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ABSTRACT

We study stochastic linear optimization problem with bandit feed-
back. The set of arms take values in an N -dimensional space and
belongs to a bounded polyhedron described by finitely many linear
inequalities. We present an algorithm that has O(N log1+ε(T )) ex-
pected regret for any ε > 0 in T rounds. The algorithm alternates
between exploration and exploitation phases where it plays a deter-
ministic set of arms in the exploration phases and a greedily selected
arm in the exploitation phases. The regret bound of SEE compares
well to the lower bounds of Ω(N log T ) that can be derived by a
direct adaptation of Lai-Robbin’s lower bound proof [1]. Our key
insight is that for a polyhedron the optimal arm is robust to small per-
turbations in the reward function. Consequently, a greedily selected
arm is guaranteed to be optimal when the estimation error falls below
a suitable threshold. Our solution resolves a question posed by [2]
that left open the possibility of efficient algorithms with logarithmic
regret bounds. The simplicity of our approach allows us to derive
probability one bounds on the regret, in contrast to the weak conver-
gence results of other papers. This ensures that with probability one
only finitely many errors occur in the exploitation phase. Numerical
investigations show that while theoretical results are asymptotic the
performance of our algorithms compares favorably to state-of-the-art
algorithms in finite time as well.

1. INTRODUCTION

Stochastic bandits are sequential decision making problems where a
learner plays an action in each round and observes the correspond-
ing reward. The goal of the learner is to collect as much reward as
possible or, alternatively minimize regret over a period of T rounds.
Stochastic linear bandits are a class of structured bandit problems
where the rewards from different actions are correlated. In partic-
ular, the expected reward of each action or arm is expressed as an
inner product of a feature vector associated with the action and an
unknown parameter which is identical for all the arms. With this
structure, one can infer reward of arms that are not yet played from
the observed rewards of other arms. This allows for considering
cases where playing each arm is infeasible as there number could
be large or unbounded.

Stochastic linear bandits have found rich applications in many
fields including web advertisements [3], recommendation systems
[4], packet routing, revenue management, etc. In many applications
the set of actions are often defined by a finite set of constraints. For
example, in packet routing, the amount of traffic to be routed on a
link is constrained by its capacity. In web-advertisements problems,
the budget constraints determine the set of available advertisements.
It follows that the set of arms in these applications is a polyhedron.

The stochastic bandit setting has been extensively used in the
study channel allocation in cognitive radio networks. In [5] [6], the
authors study cognitive radio networks where a secondary user ac-
cesses the primary channels that are modeled as arms of a bandit
problems. The authors in [7] [8] extend the setting to the scenario
where there are multiple secondary users. Adversarial bandits (non-
stochastic) [9] bandit setting is applied in the study of conginitve ra-
dio networks where the secondary users can sense some channel for
activity while they transmit on some channels [10]. Linear stochastic
stochastic bandits have also been applied in the study cognitive net-
works where one can represent the correlation across the channels
through a graph [11]. In [12], the authors consider a combinatorial
setting where a user can select multiple channels simultaneously and
gets linear sum of weighted rewards from each channel.

Bandit algorithms are evaluated by comparing their cumulative
reward against the optimal achievable cumulative reward and the dif-
ference is referred to as regret. Typically, the machine learning lit-
erature distinguishes two types of characterization of the regret per-
formance: The minimax bounds, where the regret performance is
evaluated over the worst reward (probability) distributions, and the
problem dependent bounds, were the regret performance is evaluated
under a fixed (unknown) reward distribution. The focus of this pa-
per is one the later type of performance characterization. The linear
bandit problem [2, 13] deals with the case where the rewards of the
different arms are linear functions of an unknown parameter vector.
For linear bandits, minimax regret lower bounds are well studied
and stated in terms of dimension of the set of arms rather than its
size. The most commonly studied problem is that of linear bandits
over compact sets. For the case where the number of arms is infi-
nite or form a bounded subset of a N -dimensional space, a lower
bound of Ω(N

√
T ) is established in [2, 13] where T is the number

of rounds. The authors also develop algorithms that have matching
upper bounds on the cumulative regret. Several variants and special
cases of stochastic linear bandits are available depending on what
forms the set of arms. The classical stochastic multi-armed ban-
dits [14], [1] is a special case of linear bandits where the set of ac-
tions available in each round is the standard orthonormal basis. For
other variants we refer to the technical report [15].

