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ABSTRACT

Alternating direction method of multipliers (ADMM) has beeec-
ognized as an efficient approach for solving many largeedealrn-
ing problems over a computer cluster. However, traditicsyal-
chronized computation does not scale well with the probléera, s
as the speed of the algorithm is limited by the slowest warkém

this paper, we propose an asynchronous distributed ADMM-(AD

ADMM) which can effectively improve the time efficiency ofsdi
tributed optimization. Our main interest lies in charaizieg the
convergence conditions of the AD-ADMM, under the popipar-

tially asynchronous modethich is defined based on a maximum tol-

erable delay in the network. Specifically, by consideringegal and
possibly non-convex cost functions, we show that the AD-ADM
converges to the set of Karush-Kuhn-Tucker (KKT) pointsas|
as the algorithm parameters are chosen appropriately dingoto
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when the network size scales up, node synchronization besam
important issue. In particular, under the synchronousooal the
master has to wait until all the workers report their up-&dedvari-
able information. Since the workers can have different agtatjon

and communication delays, the speed of the algorithm woeildhi

ited by the “slowest” worker.

This paper aims to generalize the existing distributed ADMM
in [3] to an asynchronous network. Specifically, in the pgzb
asynchronous distributed ADMM (AD-ADMM), the master does
not wait for all the workers to report their variable infortioa. In-
stead, they make variable update whenever it receives tiebla
information from a partial set of workers. This would grgatduce
the waiting time of the master and speedy workers, and ingptios
time efficiency of the distributed optimization algorithin. this pa-
per, we show that, for general and possibly non-convex probl

the network delay. We also show that the asynchrony of ADMII ha With the same form as (1), the proposed AD-ADMM is guaranteed

to be handled with care, as a slightly different implemeatatan
significantly jeopardize the algorithm convergence.

Index Terms— Distributed optimization, alternating direction
method of multipliers, asynchronous algorithm

1. INTRODUCTION
In this paper, we consider the following optimization piel

min Y, fi() + h(w), (€
xER

wheref; : R" — R, 7 = 1,..., N, are the cost functions to mini-
mize andh : R™ — R U {oo} is a (convex) regularization function.
Our interest in this paper lies in large-scale instancesroblpm
(1), in which a large number of training samples are locat¥dss
distributed computer nodes, and thereby unlikely to beesbin a
centralized fashion [1]. For such large-scale and distedbscenar-
ios, we consider a computer network with a star topology, reehe
one master node coordinates the computation of a set ofdited
workers. The star network model is often considered in tise di
tributed optimization literature; see, e.g., [2-8]. Amdhgse meth-
ods, the alternating direction method of multipliers (ADMNB,
Section 7.1.1] has been recognized as an efficient meth@wigng
large-scale problems. In particular, the distributed ADMaf#titions
the original learning problem int&v subproblems, each of which
contains a partial set of training samples. At each itenatioe work-
ers solve the subproblems locally and send the up-to-dagbiin-
formation to the master; the master summarizes the disédbeari-
able information and broadcasts the result to the workeosverter,

This work is supported in part by NSFC, China, Grant No. 6BBEL
and in part by NSF, Grant No. CCF-1526078.
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to converge to a Karush-Kuhn-Tucker (KKT) point, as longressal-
gorithm parameters are chosen appropriately based on thienona
network delay. Recently, Zhang et al. [9] have consideredraion
of the AD-ADMM and studied its theoretical and numericalfper
mances. However, [9] has considered the convex case ontyeab
our study covers general non-convex problems. This impghes
the algorithm and analysis proposed in this paper are aipémot
only to standard convex learning problems but also to ingoamon-
convex problems such as the sparse PCA problem [10] andxmatri
factorization problems [11]. To the best of our knowleddés ts the
first time that the distributed ADMM is rigorously shown cengent
for non-convex problems under the asynchronous protocol.

Intriguingly, extending the distributed ADMM to an asynohous
network is by no means straightforward, and the asynchrasytd
be handled with extra care. This point will be illustrateddhow-
ing that a seemingly unharmful modification of the proposédar A
ADMM can drastically jeopardize the algorithm convergerseen
though such modified algorithm is equivalent to the proposBe
ADMM under the synchronous setting. Finally, we presenteomm
merical results to verify our theoretical claims and den@ts the
time efficiency of the proposed AD-ADMM over its synchronous
counterpart.

