
ASYNCHRONOUS DISTRIBUTED ALTERNATING DIRECTION METHOD OF
MULTIPLIERS: ALGORITHM AND CONVERGENCE ANALYSIS

Tsung-Hui Chang1, Mingyi Hong2, Wei-Cheng Liao3, Xiangfeng Wang4

1 School of Sci. & Eng.

The Chinese Univ. of Hong Kong, Shenzhen

Shenzhen, China 518172

E-mail: tsunghui.chang@ieee.org

2 Dept. of IMSE & ECE

Iowa State Univ.

Ames, IA 50011, USA

E-mail: mingyi@iastate.edu

3 Dept. of Elect. & Compt. Eng.

Univ. of Minnesota,

Twin Cities, MN 55455, USA

E-mail: liaox146@umn.edu

4 Software Eng. Institute

East China Normal Univ.

Shanghai, China 200062

E-mail: xfwang@sei.ecnu.edu.cn

ABSTRACT
Alternating direction method of multipliers (ADMM) has been rec-
ognized as an efficient approach for solving many large-scale learn-
ing problems over a computer cluster. However, traditionalsyn-
chronized computation does not scale well with the problem size,
as the speed of the algorithm is limited by the slowest workers. In
this paper, we propose an asynchronous distributed ADMM (AD-
ADMM) which can effectively improve the time efficiency of dis-
tributed optimization. Our main interest lies in characterizing the
convergence conditions of the AD-ADMM, under the popularpar-
tially asynchronous modelwhich is defined based on a maximum tol-
erable delay in the network. Specifically, by considering general and
possibly non-convex cost functions, we show that the AD-ADMM
converges to the set of Karush-Kuhn-Tucker (KKT) points as long
as the algorithm parameters are chosen appropriately according to
the network delay. We also show that the asynchrony of ADMM has
to be handled with care, as a slightly different implementation can
significantly jeopardize the algorithm convergence.

Index Terms— Distributed optimization, alternating direction
method of multipliers, asynchronous algorithm

1. INTRODUCTION

In this paper, we consider the following optimization problem

min
x∈R

n

∑N

i=1
fi(x) + h(x), (1)

wherefi : Rn → R, i = 1, . . . , N, are the cost functions to mini-
mize andh : Rn → R ∪ {∞} is a (convex) regularization function.
Our interest in this paper lies in large-scale instances of problem
(1), in which a large number of training samples are located across
distributed computer nodes, and thereby unlikely to be solved in a
centralized fashion [1]. For such large-scale and distributed scenar-
ios, we consider a computer network with a star topology, where
one master node coordinates the computation of a set of distributed
workers. The star network model is often considered in the dis-
tributed optimization literature; see, e.g., [2–8]. Amongthese meth-
ods, the alternating direction method of multipliers (ADMM) [3,
Section 7.1.1] has been recognized as an efficient method forsolving
large-scale problems. In particular, the distributed ADMMpartitions
the original learning problem intoN subproblems, each of which
contains a partial set of training samples. At each iteration, the work-
ers solve the subproblems locally and send the up-to-date variable in-
formation to the master; the master summarizes the distributed vari-
able information and broadcasts the result to the workers. However,

This work is supported in part by NSFC, China, Grant No. 61571385
and in part by NSF, Grant No. CCF-1526078.

when the network size scales up, node synchronization becomes an
important issue. In particular, under the synchronous protocol, the
master has to wait until all the workers report their up-to-date vari-
able information. Since the workers can have different computation
and communication delays, the speed of the algorithm would be lim-
ited by the “slowest” worker.

