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ABSTRACT

Learning from Demonstrations (LfD) has proven to be a pow-

erful concept for solving optimal control problems in high-

dimensional state spaces where demonstrations can be used

to facilitate the search for efficient control policies. However,

many existing LfD approaches suffer from either theoreti-

cal, practical, or computational drawbacks such as the need

to learn a latent reward model, to monitor the expert’s con-

trols, or to repeatedly solve potentially demanding planning

problems. In this work, we consider the LfD objective from

a system identification perspective and propose a probabilis-

tic policy recognition framework based on expectation maxi-

mization that operates directly on the observed expert trajec-

tories, avoiding the aforementioned problems. Using a spatial

prior over policies, we are able to make accurate predictions

in regions of the state space that are scarcely explored.

Index Terms— learning from demonstrations, imitation

learning, expectation maximization, system identification,

Markov random fields

1. INTRODUCTION

Dealing with complex or interacting systems whose (joint)

state space is large remains a challenge. For such systems,

the exploration of the state space typically becomes prob-

lematic and off-the-shelf methods often fail at finding con-

trol policies that efficiently exploit the system dynamics, or

involve the risk of letting the system run into undesired or

unsafe states [1]. Yet, in many daily situations, we regularly

observe specialized behavior that is highly optimized and fo-

cused to accomplish complex tasks. In such cases, Learning

from Demonstrations (LfD) [2, 3] offers a promising alterna-

tive to classical reinforcement learning approaches.

While in principle all LfD approaches pursue the same

goal, that is, building models of behavior based on demonstra-

tions, many different ideas and concepts have been proposed

to tackle the problem in the past, some of them formulated

as trajectory matching problems [4, 5], others as inverse rein-

forcement learning problems [6, 7, 8] or supervised learning

problems [9, 10, 11]. Many of these methods, however, suffer

from either theoretical, practical, or computational drawbacks

such as the need to learn the latent reward structure of the sys-

tem [12], to monitor the expert’s controls [2], or to repeatedly

solve potentially demanding planning problems [7]. As we

believe that LfD is a key concept to system identification, we

aim at developing methods that overcome these limitations

and that are able to learn by pure observation.

In this work, we specifically consider the problem of pol-

icy recognition, that is, estimating a system’s policy from ob-

served trajectory data. To this end, we frame the LfD objec-

tive as a probabilistic inference problem which we address

using an expectation maximization framework. A similar ap-

proach has already been taken in [13], yet with a different in-

tention. Here, the authors assume that the environment can be

explored actively by the observer and use the gathered knowl-

edge about the expert behavior to guide the exploration of the

state space. In this paper, we not only provide a more general

formulation of the inference problem than the one proposed

in [13], accounting for the uncertainty inherent in the trajec-

tory data, but also drop the assumption of having the possi-

bility to interact with the environment, and therefore focus on

the harder problem of learning solely from the available tra-

jectory data. Along these lines, we argue (underpinned by our

empirical results) that optimal policies tend to have intrinsic

structures that stem from regularities of the underlying system

dynamics. By implicitly encoding these structures into our

model, we are able to accurately recover the system’s policy

even when there are only few observations available and parts

of the state space are not visited by the expert.

2. METHODOLOGY

Suppose we are given a dynamic system in the form of a

Markov decision process (MDP) [14] of which we can ob-

serve a noisy system trajectory of length T .1 The state and

the action space of the system shall be denoted by S and A,

respectively, both having finite numbers of elements |S| and

|A|. Our goal is to find an estimate of the system’s policy π

that can explain the observed expert behavior reasonably well.