2. DISTRIBUTED ADMM

In this section, we briefly review the distributed ADMM in [Sec-
tion 7.1.1]. Consider the following consensus formulatdil)

wo,minélg'l”,iev va:l fl (wl) + h/(w(]) (Za)
sta; =z, ViecV2{l,...,N}. (2b)
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The standard ADMM [2, 3] can be applied to solve (2), whictdiea
to the distributed ADMM [3, Section 7.1.1] below: for itei@t £ =
17 27 ctt

k+1 . N N
b —arg i n(eo) - 2F T, A+ § DY et - w0},

(3)
zi ! =arg %in%]fi(wi)m?k%%\\wi —ag P viey, (4)
)\f+1: )\f + p(m§+1 — a:g+1), Yie V. (%)

Assumption 1 implies that every workérmust be arrived at
least once between iteratidn— = + 1 and iterationk. Therefore,
the variable informatiorix;, A;) used by the master will be at most
7 iterations old. For this assumption to hold, at every iiergtthe
master would stop and wait for the workers who have beeneatriv
for 7 — 1 iterations, if any. Note that, when= 1, it corresponds to
the synchronous case and the master always waits for alldhevs
at every iteration.

Stepsize controlAnother intuition for an asynchronous algo-
rithm to converge properly is to avoid the master from movimg
strides. This can be achieved by adding an additional prabietm

Here,\; € R", i € V, denote the Lagrange dual variables associto (3), e.g., se€ || —ak||?in (7) wherey > 0 is a penalty param-

ated with constraint (2b) ang > 0 is a penalty parameter.

As seen, the distributed ADMM in (3)-(5) is perfectly imple-

mentable in a fully parallel fashion, over a star computemwnek
with one master node anl distributed workers. Specifically, the
master node is in charge of optimiziag by (3), and each worker
i is responsible for optimizinge; and A; by (4) and (5), respec-
tively. The master and the workers exchange the up-to-datend

eter controlling the step size of the master. Adding suckxipral
term is crucial in making the algorithm well-behaved in tisyra
chronous setting. As will be seen in the next section, a prolpeice
of v guarantees the convergence of Algorithm 1.

Based on the two conditions, the proposed AD-ADMM is pre-
sented in Algorithm 1, which includes the algorithmic stepshe
master and those of the workgr € V. Here, A7, denotes the com-

(x4, X;) with each other. Work [12] shows that the ADMM, under plementary set ofd;, i.e., A, N A, = 0 and A, U A7 = V. Note

general convex assumptions, has a worst-€2gg/ k) convergence
rate; while [13, 14] show that the ADMM can have a linear conve
gence rate given strongly convex and smofite. For non-convex

that in Algorithm 1 the master only update;, A;) for all i € Aj.
Besides, the variable’s are introduced to count the delays of the
workers. If workeri is arrived at the current iteration, thépis set

and smoothy;’s, [15] shows that (3)-(5) can converge to the set ofto zero; otherwised; is increased by one. So, in Step 4 of Algo-

KKT points as long ag is large enough.

The distributed ADMM (3)-(5) is a synchronous algorithm,eé
at each iteration, the master has to wait until receivingiiv¢o-date
variables(zx;, A;), ¢ € V, from all the workers. Since the work-
ers may have different computation and communication g&|alye
algorithm speed would be determined by the slowest workieerd-
fore, under the synchronous protocol, the master and speedkers
would be idling most of the time, and thus the parallel corapanhal
resources are not fully utilized.

3. PROPOSED AD-ADMM
In this section, we extend the distributed ADMM to an asyoncdlous

rithm of the Master, the master waits until receiving messagom
all the workers withi; > 7 — 1. As a result, Assumption 1 can hold
true all the time. In the next section, we present the maiartteal
convergence results for Algorithm 1.

