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ABSTRACT
Fast implementation of parameter estimation for polynomi-
al phase signal (PPS) is considered in this paper. A method
which combines the least squares unwrapping (LSU) estima-
tor and the extended Kalman filter (EKF) is proposed. A s-
mall number of initial samples are used to estimate the PPS’s
parameters and then these coarse estimates are used to ini-
tial the EKF. The proposed LSU-EKF estimator greatly re-
duces the computation complexity of the LSU estimator and
can work in entire identifiable region which inherits from the
LSU estimator. Meanwhile, in the EKF stage its output is in
point-by-point wise which is useful in real applications.

Index Terms— polynomial phase signal (PPS), param-
eter estimation, least squares unwrapping (LSU), extended
Kalman filter (EKF), identifiable region

1. INTRODUCTION

Polynomial phase signals are common in fields including
radar, sonar, geophysics, radio communication and biology
[1, 2, 3]. The estimation of the parameters of polynomial
phase signals has received considerable interest in recent
years and several methods have been proposed to solve the
problem. Among these methods, the maximum likelihood
estimator (MLE) [4, 5] is an effective approach, being both
computationally efficient and statistically accurate. However,
this method becomes extremely complex when the order of
PPSs is over 1.

In order to estimate the parameters of higher-order poly-
nomial phase signals, researchers have developed many more
efficient alternative methods based on ‘multilinear transform-
s’ or ‘phase unwrapping’. Examples of these multilinear
transform techniques include the cubic phase function (CPF)
[6], the higher-order ambiguity function (HAF) [7] and its
product version (PHAF) [8], which have good performance
with acceptable computation and can be adapted to process
multiple component signals. Their main limitation is the s-
mall identifiable region on which they can operate, owing to
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the error propagation. One alternative method is phase un-
wrapping, which utilizes the fact that the phase of a complex
sinusoid is a linear function that is wrapped modulo 2π. A
classical estimator based on phase unwrapping is the least
squares unwrapping estimator [9, 10]. A significant advan-
tage of this approach is that it works for polynomial phase
parameters contained anywhere inside the identifiable region.
The estimator also appears to perform well after thresholds at
low signal-to-noise ratio (SNR) are reached. The major draw-
back of the LSU estimator is that computing a nearest lattice
point is, in general, computationally difficult. Especially, the
algorithm becomes prohibitively expensive as the number of
samples is more than 1000 [9].

The parametric estimation for polynomial phase signals
affected by Gaussian noise by extended Kalman filtering has
been investigated in [11]. In this paper, we propose a PPS
parameter estimation method which combines the LSU and
the EKF. Firstly, the coarse estimates of the PPS’s parame-
ters are obtained by the LSU estimator which is performed
on a small number of samples. Then, these coarse estimates
are used to initial the EKF. The proposed method can work in
entire identifiable region which is inherent from the LSU es-
timator and the estimation is output in point-by-point wise in
the EKF stage. The numerical simulations show that the pro-
posed method operating at a low SNR threshold exhibits high
performance with small computation, and it is accurate over
a far wider range of parameters than many popular existing
estimators.

2. SIGNAL MODEL

A received polynomial phase signal can be written as

y(n) = Ae2πjθ(n) + w(n) (1)

where A is the amplitude of the signal and w(n) is a complex
additive white Gaussian noise (AWGN) with zero mean and
variance σ2. θ(n) is the deterministic polynomial phase of
order m, which is expressed by

θ(n) = u0 + u1n+ u2n
2 + · · ·+ umnm (2)

where the coefficients ui (i = 0, · · · ,m) are assumed to be
real and unknown, and their identifiable regions are written as
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− 1

2i!
≤ ui <

1

2i!
(i = 0, 1, 2, · · ·m). (3)

2.1. The State-Space Modelization

The discrete-time state vector Xk in the case of polynomial
phase signals is given by the phase and the derivatives of the
phase

Xk =
[
θ(k) θ(1)(k) θ(2)(k) · · · θ(m)(k)

]T
(4)

where θ(m)(k) denotes m order derivation.
The model of polynomial phase signals can be described

by a set of continuous-time differential equations cast in state-
space form as

dX(t)/dt = AX(t) +Lv(t) (5)

where the constant matrices Am+1,m+1 and Lm+1,m, which
characterize the behavior of the model, are written as
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and v(t) is a white-noise process. There is a process-noise
matrix Qc that is related to the process-noise vector v(t) ac-
cording to

Qc = E
[
v(t)vT (t)

]
. (7)

To be able to use the state (4), the model (5) must be dis-
cretized somehow [13], so that it can be described with a mod-
el of the form

Xk = FkXk−1 + vk−1 (8)

where Fk is the transition matrix of the dynamic model,
which is evaluated as

Fk = ϑ(T ) = eAT = I +AT + · · ·+ (AT )
n

n!
+ · · · (9)

where T is the step-size of the discretization. On the other
hand, vk−1 with variance Qk−1 is the discretized form of v(t)
and Qk−1 satisfies

Qk−1 =

∫ T

0

ϑ(τ)LQcL
TϑT (τ)d(τ). (10)

Therefore, the state-space modelization of polynomial
phase signals is linear.