The classical stochastic multi-armed bandits introduced by Rob-
bins [14] and later studied by Lai and Robbins [1] dealt with discrete
set of N bandits and established an asymptotic problem dependent
lower bound that is logarithmic in T . Linear bandits are an impor-
tant generalization of multi-armed bandits when the arms are cor-
related, so that information from one arm provides information on
other arms. In this paper we focus on linear bandits where the arms
take values in an N -dimensional space and belong to a bounded
polyhedron described by finitely many linear inequalities. We de-
rive an asymptotic lower bound of Ω(N log T ) for this problem and
present an algorithm that is (almost) asymptotically optimal. Our so-
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lution resolves a question posed by [2] that left open the possibility
of efficient algorithms with asymptotic logarithmic regret bounds.

Our algorithm SEE (Sequential Exploration and Exploitation)
alternates between exploration and exploitation phases, where a set
of arms on the boundary of the polyhedron are played in exploration
phases and a greedily selected arm is played super-exponentially
many times in the exploitation phases. The simplicity of our ap-
proach allows us to derive probability one bounds on the regret, in
contrast to the weak convergence results of other papers. This en-
sures that with probability one only finitely many errors occur in the
exploitation phase. The regret of upper confidence bound (UCB)
based algorithms concentrates only at a polynomial rate [16]. Thus,
our algorithms are more suitable for risk-averse decision making.
Numerical experiments show that its regret performance compares
well against state-of-the-art linear bandit algorithms even for reason-
ably small rounds while being significantly better asymptotically.
Related Work: Our regret bounds are related to those described
in [13], who present an algorithm (ConfidenceBall2) with regret
bounds that scale as O((N2/∆) log3 T ) with hight probability,
where ∆ is the reward gap defined over extremal points. This bound
is improved to O((log2 T + N log T + N2 log log T )/∆) in [17].
These algorithms belong to the class of so called OFU (Optimism
in the Face of Uncertainty) algorithms. Since OFU algorithms play
only extremal points (arms), one may think that log T regret bounds
can be attained for linear bandits by treating them as K-armed
bandits, were K denotes the number of extremal points of the set
of actions. This possibility arises from the classical results on the
K-armed bandit problem due to Lai and Robbins [1] who pro-
vided a complete characterization of expected regret by establishing
lower bound of Ω(K log T ) and then providing an asymptotically
(optimal) algorithm with a matching upper bound. But, as noted
in [2][Sec 4.1, Example 4.5], the number of extremal points can be
exponential in N , and this renders such adaptation of multi-armed
bandits algorithm inefficient. In the same paper, the authors pose it
as an open problem to develop efficient algorithms for linear bandits
over polyhedral set of arms that have logarithmic regret. They also
remark that since convex hull of a polyhedron is not strongly con-
vex, regret guarantees of their PEGE (Phased Exploration Greedy
Exploitation) algorithm does not hold.

Our work is close to FEL (Forced Exploration for Linear ban-
dits) algorithm developed in [18]. FEL separates the exploration and
exploitation phases by comparing the current round number against
a predetermined sequence. FEL plays randomly selected arms in the
exploration intervals and greedily selected arms in the exploitation
intervals. However, our policy differs from FEL as follows– 1) we al-
ways play fixed set of arms (deterministic) in the exploration phases.
2) noise is assumed to be bounded in [18], whereas we consider more
general sub-Gaussian noise model 3) unlike FEL, our policy does not
require computationally costly matrix inversions. FEL provides ex-
pected regret guarantee of onlyO(c log2 T ) whereas our policy SEE
has almost optimal O(N log1+ε T ) regret guarantee for any ε > 0.

The paper is organized as follows: In Section 2, we describe the
problem and setup notations. In Section 3, we derive a lower bound
on expected regret and describe our main algorithm SEE. Finally, we
numerically compare performance of our algorithm against sate-of-
the-art in 5.

2. PROBLEM FORMULATION

We consider a stochastic linear optimization problem with bandit
feedback over a set of arms defined by a polyhedron. Let C ⊂ RN

denote a bounded polyhedral given by

C =
{
x ∈ RN : Ax ≤ b

}
(1)

where A ∈ RM×N ,b ∈ RM . At each round t, selecting an arm
xt ∈ C results in reward rt(xt). We investigate the case where the
expected reward for each arm is a linear function regardless of the
history. I.e., for any history Ht, there is a parameter θ ∈ [−1, 1]N ,
fixed but unknown, such that

E[rt(x)|Ht] = θ′x for all t and x ∈ C.