4. CONVERGENCE ANALYSIS

4.1. Convergence Conditions of Algorithm 1

We first make the following standard assumption on problem (1
(i.e., problem (2)):

Assumption 2 Each functionf; is twice differentiable and its gra-

network. The asynchronism arises when the master does ribt walientV f; is Lipschitz continuous with a constaht> 0; the func-

for all the workers at every iteration. Instead, the mastatates
xo whenever it receiveéx;, A;) from a subset of the workers. So
neither the workers have to be synchronized with each othethe
master waits for the slowest worker. As a result, under tlya-as
chronous protocol, both the master and speedy workers cegeise
the frequency of variable update. However, as a consequ#ribe
asynchronous protocol, the master inevitably uses delapedold
(i, Ai) to optimizexo, which may prevent the algorithm from con-
vergence. To ensure the algorithm to behave properly, tditiadal
conditions are introduced.

Bounded delayTo avoid the information from being too stale,
it is essential to limit the maximum delay in the network. lust

denotek as the iteration number of the master (i.e., the number of

times for which the master updates), and denoted, C V £

tion h is convex (not necessarily smooth). Moreover, prob{&in
is bounded below, i.eF™ > —oo where F* denotes the optimal
objective value of problerfl).

It is important to note that we do not assume any convexity;s?3.
Our analysis will show that the AD-ADMM can converge to thé se
of KKT points even for non-convey;’s, as stated below.

Theorem 1 Suppose that Assumptions 1 and 2 hold true. Moreover,
assume that

- (1+L+L*+ /(1 +L+L??2+8L2
2 K
N1+ p*)(r—1)%—Np
5 .

(10)

v > (11)

{1,..., N} as the index subset of workers from which the master

receives variable information during iteratibn\We say that worker
i is “arrived” at iterationk if ¢ € A, and “unarrived” otherwise. We
adopt the well-known “partially asynchronous” model [2Jeve the

following bounded delay condition is assumed.

Assumption 1 Let 7 > 1 be a maximum tolerable delay. For all
i € V and iterationk, itmustbe that € A, U Ap_1---UAr_r41.

1in a heterogeneous network, the workers usually have diffecompu-
tation and communication capabilities. The training dama even be non-
uniformly distributed across the workers. Thus, the waslen have differ-
ent delays in computation and communication.
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Then, every limit point of{z?},, &, {\¥} ;) generated by6)
and (7) is a KKT point of (2).

The proof is relegated to the full paper [16]. Theorem 1 ieplhat
the AD-ADMM converges to the set of KKT points as long as the
penalty parametergsand-~ are sufficiently large. It is worthwhile to
note that a large value ¢f is essential for some non-convex prob-
lems; see Section 5. Equation (11) indicates that the makterd

2Note that for non-convey;’s, subproblem (8) is not necessarily a convex
problem. However, givep > L and Assumption 2, subproblem (8) becomes
a (strongly) convex problem and is globally solvable



Algorithm 1 Asynchronous Distributed ADMM for (2). casts(z6 ™, A¥1) to each workei € A;. Essentially, under the
1: Algorithm of the Master: synchronous protocol, such a modificafiaives not change the con-
vergence conditions of the distributed ADMM fundamentaltpw-
ever, intriguingly, under the asynchronous protocol, suchodified
AD-ADMM requires a very distinct convergence conditionrfr@\l-
gorithm 1 and behave very differently in practice. To analylze
modified AD-ADMM, we make the following assumption.

2: Given initial variable z° and broadcast it to the workers. Set
k=0anddy =--- = dn = 0;
3: repeat
4:  wait until receiving{@:, Xi}ic.4, from workersi € A and
thatd; < 7 — 1Vi € Aj.

5. update Assumption 3 Each functionf; is strongly convex with modulus
o2 > 0.
k41 T, Vi A k+1 5\1 Vi € Ag . : :
xz; 7{ aF Vie A A 7{ A Vie AS Un(_ier the strong convexity assumption, one is able to shevidh
lowing convergence result.
0 Vi e Ag
i+ vE A Theorem 2 Suppose that Assumption 1 and Assumption 3 hold true.