In particular, we focus on Markovian deterministic policies,

π : S → A, as we assume the expert follows an optimal

deterministic control strategy (which is guaranteed to exist

1It is straightforward to extend our arguments to multiple trajectories as

they can be treated conditionally independent given the system parameters.
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[15]). Accordingly, we can express the policy as a collec-

tion of action assignments, π = (π1, . . . , π|S|) ∈ A|S|, and

may write the joint distribution over the true state sequence

s = (s1, . . . , sT ) and observations y = (y1, . . . , yT ) as

p(s, y | π) = p(s1)

T−1
∏

t=1

p(st+1 | st, πst)

T
∏

t=1

p(yt | st). (1)

Although it is generally possible to extend our reasoning

about the system parameters beyond the policy (see e.g. [13]),

we assume that both the transition model p(st+1 | st, at) and

the observation model p(yt | st) are known. The reason is

that, in a real scenario, we often have a very precise idea

about the physical capabilities of a system, allowing us to

judge which state transitions are feasible and which are not.2

In the same way, we are typically aware of the physical lim-

itations of our measurement devices that provide us with

trajectory data. However, a similar argument does not hold

for the policy since, in general, policies can differ drasti-

cally depending on the particular task being performed by the

agent (thinking of everyday human behavior, for example).

Nevertheless, we will shortly see that many optimal policies

follow a common pattern and that it is possible to capture

their structure in our model.

2.1. Maximum likelihood estimation

One straightforward approach to solve the policy recognition

problem is via maximum likelihood (ML) estimation from the

trajectory data, i.e.

πML = argmax
π

p(y | π),

which can be performed using the expectation maximization

algorithm [16]. For this purpose, we first compute the condi-

tional expectation of the log of the joint density in Eq. (1) for

an initial guess π′ of the policy (E-step), i.e.

QML(π, π′) =
∑

s∈ST

p(s | y, π′) log p(s, y | π)

c
=

T−1
∑

t=1

∑

st+1∈S

∑

st∈S

p(st+1, st | y, π
′) log p(st+1 | st, πst).

Herein,
c
= indicates equality up to an additive constant. The

posterior distribution p(st+1, st | y, π′) can be efficiently

computed using the Baum-Welch algorithm [17]. Maximiz-

ing the above function w.r.t. π (M-step) is guaranteed to

monotonically increase the likelihood of the estimate such

2In fact, it could be the task of the inference algorithm to figure out which

of the hypothetical actions are actually played by the expert, yet we assume

the action space to be known. Also, as we do not need to solve the underlying

control problem (where errors in the transition model usually accumulate),

we can tolerate deviations from the true system dynamics as long as we can

generally discriminate between actions by observed one-step transitions.

that we converge to a local maximum of the likelihood func-

tion by iterating between both steps. Reordering the summa-

tions, we can highlight the individual contributions of each

parameter πi,

QML(π, π′) =

|S|
∑

i=1

QML
i (π, π′)

=

|S|
∑

i=1

T−1
∑

t=1

∑

st+1∈S

p(st+1, st = i | y, π′) log p(st+1 | st = i, πi).

In particular, we notice that the function decouples into dis-

tinct terms, QML
i (π, π′), i ∈ {1, . . . , |S|}, that can be op-

timized independently. Unfortunately, we can also see that

the maximum likelihood approach offers no means to rea-

son about the policy at states that are far from the given

trajectories. More precisely, if p(st = i | y) is zero (mean-

ing that state i is incompatible with the observed trajec-

tory data under the assumed observation model), then also

p(st+1, st = i | y, π′) is zero and so is the corresponding

value QML
i , irrespective of the particular assignment of πi. In

other words, the ML solution can not extrapolate to regions

of the states space where we have observed no data.

2.2. Maximum a posteriori estimation

While the ML approach can solve the policy recognition prob-

lem only partially, we shall now see that it is possible to make

accurate predictions if we account for certain properties of

the expert policy. In particular, we argue that in most realistic

scenarios optimal policies show pronounced correlation struc-

tures that can be exploited in order to enhance the prediction

quality. The reason for this can be explained as follows: as

actions, states and the transition model of a system are often

linked to physical processes (e.g. when controlling a robot),

they typically give rise to smooth dynamics in the sense that

(physically) similar actions will result in similar state tran-

sitions. This is true for most systems with continuous state

or action spaces where the smoothness is given naturally, but

also for discrete systems that approximate continuous ones or

that show certain regularities in their dynamics (see an ex-

ample in Section 3). Consequently, for such systems there is

a high chance that two nearby3 states are assigned the same

action under an optimal policy that is related to a certain task.