This paper aims to generalize the existing distributed ADMM
in [3] to an asynchronous network. Specifically, in the proposed
asynchronous distributed ADMM (AD-ADMM), the master does
not wait for all the workers to report their variable information. In-
stead, they make variable update whenever it receives the variable
information from a partial set of workers. This would greatly reduce
the waiting time of the master and speedy workers, and improve the
time efficiency of the distributed optimization algorithm.In this pa-
per, we show that, for general and possibly non-convex problems
with the same form as (1), the proposed AD-ADMM is guaranteed
to converge to a Karush-Kuhn-Tucker (KKT) point, as long as the al-
gorithm parameters are chosen appropriately based on the maximum
network delay. Recently, Zhang et al. [9] have considered a version
of the AD-ADMM and studied its theoretical and numerical perfor-
mances. However, [9] has considered the convex case only, whereas
our study covers general non-convex problems. This impliesthat
the algorithm and analysis proposed in this paper are applicable not
only to standard convex learning problems but also to important non-
convex problems such as the sparse PCA problem [10] and matrix
factorization problems [11]. To the best of our knowledge, this is the
first time that the distributed ADMM is rigorously shown convergent
for non-convex problems under the asynchronous protocol.

Intriguingly, extending the distributed ADMM to an asynchronous
network is by no means straightforward, and the asynchrony has to
be handled with extra care. This point will be illustrated byshow-
ing that a seemingly unharmful modification of the proposed AD-
ADMM can drastically jeopardize the algorithm convergence, even
though such modified algorithm is equivalent to the proposedAD-
ADMM under the synchronous setting. Finally, we present some nu-
merical results to verify our theoretical claims and demonstrate the
time efficiency of the proposed AD-ADMM over its synchronous
counterpart.

2. DISTRIBUTED ADMM

In this section, we briefly review the distributed ADMM in [3,Sec-
tion 7.1.1]. Consider the following consensus formulationof (1)

min
x0,xi∈R

n,i∈V

∑N

i=1
fi(xi) + h(x0) (2a)

s.t.xi = x0, ∀i ∈ V , {1, . . . , N}. (2b)

4781978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

The standard ADMM [2,3] can be applied to solve (2), which leads
to the distributed ADMM [3, Section 7.1.1] below: for iteration k =
1, 2, . . . ,

x
k+1

0 =arg min
x0∈Rn

{

h(x0)− x
T
0

∑N

i=1
λ

k
i + ρ

2

∑N

i=1
‖xk

i − x0‖
2

}

,

(3)

x
k+1

i =arg min
xi∈Rn

fi(xi)+x
T
i λ

k
i +

ρ

2
‖xi − x

k+1

0 ‖2,∀i ∈ V, (4)

λ
k+1

i = λ
k
i + ρ(xk+1

i − x
k+1

0), ∀i ∈ V. (5)

Here,λi ∈ R
n, i ∈ V, denote the Lagrange dual variables associ-

ated with constraint (2b) andρ > 0 is a penalty parameter.
As seen, the distributed ADMM in (3)-(5) is perfectly imple-

mentable in a fully parallel fashion, over a star computer network
with one master node andN distributed workers. Specifically, the
master node is in charge of optimizingx0 by (3), and each worker
i is responsible for optimizingxi andλi by (4) and (5), respec-
tively. The master and the workers exchange the up-to-datex0 and
(xi,λi) with each other. Work [12] shows that the ADMM, under
general convex assumptions, has a worst-caseO(1/k) convergence
rate; while [13, 14] show that the ADMM can have a linear conver-
gence rate given strongly convex and smoothfi’s. For non-convex
and smoothfi’s, [15] shows that (3)-(5) can converge to the set of
KKT points as long asρ is large enough.

The distributed ADMM (3)-(5) is a synchronous algorithm, where
at each iteration, the master has to wait until receiving theup-to-date
variables(xi,λi), i ∈ V, from all the workers. Since the work-
ers may have different computation and communication delays1, the
algorithm speed would be determined by the slowest worker. There-
fore, under the synchronous protocol, the master and speedyworkers
would be idling most of the time, and thus the parallel computational
resources are not fully utilized.