Moreover, lety = 0 and
™ =arg min {h(mo) —xd N AR
xn ER™ - 2
[ea

(57 — 3) max{27,3(r — 1)} (12)

0<p<

+ 23N 2 — woll? + %o - m’3||2}, @)

Then, every limit point of{x¥ },, =, {\F1,) generated by the

6:  broadcasta™" to the workers indy. modified AD-ADMM is a global optimal solution ¢2).
7. setk <+ k+1.
8: until a predefined stopping criterion is satisfied. As f;'s are assumed to be strongly convex, Theorem 2 somehow
1: Algorithm of the ith Worker: implies that't_he modified AD_-ADM_IVI may require stronger corve
. Giveninitial A° and sete, — 0 gence conditions than Algorithm 1 in the asynchronous netwiBe-
2: ve v sides, different from Theorem 1 whepeis advised to be large for
3j repea_tt il Ninga f th ; d Algorithm 1, Theorem 2 indicates thatneeds to be small for the
4: Wa('j l:n Il receivingzo from the master node. modified algorithm. Interestingly and surprisingly, in seproblem
5 Update instances, the strongly convef's and a smallp seem to benec-
ki1 _ . Ty ki L2 essaryfor the convergence of the modified algorithm. We illustrate
i = i\ i i A, £ i 5 8 . . . . .
Ti arg s €Rn fil@) + @At + gle: = oll”, (8) this by presenting some simulation examples in the nexicsect
kitl _ yki kitl _ -
AT = AT (@ — @), ©) 5. NUMERICAL RESULTS AND DISCUSSIONS
6: send(x! T AFT1) to the master node. 5.1. Example 1: Small data case (Sparse PCA and LASSO)
7. seth; < ki + 1. Theorem 1 has shown that the AD-ADMM in Algorithm 1 converges
8: until a predefined stopping criterion is satisfied. for non-convex problems. To verify this point, let us comrsithe
following sparse PCA problem [10]
o min — YN w” B Bjw+0|wls, (13)
be more cautious in moving, if the network allows a larger delay weR™ 7=

7. Whenr = 1 (the synchronous case),can be set to zero.

Let us compare Theorem 1 with the result in [9]. Firstly, the
analysis in [9] is only for convex problems, whereas our engence
results also hold for both convex and non-convex problenec- S
ondly, the analysis in [9] is based on a specific statistisslienptions
on the workers, and the final claim is that the algorithm cogesin
expectatiopwhich is a relatively weak form of convergence. At least
theoretically, it is possible that a realization of the aitjon fails to
converge despite satisfying the conditions given in [9].d®wntrast, dently. Fi 1 sh the simulati It here th
our convergence results in Theorem 1 hold determinisieaiti thus 2™ X |glire X Shows The simuiation results, where thelacy
are stronger from the theoretical point of view. One showitérthat 'S ‘Eﬂ_("” 10, A )= FI/F, whgreﬁ,, 1S an.augmented Lagrang!an
(10)-(11) are sufficient conditions in general, and the d@fjm may function andF' denotes the optimal objective value of (13) obtained

still converge in practice without exactly satisfying taesnditions. by running the synchronous distributed ADMM for 10000 itevas
(itis found in the experiments that the AD-ADMM convergeshie

4.2. A Modified Scheme and Its Convergence Conditions same KKT point for different values af). One can observe from
. . Figure 1 that the proposed AD-ADMM indeed converges prgperl
!n_AIgc;}nthm 1% the worl_<ers Comﬁ.llj(&"’ ?]’)d’ e’k}}, agq thel master o en though (13) is a non-convex problem. Interestingly,note

IS In charge o codmputlnglo.l While suc_d istri utde_f_ lmt‘_rl)j;nl"lenta- that for the example considered here, the AD-ADMM with= 0
tion Is Intuitive and natural, let us consider a modificalBiigo- —\yoris well for different values of, even though Theorem 1 sug-

rithm 1 b%’ mor:/ Ing thf updatle dﬁl&’ €V fr?;m thg V;’1°rkers to th? gests thaty should be a larger value in the worst case. However, we
master. S0, the workers only update ¢ €V, and the master, at- -y ghserve from Figure 1 that if one sets— 1.5 (i.e., a smaller

ter updatingeo using{zx, " }icv and{ A7 }icv, further updates\;,
i€V, by ANt = AF 4 p(2F T — 2kt vi € V, and broad- 31t is equivalent to interchange the order of (3) and (4).

where B, € R™*" Vj = 1,...,N, andd > 0. In the simula-
tion, each matrixB; is a sparse random matrix with approximately
1% non-zero entries is set t00.1 and N = 32. We solve (13)
by implementing an equivalent algorithm that is obtainedelxy
pressing Algorithm 1 from the master’s point of view; see, [A6
gorithm 3]. To simulate the asynchrony, at each iteratiaif of
the workers have a probability 0.1 to be arrived indepenyertd
half of the workers have a probability 0.8 to be arrived iretep

i
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Fig. 1. Convergence curves of Algorithm 1 for solving the sparseFig. 2. Convergence curves of Algorithm 1 and modified AD-

PCA problem (13) withNV" = 32, m = 1000, n = 500, § = 0.1,
p = Bmax;—1,. N Amax(B] B;)andy = 0.

value ofp), then the AD-ADMM diverges even in the synchronous
case £ = 1). This implies that the claim of a large enoughs
necessary for the non-convex sparse PCA problem.