2.2. The Observation Equations

For the signal (1) is complex, it is necessary to express the
measured signal as a 2 × 1 vector in terms of its real and
imaginary part

Yn =
[
Re(y(n)) Im(y(n))

]T
. (11)

In this sense, the observation equation takes the form

Yk = h(Xk) + ωk (12)

where the 2× 1 nonlinear function h(Xk) is written as

h(Xk) =

[
h1k

h2k

]
=

[
A cos(2πθ(k))

A sin(2πθ(k))

]
. (13)

The observation noise vector can be defined as ωk =
[wR(k), wI(k)]

T , whose correlation matrix Rk is given by

Rk =

 σ2
ω

2
0

0
σ2
ω

2

 . (14)

In this paper, we assume that the process-noise vk and the
observation noise ωk are not correlated, i.e.

cov
[
ωk,vj

]
= E

[
ωkv

T
j

]
= 0(k, j = 0, 1, 2, 3, · · · ). (15)

Consequently, the observation model of polynomial phase
signals is nonlinear.

3. THE EXTEND KALMAN FILTER ALGORITHM

As far as the observation is nonlinear, we use the extended
Kalman filter algorithm to estimate the parameters of polyno-
mial phase signals:

EKF Algorithm

Initial Conditions (k = 0):

X̂0 = E(X0)

P̂0 = E
[
(X0 − X̂0)(X0 − X̂0)

T
] (16)

Predict Equations:

X ′
k = FkX̂k−1

P ′
k = FkP̂k−1F

T
k +Qk−1

Y ′
k = HkX

′
k

Hk =
δh

δX

∣∣∣∣
X′

k

(17)

Update Equations:

Kk = P ′
kH

T
k ·
[
HkP

′
kH

T
k +Rk

]−1

X̂k = X ′
k +Kk [Yk − Y ′

k ]

P̂k = [I −KkHk]P
′
k

(18)

4787



The relationship between the parameters u = [u0, u1, · · · ,
um]T of polynomial phase signals and the initial state vector
X0 is described by

u = CX0 (19)

where the matrix C is derived as

C = diag

([
1 1

1

2!
· · · 1

m!

])
. (20)

Therefore, we can evaluate the parameters of polynomial
phase signals in the form

u = C ×

(
k∏

m=1

F−1
m

)
× X̂k. (21)

The extended Kalman filter extends the scope of Kalman
filter to nonlinear optimal filtering problems by forming a
Gaussian approximation to the joint distribution of state X
and measurements Y using a Taylor series based transforma-
tion. In this sense, the extended Kalman filter is sensitive to
the initial conditions and if the filter is improperly initialized,
the filtering may be failed. In this paper, in order to make
the filter work effectively, we utilize the estimates of the least
squares unwrapping estimator to initialize the EKF. Account-
ing for the computation load of the LSU estimator, only a few
samples are used to obtain the initial estimates.

4. THE LEAST SQUARES UNWRAPPING (LSU)
ESTIMATOR

The LSU estimator can estimate the parameters u = [u0, u1,
· · · , um]T from the phase of the observations y(1), y(2), ...,
y(n). The phase θn of polynomial phase signals is written as

θn = ̸ y(n)/2π = ϕn + θ(n)(mod2π) (22)

where ̸ denotes the angle of a complex number, and ϕn

are random variables representing the phase noise induced by
w(n) and can be calculated as

ϕn= ̸

(
1 +

w(n)

Ae2πjθ(n)

)/
2π (23)

where ϕn is known as the projected normal distribution [14],
if w(n) is complex Gaussian noise.

According to the fundamental of the least square method,
the parameters u0, u1, ..., um can be evaluated by

SS(u) = argmin

(∑N

n=1

(
θn −

∑m

k=0
ukn

k
)2)

. (24)

Due to the problem of the phase ambiguity in ̸ y(n), we
may define⟨

θn −
∑m

k=0
ukn

k
⟩
= θn −

∑m

k=0
ukn

k − ⌊φn⌋ (25)

where ⌊x⌋ denotes the nearest integer to x. By considering
⌊φn⌋=

⌊
θn −

∑m
k=0 ukn

k
⌋

as nuisance parameters, (24) can
be rewritten as

SS(u) = argmin

(∑N

n=1

⟨
θn −

∑m

k=0
ukn

k
⟩2

)
(26)

where N represents the number of samples.
The LSU estimator is the minimum of SS(u) over the

identifiable region of PPSs, which can be represented as a
nearest lattice point problem [15]. When the number of sam-
ples is less than 60, the sphere decoder [16] can exactly com-
putes a nearest lattice point to evaluate the parameters u0, u1,
..., um. In the other way, if the number of samples is more
than 60, we can apply the K-best algorithm [17] having com-
plexity O(N3 logN) for approximating the LSU estimator.
As a result, the LSU estimator is observed to occur at larger
operations as the number of samples, N , grows. Especially,
the LSU estimator is not suitable to run for the number of
samples over 1000 [9].