3. PROPOSED AD-ADMM

In this section, we extend the distributed ADMM to an asynchronous
network. The asynchronism arises when the master does not wait
for all the workers at every iteration. Instead, the master updates
x0 whenever it receives(xi,λi) from a subset of the workers. So
neither the workers have to be synchronized with each other nor the
master waits for the slowest worker. As a result, under the asyn-
chronous protocol, both the master and speedy workers can increase
the frequency of variable update. However, as a consequenceof the
asynchronous protocol, the master inevitably uses delayedand old
(xi,λi) to optimizex0, which may prevent the algorithm from con-
vergence. To ensure the algorithm to behave properly, two additional
conditions are introduced.

Bounded delay:To avoid the information from being too stale,
it is essential to limit the maximum delay in the network. Letus
denotek as the iteration number of the master (i.e., the number of
times for which the master updatesx0), and denoteAk ⊆ V ,

{1, . . . , N} as the index subset of workers from which the master
receives variable information during iterationk. We say that worker
i is “arrived” at iterationk if i ∈ Ak and “unarrived” otherwise. We
adopt the well-known “partially asynchronous” model [2], where the
following bounded delay condition is assumed.

Assumption 1 Let τ ≥ 1 be a maximum tolerable delay. For all
i ∈ V and iterationk, it must be thati ∈ Ak ∪Ak−1 · · ·∪Ak−τ+1.

1In a heterogeneous network, the workers usually have different compu-
tation and communication capabilities. The training data can even be non-
uniformly distributed across the workers. Thus, the workers can have differ-
ent delays in computation and communication.

Assumption 1 implies that every workeri must be arrived at
least once between iterationk − τ + 1 and iterationk. Therefore,
the variable information(xi,λi) used by the master will be at most
τ iterations old. For this assumption to hold, at every iteration, the
master would stop and wait for the workers who have been arrived
for τ − 1 iterations, if any. Note that, whenτ = 1, it corresponds to
the synchronous case and the master always waits for all the workers
at every iteration.

Stepsize control:Another intuition for an asynchronous algo-
rithm to converge properly is to avoid the master from movingin
strides. This can be achieved by adding an additional proximal term
to (3), e.g., seeγ

2
‖x0−x

k
0‖

2 in (7) whereγ > 0 is a penalty param-
eter controlling the step size of the master. Adding such proximal
term is crucial in making the algorithm well-behaved in the asyn-
chronous setting. As will be seen in the next section, a proper choice
of γ guarantees the convergence of Algorithm 1.

Based on the two conditions, the proposed AD-ADMM is pre-
sented in Algorithm 1, which includes the algorithmic stepsof the
master and those of the workeri, i ∈ V. Here,Ac

k denotes the com-
plementary set ofAk, i.e.,Ak ∩ A

c
k = ∅ andAk ∪ A

c
k = V. Note

that in Algorithm 1 the master only update(xi,λi) for all i ∈ Ak.
Besides, the variablesdi’s are introduced to count the delays of the
workers. If workeri is arrived at the current iteration, thendi is set
to zero; otherwise,di is increased by one. So, in Step 4 of Algo-
rithm of the Master, the master waits until receiving messages from
all the workers withdi ≥ τ − 1. As a result, Assumption 1 can hold
true all the time. In the next section, we present the main theoretical
convergence results for Algorithm 1.

4. CONVERGENCE ANALYSIS

4.1. Convergence Conditions of Algorithm 1

We first make the following standard assumption on problem (1)
(i.e., problem (2)):

Assumption 2 Each functionfi is twice differentiable and its gra-
dient∇fi is Lipschitz continuous with a constantL > 0; the func-
tion h is convex (not necessarily smooth). Moreover, problem(1)
is bounded below, i.e.,F ⋆ > −∞ whereF ⋆ denotes the optimal
objective value of problem(1).

It is important to note that we do not assume any convexity onfi’s2.
Our analysis will show that the AD-ADMM can converge to the set
of KKT points even for non-convexfi’s, as stated below.