Consider the following LASSO problem

. N
min S A — bil]* + 0w,

(14)

whereA; € R™*", b, e R™, i =1,...,N,andf > 0is a regu-
larization parameter. The elementsAf’s are randomly generated
following the Gaussian distribution with zero mean and waiti-
ance; eaclb; is generated by, = A;w° + v; wherew® € R" is
ann x 1 sparse random vector with approximatély5n non-zero
entries andv; is a noise vector with entries following/(0, 0.01).
To simulate an asynchronous scenario, at each iteratitihofhae
workers are assumed to have a probability 0.1 to be activepiert
dently, 4 workers are assumed to have a probability 0.3 tacheeca
independently, and the remaining 4 workers are assumedveoda
probability 0.8 to be active independently.

ADMM for solving (14) with N = 16, m = 200, n = 1000,
0 =0.1andvy = 0.

x 10
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2 2
Sars Sars
2 g
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[ o
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46 46
455

4000 6000
Iterations Running Time (s)
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Fig. 3. Convergence curves of Algorithm 1 for solving (15).

500 1000 1500 2000 8000

is the training data matrix. We used the MiniBooNE particleri-
tification Data Sétwhich contains 130065 training samples (=

Figure 2 displays the convergence curves of AD-ADMM and | 345) and the learning parameter has a sizé®tn = 50). The

the modified AD-ADMM in Section 4.2 for solving (14). Here,
the accuracy is defined ascuracy = |£,(x®, x§, A\¥) — F*|/F*

where[™* denotes the optimal objective value of problem (14). Noteg

that, givenm = 200 andn = 1000, the cost functiong; (w;) =
[ Aiw: — by
from Figure 2 that, under the synchronous setting (e 1), the
modified AD-ADMM exhibits a similar behavior as Algorithm t i
Figure 2. However, the modified AD-ADMM always diverges for
various values op even when the delay is as small as two. As a
result, even though the two algorithms are the same undesytine
chronous protocol, they exhibit significantly differentneergence
behaviors when > 1.

5.2. Example 2: Large data case (Logistic regression)
In this example, we consider the following logistic regiesgprob-
lem

énei‘I/lv Z;":l log (1 + exp(fyjajrw)) (15)

, Ym are the binary labels of the training dataw €
T mxn
Lan|t €R

wherey, . ..
R™ is the regression variable andl;, = [a,..

4784

constraint sedV is set toW = {w € R" | |w;| < 10 Vi =

1,...,n}. The AD-ADMM is implemented over an HP ProLiant
L280c G6 Linux Cluster. The training samples are uniformly dis-
tributed to a set ofV = 10 workers. For each worker, we employed

in (14) are not strongly convex. One can observey,q faqt jterative shrinkage thresholding algorithm (ASTL7] to

solve the corresponding subproblem (8). The stepsize ofA-IS

set t00.0001 and the stopping condition is that the 2-norm of the gra-
dient is less tha0.001. The penalty parameters of the AD-ADMM
method are set tp = 0.01 andy = 0. Figure 3(a) and Figure 3(b)
respectively show the convergence curves (objective yalti¢he
AD-ADMM versus the iteration number and the running timec{se
ond), for various values. One can observe from Figure 3(a) that, in
terms of the iteration number, the convergence speed of ADAK
slows down whenr increases. However, as seen from Figure 3(b),
the running time of the AD-ADMM actually is smaller than itgs
chronous counterpart (= 1). Specifically, for achieving the objec-
tive value4.6 x 10*, the running time for = 11 is about 25% faster
than the synchronous algorithm & 1).

“https://archive.ics.uci.edu/ m/datasets/
M ni BooNE+particl e+i dentification
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