We can easily incorporate this property into our frame-

work by using an appropriate spatial prior model over poli-

cies, such as a Markov random field (MRF) [18, 19] (e.g. a

Potts model [20]), encoding the spatial smoothness, i.e.

p(π) ∝

|S|
∏

i=1

exp





β

2

∑

j∈Ni

Jπi,πj
δ(πi, πj)



 . (2)

3The term “nearby” should here be understood in the context of the par-

ticular problem at hand and the underlying system dynamics.
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(a) latent reward signal (b) true expert policy (c) ML estimate (d) MAP estimate (β = 2)

Fig. 1: Example result of the proposed algorithm. Both policy estimates are obtained from 200 expert trajectories, each

consisting of four state transitions. (a) Latent reward signal to the agent (green color indicates positive reward, red color stands

for negative reward). (b) True policy of the agent computed from the reward model in (a). (c) ML estimate of the policy based

on the observed expert trajectories. States for which there is no evidence are assigned random actions (corresponding to the

MAP solution under a uniform prior, i.e. β = 0). (d) MAP estimate resulting from the proposed Markov random field model.

Herein, δ stands for Kronecker’s delta and β ∈ [0,∞) is

called the inverse temperature, controlling the strength of the

prior. Jm,n denotes the (m,n)th element of the matrix J ,

quantifying the (physical) “similarity” between actions m and

n at neighboring states. More specifically, any two actions are

considered to be similar whenever their corresponding value

in J is large. As this relationship is undirected, J is a symmet-

ric matrix. The neighborhood Ni further determines the range

of the spatial influence of parameter πi on the remaining pa-

rameters, which are in the sequel denoted as π\i. In particular,

the neighborhood structure is symmetric, too, meaning that if

state i is a neighbor of state j, then also j is a neighbor of i.

Using the above prior model, we reformulate our goal and

accordingly aim for the maximum a posteriori (MAP) esti-

mate of the policy given the observed trajectory data, i.e.

πMAP = argmax
π

p(π | y)

= argmax
π

(

log p(y | π) + log p(π)
)

.

Here, the first term represents the likelihood of the observed

trajectory data and the second term corresponds to the MRF

prior. Again, the estimate can be obtained via the EM algo-

rithm by simply replacing the objective function in the E-step

with the following one [16],

QMAP(π, π′) = QML(π, π′) + log p(π). (3)

Unfortunately, the resulting M-step is generally infeasible un-

der the MRF prior as the function no longer decouples into

individual terms, requiring an optimization over an exponen-

tially large space [19]. However, we can still arrive at a local

maximum by applying the iterated conditional modes (ICM)

algorithm [21] which optimizes one variable at a time, giving

rise to a coordinate ascent type of procedure. In particular,

we can define a local optimization function QMAP
i for each

variable πi, whose value depends on the current assignment

of the remaining variables π\i via the neighborhood Ni,

QMAP
i (πi, π\i, π

′) = QML
i (π, π′) + log p(πi | π\i)

c
= QML

i (π, π′) + β
∑

j∈Ni

Jπi,πj
δ(πi, πj).

Notice that the scaling factor 1

2
in Eq. (2) has vanished here

due to the symmetry properties of Ni and J . Optimizing these

functions one after another w.r.t. their individual policy pa-

rameters πi will in turn increase the value of the target func-

tion in Eq. (3), allowing us to gradually refine our estimate.

3. SIMULATION RESULTS

To test our model, we adopt the traditional Gridworld prob-

lem [14], which mimics the motion of a robot through a

two-dimensional space (an example scenario is shown in

Fig. 1). Here, the state space consists of 20 × 20 distinct

states arranged on a grid. The transition model of the system

is defined as follows: an agent living in the Gridworld can

choose among four actions which correspond to the motions

up, left, down and right. Taking a certain action, the agent

will move in the corresponding direction with a probability of

60%. With a chance of 40%, however, it will randomly move

in the other three directions or not move at all. If the resulting

move makes the agent hit the boundary of the world, it will

stay at its current position. At any point in time we observe

the agent’s true location with a probability of 60%, and with

40% chance we mistakenly spot him at either of the neigh-

boring four states (with probability mass “lying outside” the

world being shifted to the true location of the agent).

