power systems via network gossiping,”
IEEE Journal on Selected Areas in Communications, vol. 31,
pp. 1184–1194, 2013

[7] F. Bullo, J. Cortes, and S. Martinez,Distributed Control of
Robotic Networks, Princeton University Press, 2009

[8] K. Zhou and S. Roumeliotis, “Multirobot active target track-
ing with combinations of relative observations,” IEEE Trans-
actions on Robotics, vol. 27, pp. 678–695, 2010

[9] Q. Ling and A. Ribeiro, “Decentralized dynamic optimization
through the alternating direction method of multipliers,” IEEE
Transactions on Signal Processing, vol. 62, pp. 1185–1197,
2014

[10] A. Nedic and A. Ozdaglar, “Distributed subgradient methods
for multiagent optimization,” IEEE Transactions on Automatic
Control, vol. 54, pp. 48–61, 2009

[11] K. Yuan, Q. Ling, and W. Yin, “On the convergence of de-
centralized gradient descent,” Preprint athttp://arxiv.
org/pdf/1310.7063v3.pdf

[12] D. Jakovetic, J. Xavier, and J. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59,
pp. 1131–1146, 2014

[13] A. Sayed, “Adaptation, learning, and optimization over net-
works,” Foundations and Trends in Machine Learning, vol. 7,
pp. 311–801, 2014

[14] S. Tu and A. Sayed, “Distributed decision-making over adap-
tive networks,” IEEE Transactions on Signal Processing, vol.
62, pp. 1054–1069, 2014

[15] J. Duchi, A. Agarwal, and M. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network
scaling,” IEEE Transactions on Automatic Control, vol. 57, pp.
592–606, 2012

[16] K. Tsianos and M. Rabbat, “Distributed dual averaging for
convex optimization under communication delays,” In: Pro-
cedings of ACC, 2012

[17] A. Mokhtari, Q. Ling, and A. Ribeiro, “An approximate New-
ton method for distributed optimization,” In: Proceedings of
ICASSP, 2015

[18] A. Mokhtari, W. Shi, Q. Ling, and A. Ribeiro, “DQM: De-
centralized quadratically approximated alternating direction

method of multipliers,” Preprint athttp://arxiv.org/
pdf/1508.02073v1.pdf

[19] D. Bertsekas and J. Tsitsiklis,Parallel and Distributed Compu-
tation: Numerical Methods, Second Edition, Athena Scientific,
1997

[20] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear
convergence of the ADMM in decentralized consensus opti-
mization,” IEEE Transactions on Signal Processing, vol. 62,
pp. 1750–1761, 2014

[21] G. Mateos, J. Bazerque, and G. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing,
vol. 58, pp. 5262–5276, 2010

[22] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized
linearized alternating direction method of multipliers,” IEEE
Transactions on Signal Processing, vol. 63, pp. 4051–4064,
2015

[23] T. Chang, M. Hong, and X. Wang, “Multi-agent distributed op-
timization via inexact consensus ADMM,” IEEE Transactions
on Signal Processing, vol. 63, pp. 482–497, 2015

[24] P. Bianchi, W. Hachem, and F. Iutzeler, “A stochastic coordi-
nate descent primal-dual algorithm and applications to large-
scale composite optimization,” Preprint athttp://arxiv.
org/pdf/1407.0898v2.pdf

[25] Q. Ling, Y. Liu, W. Shi, and Z. Tian, “Communication-efficient
weighted ADMM for decentralized network optimization,”
Preprint athttp://home.ustc.edu.cn/˜qingling/
pdf/WADMM.pdf

[26] S. Boyd and L. Vandenberghe,Convex Optimization, Cam-
bridge University Press, 2004

[27] M. Grant and S. Boyd,CVX: Matlab Software for Disciplined
Convex Programming, Version 2.0 Beta,http://cvxr.
com/cvx , 2013

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine Learning, vol. 3, pp. 1–122, 2010

[29] G. Li and T. Pong, “Global convergence of splitting methods
for nonconvex composite optimization,” Preprint athttp://
arxiv.org/pdf/1407.0753v5.pdf

4825