Under these setting the noise sequence {νt}∞t=1, where νt =
rt(x) − x′θ forms a martingale difference sequence. Let Ft =
σ{ν1, ν2, · · · , νt,x1, · · · ,xt+1} denote the σ-algebra generated
by noise events and arms selections till time t. Then νt is Ft-
measurable and we assume that it satisfies

for all b ∈ R1 E[ebνt |Ft−1] ≤ exp{b2R2/2}, (2)

i.e., noise is conditionally R- sub-Gaussian which automatically im-
plies E[νt|Ft] = 0 and Var(νt) ≤ R2. We can think of R2 as the
conditional variance of noise. An example of R-sub-Gaussian noise
is N (0, R2), or any bounded distribution over an interval of length
2R and zero mean. In our work, R is fixed but unknown.

A policy φ := (φ1, φ2, · · · ) is a sequence of functions φt :
Ht−1 → C such that an arm is selected in round t based on the
history Ht−1. Define expected (pseudo) regret of policy φ over T -
rounds as:

RT (φ) = Tθ′x∗ − E

[
T∑
t=1

θ′φ(t)

]
(3)

where x∗ = arg maxx∈C θ
′x denotes the optimal arm in C, which

exists and is an extremal point1 of the polyhedron C [19]. The expec-
tation is over the random realization of the arm selections induced by
the noise process. The goal is to learn a policy that keeps the regret
as small as possible. We will be also interested in regret of the policy
defined as

RT (φ) = Tθ′x∗ −
T∑
t=1

θ′φ(t). (4)

For the above setting, we can use ConfidenceBall2 [13] or
UncertainityEllipsoid [2] and achieve optimal regret of order
N
√
T . For linear bandits over a set with finite number of extremal

points, one can also achieve regret that scales more gracefully,
growing logarithmically in time T , using algorithms for the stan-
dard multi-armed bandits. Indeed, from fundamentals of linear
programming

arg max
x∈C

θ′x = arg max
x∈E(C)

θ′x,

where E := E(C) denotes the set of extremal points of C. Since the
set of extremal points is finite for a polyhedron, we can use the stan-
dard Lai and Robbin’s algorithm [1] or UCB1 in [20] treating each
extremal point as an arm and obtain regret bound (problem depen-
dent) of order |E|

∆
log T , where ∆ := θ′x∗−maxE\x∗ θ

′x denotes
the gap between the best and the next best extremal point. However,
the leading term in these bounds can be exponential in N , rendering
these algorithm ineffective. For example, the number of extremal
points of C can be of the order

(
M+N
M

)
= O((2N)M ). Neverthe-

less, in analogy with the problem independent regret bounds in linear

1Extremal point of a set is a point that is not a proper convex combination
of points in the set.
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bandits, one wishes to derive problem dependent logarithmic regret
where the dependence on set of arms is only linear in its dimension.
Hence we seek an algorithm with regret of order N log T .

3. MAIN RESULTS

In the following, we first derive a lower bound on the expected regret
and develop an algorithm that is (almost) asymptotically optimal.

3.1. Lower Bound

We derive the lower bound for linear bandits on polyhedral sets fol-
lowing the steps in [15]after identifying an instance of polyhedron
and mapping the setting to the N -armed bandit problem. The de-
tailed proof is given in [15]. Without loss of generality, we restrict
our attention to uniformly good policies as defined in [1]. We say
that a policy φ is uniformly optimal if for all θ ∈ Θ, R(T, φ) =
o(Tα) for all α > 0.

Theorem 1 Let φ any uniformly good policy on a bounded polyhe-
dron with positive measure. For any θ ∈ [0, 1]N , let E[η(θk)] = θk
for all k and θ∗ = arg maxn θn. Then,

lim inf
T→∞

RT (φ)

log T
≥ (N − 1)∆

max
k:θk<θ

∗
KL(θ∗, θk)

(5)

where KL(θ∗, θk) denotes the Kullback-Leibler divergence be-
tween the distributions parametrized by θ∗ and θk.

