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ABSTRACT

This paper presents a unified, optimization-driven solution for
designing IIR and FIR notch filters with prescribed, possi-
bly varying notch levels in the given stop-bands, and near
unit magnitude frequency response at the pass-bands. Al-
though the original IIR notch filter optimization problem is
non-convex, we show that it can be well approximated by
a convex problem, by replacing a non-positive semi-definite
2× 2 Hermitian matrix with its nearest positive semi-definite
counterpart. With this approach, the IIR filter design can be
efficiently solved via Newton iteration. The same approach
can be directly applied to the FIR filter design since it is a
degenerated case of the IIR filter. Moreover, we show that
the FIR design problem is convex and therefore can be solved
optimally. Numerical examples are presented to verify the
effectiveness of the proposed design.

Index Terms— notch filter, IIR, FIR, convex optimiza-
tion, interior point method

1. INTRODUCTION

Digital notch filters have been widely used in signal pro-
cessing applications thanks to its capability of removing
single-frequency or narrowband interferences while ensuring
the wideband signal unchanged. Depending on the frequency
characteristics of the narrowband components, one can apply
either fixed [1, 2] or adaptive notch filters [3]. It has found
applications in many digital systems, such as power line [4],
image processing [5], and ultra-wideband communications
[6].

There are two types of notch filters: single-notch filters
that only eliminate one narrowband interference, and multi-
notch filters that simultaneously remove several narrowband
components at difference frequencies. A single-notch IIR
filter can be directly designed from a second-order trans-
fer function with bilinear transformation [7, 8]. The design
of multi-notch IIR filters is more complicated and the past
two decades have seen several methods being proposed. A
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straightforward approach to obtain a multi-notch filter is
to cascade several single-notch filters, each corresponding
to one notch frequency. This method leverages the known
results from single-notch filter design but suffers from short-
comings such as higher bandwidth and higher sensitivity to
coefficient distortion [8]. The second approach synthesizes
the notch filter H(z) by using an all-pass filter A(z) and their
relation H(z) = 1/2(1 + A(z)) [1, 2]. This method lever-
ages some symmetric property to obtain a computationally
efficient lattice realization with low sensitivity. However, it is
not analytically clear how well the resulting filter performs,
especially in comparison to the optimal filter under the same
constraint.

Majority of the aforementioned design methods are al-
gebraic in nature. With the rapid development of (convex)
optimization [9], it becomes not only theoretically possible
to design notch filters using the optimization tools, but also
practically feasible to implement such designs. A systematic
treatment of FIR filter design using convex optimization is
provided in [10], where the authors show that a variety of
magnitude FIR filter design can be converted to convex semi-
definite optimization problems, and hence the optimal solu-
tion can be efficiently computed. Applying convex optimiza-
tion theory to the design of multi-notch IIR filters first appears
in [2]. However, the usage of optimization is strictly limited
to finding the optimal pole placement using the denomina-
tor polynomial of the transfer function. A genetic algorithm
(GA) based approach to the IIR notch filter optimization was
proposed in [11]. But it is computationally complicated and
often suffers from slow convergence.

In this paper, we propose a unified design approach for
both IIR and FIR notch filters. We first formulate the IIR
notch filter design as such an optimization problem: given
that the prescribed notch levels on the stop-band(s) being
strictly met, optimize the magnitude of the frequency re-
sponse on the pass-band(s) to be as close to unit as possible.
It is shown that this optimization problem is non-convex and
hence difficult to solve. To address this issue, the original
problem is analyzed using the interior point method [9]. We
show that by modifying a non-positive semi-definite Hessian
matrix to be positive semidefinite, we can use the convex
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optimization method, i.e., the Newton iteration to efficiently
obtain a near optimum design of IIR notch filters. We also
show that the similar design of FIR notch filters results in
a convex problem, to which the optimum solution is guar-
anteed. Numerical examples are provided to validate the
proposed design.

The rest of the paper is organized as follows. IIR and
FIR filter design problems are treated in Section 2 and 3, re-
spectively. More specifically, the design problem of IIR notch
filter is presented in Section 2.1, and the proposed solution is
laid out in great detail in Section 2.2. Numerical examples are
presented in Section 4, and Section 5 concludes the paper.