In order to connect the model with a policy, each state

is assigned a reward with probability τ whose value is then
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Fig. 2: Spatial smoothness of the optimal policies in the Grid-

world scenario for different “densities” τ of the reward signal.

The graphs show the estimated probabilities that two adjacent

states are assigned the same action, actions resulting in per-

pendicular movements, or actions corresponding to opposite

directions. Plotted are the mean values and standard devia-

tions estimated from 1000 Monte Carlo runs.
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Fig. 3: Expected policy loss L(π, π̂) resulting from our policy

estimates for different prior strengths β of the MRF as a func-

tion of the number of observed trajectories. Each trajectory

consists of four state transitions. Plotted are the mean val-

ues and standard deviations estimated from 100 Monte Carlo

runs. The results for β = 1 and β = 2 are barely distinguish-

able, indicating a suitable range for β in this setting.

drawn from a standard normal distribution so that finally re-

wards are distributed randomly across the state space. In case

no state gets assigned any reward, the procedure is repeated.

The expert policy is then found as the solution to the optimal

control problem arising from the associated MDP. For our ex-

ample, we used the infinite-horizon discounted model [14]

with a discount factor of γ = 0.9. Having defined the model,

we can generate the required trajectory data by executing the

learned expert policy. In our example, the initial distribution

p(s1) is chosen as the uniform distribution on the state space.

As a first result we observe that, depending on the con-

stellation of rewards, an optimal policy for this setting is most

likely going to be highly structured (see Fig. 1b as an exam-

ple). This observation is perfectly in line with our reasoning

in the last section. In fact, we can observe that neighboring

states are assigned the same (or a similar) action with high

probability. This is particularly true if the reward signal is

sparse, but still holds in situations with dense rewards struc-

tures (see Fig. 2), justifying the use of the MRF prior as in-

troduced in Eq. (2). In order to demonstrate that already a

crude prior model can significantly improve the quality of the

estimate, we adopt a simple four-state neighborhood struc-

ture according to which any two states are neighbors if their

Manhattan distance on the grid is 1. Since we conduct the

simulations in a sparse reward regime of τ = 0.01, it is suf-

ficient to consider only correlations between identical actions

as they apparently capture most of the structure that is inher-

ent in the expert policies (see again Fig. 2). For this reason,

we choose the similarity matrix J as the identity matrix, ig-

noring all other dependencies across different actions.

The performance of both the ML and the MAP approach

are now compared in terms of the following policy loss

function,

L(π, π̂) =
1

|S|

|S|
∑

i=1

δ(πi, π̂i),

which measures the percentage of mismatch between the true

policy π and the estimated policy π̂. Fig. 3 shows the evolu-

tion of the expected policy loss over the amount of trajectory

data provided to the algorithm for different prior strengths β,

estimated from 100 Monte Carlo runs. Each of the trajectories

consists of four state transitions. We can see that the proposed

MRF approach clearly outperforms the ML solution with an

average reduction in loss of about 65% caused by the MRF

prior. Moreover, we notice a considerable improvement of

the prediction quality when only little data is available.

4. CONCLUSION

Based on an expectation maximization framework, we pre-

sented a probabilistic approach to the policy recognition prob-

lem which allows us to infer a system’s unknown policy from

observed expert behavior. We showed that one can easily im-

prove upon existing maximum likelihood approaches by ex-

ploiting the correlation structure of the expert policy using a

spatial prior model over policies, especially when only a small

amount of data is available. As our methodology is purely

based on observations, it is particularly suited for building

models of behavior in scenarios where there is no possibility

to interact with the target system, which often appear in cog-

nitive systems (e.g. cognitive radio [22, 23]), behavioral anal-

ysis and swarm dynamics. While the framework has proven

to be efficient for discrete state and action spaces, future re-

search will concentrate on extensions to continuous spaces

where only a vanishing subset of the states can be observed.
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