The mean square error (MSE) of the LSU estimator can
be obtained by

MSE =
Psignal

2
[
1− f

(
−1

2

)]2
10

SNR
10

×D−1./G (27)

where Psignal denotes the power of the polynomial phase sig-
nal, f(·) is the probability density function of ϕn and A./B
means element-by-element division between matrix A and
matrix B. The superscript -1 denotes the inverse operation
and × denotes the product between a scalar and a matrix. Ma-
trix D is a m+ 1 by m+ 1 Hilbert matrix with elements

Di,j = 1/(i+ j + 1)(i, j ∈ [0, 1, 2, · · · ,m]) (28)

and the matrix G can be defined as

G =


N N2 · · · Nm+1

N2 N3 · · · Nm+2

...
...

. . .
...

Nm+1 Nm+2 · · · N2m+1

 . (29)

According to (27), to make the EKF work effectively at a
low SNR, we should choose more samples for the LSU esti-
mator. However, larger sample number means larger compu-
tation load. In this paper, the number of samples used for the
LSU estimator is N1 = 64.

5. SIMULATION

In this section, Monte-Carlo simulations are performed to ver-
ify the characteristic of our method. The numerical values are
obtained over 2000 simulations. The number of samples used
in the simulations is 199 and the number of initial samples
used in our method is 64.
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Fig.1 shows the MSEs of the LSU estimator, the HAF
estimator, the PHAF estimator, and the proposed estimator,
where the values of coefficients are u =

[
1
4 ,

1
4 ,

1
8 ,

1
24 ,

1
96 ,

1
480

]T
for the 5-order PPSs and u =

[
1
4 ,

1
4 ,

1
8 ,

1
24

]T
for the 3-order

PPSs. We can see that the HAF and PHAF estimators fail
consistently, as expected. Although the ZW estimator [18]
can operate on the entire identifiable region, its performance
is poor, including its MSE and the threshold SNR.

The proposed LSU-EKF estimator reaches a threshold at
6 dB for the 3-order PPS and 17 dB for the 5-order PPS. The
corresponding threshold SNRs for the LSU estimator are 2 dB
for the 3-order PPS and 12 dB for the 5-order PPS respective-
ly. The reason why the threshold SNRs of the LSU-EKF es-
timator are higher than those of the LSU estimator is that the
number of samples used for the LSU estimator is larger than
that for the LSU-EKF estimator in the parameter initialization
step. Table 1 shows the running time of all the estimators, it is
shown that the running time of the LSU estimator is approx-
imately 24 times as much as that of the LSU-EKF estimator
for the 3-order PPS and 15 times for the 5-order PPS.
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Fig. 1: Sample MSEs for the coefficient u3 for PPSs of order
3 and the coefficient u5 for PPSs of order 5.

Table 1: Running time in seconds with different methods for
PPSs of order 3 and PPSs of order 5.

HAF PHAF ZW LSU LSU-
EKF

m = 3 100.4s 180.5s 119.6s 25624.1s 1063.7s
m = 5 114.3s 174.1s 177.4s 44883.4s 3113.7s

In order to make the volume of the set of coefficients suit
for the HAF and PHAF estimator, we chose the coefficients
u =

[
1
4 ,

1
4 ,

1
8N , 1

24N2 ,
1

96N3 ,
1

480N4

]T for the 5-order PPSs

and u =
[
1
4 ,

1
4 ,

1
8N , 1

24N2

]T
for the 3-order PPSs. In Fig.2,

we can see that the HAF estimator reaches a threshold at 6
dB, which is the same as our method for the 3-order PPSs and
a threshold at 18 dB approximately a little higher than our
method for the 5-order PPS. Meantime, the PHAF estimator
has a good performance on the estimation of the coefficients
u3 for the 3-order PPS and u5 for the 5-order PPS. As expect-
ed, the performance of our method remains unchanged for the
set of small coefficients.
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Fig. 2: Sample MSEs for the coefficient u3 for PPSs of order
3 and the coefficient u5 for PPSs of order 5.

6. CONCLUSION

The proposed LSU-EKF estimator greatly reduces the com-
putation complexity of the LSU estimator while at the same
time it can still work in entire identifiable region. The thresh-
old SNR of our method is a few decibels higher than the LSU
estimator because fewer samples are used in the LSU stage of
the LSU-EKF estimator compared to the LSU estimator. S-
ince the number of samples to initial the EKF is relative with
the threshold SNR and the computation complexity, the size
of the initial sample number should be careful chosen accord-
ing to the tradeoff between these two factors.
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