2. IIR NOTCH FILTER DESIGN

2.1. Problem Formulation

The z-transform of an IIR filter is

H
(
z−1
)
=
P
(
z−1
)

Q (z−1)
=

∑M−1
i=0 xiz

−i

1 +
∑N
i=1 yiz

−i
, (1)

which consists of a feedforward filter (FFF) P
(
z−1
)

of order
M in the numerator and a feedbackward filter (FBF)Q

(
z−1
)

of orderN in the denominator. IfN = 0, the IIR filter degen-
erates to an FIR filter.

The goal of our work is to design an IIR filter which forms
nulls on any given stop-band S, while forcing the magnitude
of the frequency response to be as close to unit as possible
on the remaining pass-band P . To that end, we formulate the
following optimization problem

minimize
x∈CM ,y∈CN

∑
i∈P

(
log |f∗i x|2 − log |1 + g∗i y|2

)2
subject to |f∗i x|2

|1+g∗i y|2
≤ βi,∀i ∈ S

(2)

where x and y are the vectors whose entries are xi’s and yi’s
that appear in (1), βi < 1 represents the frequency mask at
the ith frequency point, fi ∈ CM consists of the first M en-
tries of the i-th column of the Fast Fourier Transform (FFT)
matrix F

.
=
{
exp

(
j 2klπL

)}
∈ CL×L, gi ∈ CN consists of

the second to the (N + 1)st entries of the i-th column of the
FFT matrix F, and ∗ denotes the conjugate transpose opera-
tion. Note that L defines the size of FFT used in the algo-
rithm design, which should be large enough to achieve a fine
spectrum granularity but not too large to incur unnecessary
computational complexity.

We can show that the optimization problem (2) is not con-
vex, and hence classic convex optimization technique cannot
be directly applied. However, a convex approximation to (2)
can be made by replacing a 2 × 2 Hermitian matrix whose
eigen-values are of different signs by its nearest 2×2 positive
semi-definite (p.s.d.) counterpart. Based on this technique,
a near optimal solution to (2) can be derived. Details of this
approach are provided in the following section.

2.2. Proposed Solution

We apply the interior point method to problem (2), for which
we consider the logarithmic barrier function:

ft(x,y) =
∑
i∈P

(
log |f∗i x|2 − log |1 + g∗i y|2

)2
− 1
t

∑
i∈S log

(
βi − |f∗i x|2

|1+g∗i y|2

)
.

(3)

The first order derivatives of the barrier function (3) can be
derived as:

∇xft =
∑
i∈P(log |f∗i x|2 − log |1 + g∗i y|2)2

4f∗i x
|f∗i x|2 fi

+ 1
t

∑
i∈S

2f∗i x
βi|1+g∗i y|2−|f∗i x|2 fi,

(4)
and

∇yft =
∑
i∈P(log |1 + g∗i y|2 − log |f∗i x|2)2

4(1+g∗i y)
|1+g∗i y|2

gi

− 1
t

∑
i∈S

2(1+g∗i y)
βi|1+g∗i y|2gi−|f∗i x|2 ·

|f∗i x|2
|1+g∗i y|2

gi.

(5)
We further write (4) and (5) in the following matrix form:

∇xft = Hqx (6)
∇yft = Gqy (7)

where both H and G are sub-matrices of the L-point FFT
matrix F, qx and qy are both length-L vectors with entries

qx,i =


(log |f∗i x|2 − log |1 + g∗i y|2)2

4f∗i x
|f∗i x|2 i ∈ P

1
t ·

2f∗i x
βi|1+g∗i y|2−|f∗i x|2 i ∈ S

0 otherwise,

and

qy,i =


(log |1 + g∗i y|2 − log |f∗i x|2)2

4(1+g∗i y)
|1+g∗i y|2

i ∈ P
− 1
t ·

2(1+g∗i y)
βi|1+g∗i y|2gi−|f∗i x|2 ·

|f∗i x|2
|1+g∗i y|2

i ∈ S
0 otherwise,

respectively. Note that both f∗i x and 1+ g∗i y can be obtained
by applying FFT on x and [1,yT ]T , respectively. Hence ∇x

and ∇y can be efficiently computed via FFT and IFFT oper-
ations.

The second order derivatives of the barrier function (3)
with respect to vector z .