3.2. Algorithm

The basic idea underlying our proposed technique is based on the
following observations for linear optimization over a polyhedron. 1)
The set of extremal points of polyhedron is finite and hence ∆ >
0. 2) When θ̂ is sufficiently close to θ, then over the set C both
arg maxθ′x and arg max θ̂

′
x give the same value. We exploit

these observations and propose a two stage technique, where we first
estimate θ based on a block of samples and then exploit it for much
longer block. This is repeated with increasing block lengths so that
at each point the regret is logarithmic.

For ease of exposition, we consider a polyhedron C which con-
tains the origin as an interior point. The method can be extended to
general case by using an interior point of the polyhedron as proxy
for the origin. The details are provided in the technical report [15].

Let en denote nth standard unit vector of dimension N . For
all 1 ≤ n ≤ N , let zn = max {z ≥ 0, zen ∈ C}. The subset
of arms B := {znen : n = 1, 2 · · · , N} are the vertices of the
largest simplex bounded in C. Since θn = θ′en we can estimate θn
by repeatedly playing the arm znen. One can also estimate θn by
playing an interior point zen ∈ C for some z > 0. But as will see
later selecting the maximum possible z improves the probability of
estimation error.

In our policy- which we refer as Sequential-Estimation-Exploitation
(SEE)- we split the time horizon into cycles and each cycle consists
of an exploration interval followed by an exploitation interval. We
index the cycles by c and denote the exploration and exploitation
intervals in cycle c as Ec and Rc, respectively. In the exploration
interval Ec, we play each arm in B repeatedly for (2c+ 1) times. At
the end of Ec, using the rewards observed for each arm in B in the
past c- cycles we compute ordinary least square (OLS) to estimate
each component θn, n = 1, 2, · · · , N separately and obtain the
estimate θ̂(c). Using θ̂(c) as a proxy for θ, we compute a greedy

Algorithm 1 SEE

1: Input: C: The polyhedron ε: Algorithm parameter
2: Initialization: Compute the set B
3: for c = 0, 1, 2, · · · do
4: Exploration:
5: for n = 1→ N do
6: for j = 1→ 2c+ 1 do
7: Play arm znen ∈ B, observe reward rtc,n,j
8: end for
9: Compute θ̂n(c)

10: end for
11: x(c)← arg max

x∈C
x′θ̂(c)

12: Exploitation:
13: for j = 1→ b2c

2/1+εc do
14: Play arm x(c), observe reward
15: end for
16: end for

arm x(c) by solving a linear program and play it repeatedly for
2c

2/(1+ε) times in the exploitation interval Rc, where ε > 0 in an
input parameter. We repeat the process for each cycle. A formal
description of SEE is given in figure 1. The estimation in line 9 is
computed for all n = 1, 2, · · · , N as follows:

θ̂n(c) =
1

(c+ 1)2

c∑
i=0

2i+1∑
j=1

rti,n,j/zn, (6)

Note that in the exploration intervals, SEE plays a fixed set of
arms and no adaption happens, adding positive regret in each cy-
cle. The regret incurred in the exploitation intervals starts reducing
as the estimation error gets small, and when it falls below ∆/2 the
step (line-11) selects the optimal arm and no regret is incurred in
the exploitation intervals (see Lemma 2 in [15] ). The probability
of selecting the optimal arm decays super-exponentially across the
cycles, and hence the probability of incurring positive regret in the
exploitation intervals also decays super-exponentially. The SEE pro-
vides the following guarantee on the expected regret.

Theorem 2 Let the noise be R-sub-Gaussian and without loss of
generality2 assume θ ∈ [−1, 1]N . Then, the expected regret of SEE,
with parameter ε > 0 is bounded as follows:

RT (SEE) ≤ 2RmN log1+ε T + 4RmNγ1, (7)

where Rm denotes the maximum reward. γ1 is a constant that de-
pends on noise parameter R and the sub-optimality gap ∆.

The ε parameter determines the length of the exploitation inter-
vals, and larger ε implies that SEE spends less time in exploitation
and more time in exploration. Increasing ε will make SEE spend
more time in explorations resulting in improved estimations and re-
duces the probability of playing sub-optimal arm in the exploitation
intervals. Hence parameter ε determines how fast the regret concen-
trates, and larger its value more ’risk-averse’ is the algorithm.

2For general θ, we replace it by θ
‖θ‖∞

and the same method works. Only

Rm is scaled by a constant factor.
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Fig. 1: Regret comparison against multi-armed bandits,
arms are corners of 10-dim. hypercube.
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Fig. 2: Regret comparison against linear bandit algo-
rithms on 10-dim. hypercube.