= [xT ,yT ]T can be written as

∇2ft =

[
H
G

] [
D(a) D(c)
D∗(c) D(b)

] [
H
G

]∗
(8)

whereD(a) is a diagonal matrix whose diagonal elements are
vector a. Note that a, b and c are all length-L vector whose
entries are defined as

ai =


(2− log |f∗i x|2 + log |1 + g∗i y|2) 4

|f∗i x|2 i ∈ P
2
t ·

βi|1+g∗i y|
2+|f∗i x|2

(βi|1+g∗i y|2−|f∗i x|2)2 i ∈ S
0 otherwise
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bi =


(2 + log |f∗i x|2 − log |1 + g∗i y|2) 4

|1+g∗i y|2
i ∈ P

2
t ·

3βi|1+g∗i y|
2−|f∗i x|2

(βi|1+g∗i y|2−|f∗i x|2)2 ·
|f∗i x|2
|1+g∗i y|2

i ∈ S
0 otherwise

ci =


−8f∗i x(1+g∗i y)

∗

|f∗i x|2|1+g∗i y|2
i ∈ P

− 4
t ·

βif
∗
i x(1+g∗i y)

∗

(βi|1+g∗i y|2−|f∗i x|2)2 i ∈ S
0 otherwise

Upon further examination, the Hessian matrix ∇2ft de-
fined in (8) is not positive definite. This is because

aibi ≤ |ci|2,∀i ∈ P ∪ S

and the equality holds if |f∗i x| = |1 + g∗i y| for i ∈ P and
|f∗i x|2 = βi|1 + g∗i y|2 for i ∈ S. That is, the eigenvalues of
the 2× 2 matrix

T
.
=

(
ai ci
c∗i bi

)
, (9)

denoted as λ1, λ2, are of different signs: λ1 ≥ 0 ≥ λ2. We
thereby conclude that problem (2) is not convex.

We propose to approximate the 2× 2 matrix (9) by a pos-
itive semi-definite matrix of the same dimension:

T̃ = arg min
S∈C2×2:S�0

||S−T||2F .

Some arithmetic (details omitted due to lack of spaces) leads
to the optimal solution

T̃ = T− λ2
v∗v

vv∗,where v =

[
λ1 − a
−c∗

]
.

We then replace (8) by the p.s.d. matrix and have

∇̃2ft =

[
H
G

] [
D(ã) D(c̃)
D∗(c̃) D(b̃)

] [
H
G

]∗
. (10)

Now that since the Hessian matrix is modified to be positive
definite, we can apply Newton iteration to solve the barrier
function optimization problem (3), which in turn solves the
original problem (2).

To understand the rationale behind approximating T by
T̃, we note that the iterative minimization of (3) with respect
to z is done by minimizing the local quadratic approximation

z∗∇2ftz+ 2Re{∇∗ftz}. (11)

Since ∇2ft is not p.s.d., we replace (11) by

z∗∇̃2ftz+ 2Re{∇∗ftz}, (12)

which dominates (11) for any z. Thus, minimizing (12)
amounts to minimizing an upper bound, which guarantees
monotonous decrease of the original barrier function (3).

We summarize this section with the pseudo-code for the
proposed iterative design in Algorithm 1.

Algorithm 1: Proposed algorithm for IIR notch filter
design.

Initialize: x0 = [

√
mini∈S βi

2 , 0, · · · , 0]T ,y0 = 0;
t = 1, k = 1.

while t < |S|
ε AND k < Nmax do

Compute d = [∇xf
T
t ,∇yf

T
t ]
T by (6) and (7);

Compute the Hessian matrix ∇̃2f based on (10);
Solve unt = ∇̃2f−1d via conjugate gradient;
if u∗ntd > εnt then

Find the step size s by the backtracking
method;
xk+1 = xk − sunt(1 :M);
yk+1 = yk − sunt(M + 1 :M +N);
k = k + 1;

else
t = tµ;

end
end

3. FIR NOTCH FILTER DESIGN

For the case of FIR notch filter, we haveQ
(
z−1
)
= 1 and the

original optimization problem (2) is simplified to

minimize
x

∑
i∈P

(
log |f∗i x|2

)2
subject to |f∗i x|2 ≤ βi,∀i ∈ S

(13)

To verify the claim that (13) is a convex optimization
problem, we again analyze the logarithmic barrier function

ft(x)
.
=
∑
i∈P

(
log |f∗i x|2

)2 − 1

t

∑
i∈S

log
(
βi − |f∗i x|2

)
. (14)

The first order derivative of (14) is

∇x =
∑
i∈P

log |f∗i x|2 ·
4f∗i x

|f∗i x|2
fi +

1

t

∑
i∈S

2f∗i x

βi − |f∗i x|2
fi.

It can be written in a matrix form as

∇x = Gqx,

where qx is a length-L vector with entries

qi =


log |f∗i x|2 ·

4f∗i x
|f∗i x|2 i ∈ P

1
t ·

2f∗i x
βi−|f∗i x|2 i ∈ S

0 otherwise

The second order derivative is

∇2ft = GD(a)G∗
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where D(a) is an L×L diagonal matrix whose diagonal ele-
ments are

ai =


(2− log |f∗i x|2) 4

|f∗i x|2 i ∈ P
2
t ·

βi+|f∗i x|2
(βi−|f∗i x|2)2 i ∈ S

0 otherwise

It is straightforward to verify that the Hessian matrix ∇2ft is
positive definite. Hence the FIR notch filter design is a con-
vex problem and global optimum can be efficiently found via
classic convex optimization tools, e.g., interior point method.

We conclude the discussion of the algorithm by remark-
ing that there is no guarantee that the proposed approach will
converge to a minimum phase filter. Hence the conversion
to the minimum phase should be conducted as the final step
using, e.g., the spectrum factorization method [10].

4. NUMERICAL EXAMPLES

Due to the space limitation, we only present two examples of
IIR notch filter design to illustrate the effectiveness and supe-
riority of our proposed design. More comprehensive compar-
isons, including the computational complexity, are reported
in the journal version.

Example 1: We consider a design requirement which has
two notch frequencies {ω1, ω2} = {0.3π, 0.8π}, with the
corresponding 3dB bandwidth {dw1, dw2} = {0.2π, 0.1π}.
Since both the cascading method and the genetic algorithm
are based on the second-order all-pass filter, all algorithms in
the simulation design an IIR filter of orderM = N = 4. Note
that this requirement is purely for the purpose of a fair com-
parison as cascading and GA must use order 2 for each notch
[2, 11]. Fig. 1 shows the magnitude response of all three algo-
rithms. The mask requirement for our new algorithm is also
plotted for reference. It is clear that the new algorithm has
better roll-off characteristics around the required edge. Fur-
thermore, the magnitude in the pass-band moves around the
target value, while the other methods always achieve lower
magnitude. The variation of the magnitude in the pass-band
is also smaller for our algorithm.

Example 2: We further compare the algorithms for higher-
order multi-notch IIR filters with much lower notch levels.
Note that GA does not work in this case, as the extension to
M,N > 2 is non-trivial. The design requirements include
two notch frequencies {ω1, ω2} = {0.45π, 0.85π}. It is re-
quired that the stop-band attenuation be -40dB and -20dB for
both notches, respectively, and algorithms design an IIR fil-
ter of order M = N = 16. Fig. 2 gives the magnitude re-
sponse of both cascading and the new algorithm. Again, we
can observe that the new algorithm offers better performance
in terms of the sharp roll-off at the required edge, deep atten-
uation in the stop-band, and better pass-band response.
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Fig. 1. Multi-notch IIR filter comparison, with M=N=6.
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Fig. 2. Multi-notch IIR filter comparison, with M=N=16 and
varying notch levels.

5. CONCLUSION

In this paper, we develop a novel optimization-based ap-
proach to coherently address the IIR and FIR notch filter
design problem. The problem is formulated such that the
pre-determined notch level, be it single or multiple notch, can
be strictly guaranteed in the given stop-bands, while main-
taining near unit magnitude response at the pass-bands. The
technical difficulty arises from the non-convexity of the orig-
inal optimization problem, and an approximation using the
nearest 2 × 2 Hermitian matrix to replace the non-positive
semi-definite one is proved to yield near optimal performance
with low computational complexity. As a special case, the
FIR notch filter design is further shown to be convex and
hence renders optimal solution.
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