3.3. Regret of SEE.

We analyze the regret in the Exploration and Exploitation phases
separately as follows.
Exploration regret: At the end of cycle c, each arm in B is played∑c
i=1(2i + 1) = c2 times. The total expected regret from the ex-

ploration intervals after c cycles is at most Nc2Rm.
Exploitation regret: Total expected regret from the exploration in-
tervals after c cycle is

4NRm

c∑
i=1

2i
2/(1+ε)

2−i
2a∆2

= 4NRm

c∑
i=1

2i
2/(1+ε)−i2a∆2

≤ 4NRmγ2

where γ2 :=
∑∞
i=1 2i(i

(1−ε)/(1+ε)−c1i∆2/4) is a convergent series.

After c cycles, the total number of plays is T =
∑c
i=1 e

i
2

1+ε
+

Nc2 ≥ ec
2

1+ε and we get c2 ≤ log1+ε T . Finally, expected regret
form T -rounds is bounded as

RT (SEE) ≤ 2RmN log1+ε T + 4NRmγ2 = O(N log1+ε T ).

4. PROBABILITY 1 REGRET BOUNDS.

Recall the definiton of expected regret and regret in (3) and (4). In
this section we show that with probability 1, the regret of our algo-
rithms are within a constant factor from the their expected regret.

Theorem 3 With probability 1, RT (SEE) is O(N log1+ε T ).

Proof: Let Cn denote an event that we select sub-optimal arm
in the nth cycle. From Lemma 2 in [15], this event is bounded
as Pr{Cn} ≤ N exp{−O(n2)}. Hence

∑∞
n=1 Pr{Cn} <

∞. Now, from application of Borel-Cantelli lemma, we get
Pr{lim supn→∞ Cn} = 0, which implies that almost surely SEE
plays optimal arm in all but finitely many cycles. Hence the ex-
ploitation intervals contribute only a bounded regret. Since the
regret due to exploration intervals is deterministic, the regret of SEE
are within a constant factor from their expected regret with proba-
bility 1, i.e., Pr{∃ C1 such that RT (SEE) ≤ RT (SEE) + C1}.
This completes the claim.

We note that the regret bounds proved in [13] hold with high
confidence, where as ours hold with probability 1 and hence pro-
vides a stronger performance guarantee. This result is not only a
mathematical detail. It actually ensures that with probability 1, only
finitely many times we use the wrong arm in the exploitation phase.

5. EXPERIMENTS

In this section we investigate numerical performance of our algo-
rithms against the known algorithms. We run the algorithms on a
hypercube with dimension N = 10. We generated θ ∈ [0, 1]N ran-
domly and noise is zero mean Gaussian random variable with vari-
ance 1 in each round. The experiments are averaged over 10 runs. In
Fig. 1 we compare SEE (ε = 0.3) against UCB-Normal [21], where
we treated each extremal point as an arm of an 2N -armed bandit
problem. As expected, our algorithms perform much better. UCB-
Normal need to sample each of the 2N atleast once before it could
start learning the right arm. Whereas, our algorithm starts playing
the right arm after a few cycles of exploration intervals. In Fig.
2, we compare our algorithms against the linear bandits algorithm
LinUCB and self-normalization based algorithm in [22], which is
labeled SelfNormalized in the figure. For these we set confidence
parameter to 0.001. We see that SEE beats LinUCB by a huge mar-
gin, but its performance comes close to that of SelfNormalized al-
gorithm. Note that SelfNormalzed algorithm requires knowledge of
noise sub-Gaussianity parameterR. Whereas, our algorithms are ag-
nostic to this parameter. Also, note that in the early rounds the per-
formance of SEE is close to SelfNormalized algorithm. However,
for large T its peformance is improves compared to SelfNormalized
as can be noticed at the edge of the figure. In all the numerical plots,
we initialized the algorithm to run from cycle number 5.

6. CONCLUSION

We studied stochastic linear optimization over polyhedral set of arms
with bandit feedback. We provided asymptotic lower bound for any
policy and developed an algorithm that is near optimal. The regret
of the algorithm grows (near) logarithmically in T and its growth
rate is linear in the dimension of the polyhedron. We showed that
the regret upper bounds hold almost surely. The regret growth rate
of our algorithms is log1+ε T for some ε > 0. An interesting open
problem is to reduce the regret to N log T .
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