Theorem 1 Suppose that Assumptions 1 and 2 hold true. Moreover,
assume that

ρ >
(1 + L+ L2) +

√

(1 + L+ L2)2 + 8L2

2
, (10)

γ >
N(1 + ρ2)(τ − 1)2 −Nρ

2
. (11)

Then, every limit point of({xk
i }

N
i=1,x

k
0 , {λ

k
i }

N
i=1) generated by(6)

and (7) is a KKT point of(2).
The proof is relegated to the full paper [16]. Theorem 1 implies that
the AD-ADMM converges to the set of KKT points as long as the
penalty parametersρ andγ are sufficiently large. It is worthwhile to
note that a large value ofρ is essential for some non-convex prob-
lems; see Section 5. Equation (11) indicates that the mastershould

2Note that for non-convexfi ’s, subproblem (8) is not necessarily a convex
problem. However, givenρ > L and Assumption 2, subproblem (8) becomes
a (strongly) convex problem and is globally solvable

4782

Algorithm 1 Asynchronous Distributed ADMM for (2).

1: Algorithm of the Master:
2: Given initial variablex0 and broadcast it to the workers. Set

k = 0 andd1 = · · · = dN = 0;
3: repeat
4: wait until receiving{x̂i, λ̂i}i∈Ak

from workersi ∈ Ak and
thatdi < τ − 1 ∀i ∈ Ac

k.
5: update

x
k+1

i =

{

x̂i ∀i ∈ Ak

x
k
i ∀i ∈ Ac

k

, λ
k+1

i =

{

λ̂i ∀i ∈ Ak

λ
k
i ∀i ∈ Ac

k

,

di =

{

0 ∀i ∈ Ak

di + 1 ∀i ∈ Ac
k

, (6)

x
k+1

0 =arg min
x0∈Rn

{

h(x0)− x
T
0

∑N

i=1
λ

k+1

i

+ ρ

2

∑N

i=1
‖xk+1

i − x0‖
2 + γ

2
‖x0 − x

k
0‖

2

}

, (7)

6: broadcastxk+1

0 to the workers inAk.
7: setk ← k + 1.
8: until a predefined stopping criterion is satisfied.

1: Algorithm of the ith Worker:
2: Given initial λ0 and setki = 0.
3: repeat
4: wait until receivingx̂0 from the master node.
5: update

x
ki+1

i = arg min
xi∈Rn

fi(xi) + x
T
i λ

ki

i + ρ

2
‖xi − x̂0‖

2, (8)

λ
ki+1

i = λ
ki

i + ρ(xki+1

i − x̂0). (9)

6: send(xki+1

i ,λki+1

i) to the master node.
7: setki ← ki + 1.
8: until a predefined stopping criterion is satisfied.

be more cautious in movingx0 if the network allows a larger delay
τ . Whenτ = 1 (the synchronous case),γ can be set to zero.

Let us compare Theorem 1 with the result in [9]. Firstly, the
analysis in [9] is only for convex problems, whereas our convergence
results also hold for both convex and non-convex problems. Sec-
ondly, the analysis in [9] is based on a specific statistical assumptions
on the workers, and the final claim is that the algorithm convergesin
expectation, which is a relatively weak form of convergence. At least
theoretically, it is possible that a realization of the algorithm fails to
converge despite satisfying the conditions given in [9]. Bycontrast,
our convergence results in Theorem 1 hold deterministically and thus
are stronger from the theoretical point of view. One should note that
(10)-(11) are sufficient conditions in general, and the algorithm may
still converge in practice without exactly satisfying these conditions.

4.2. A Modified Scheme and Its Convergence Conditions

In Algorithm 1, the workers compute(xi,λi), i ∈ V, and the master
is in charge of computingx0. While such distributed implementa-
tion is intuitive and natural, let us consider a modificationof Algo-
rithm 1 by moving the update ofλi, i ∈ V from the workers to the
master. So, the workers only updatexi, i ∈ V, and the master, af-
ter updatingx0 using{xk+1

i }i∈V and{λk
i }i∈V , further updatesλi,

i ∈ V, by λ
k+1

i = λ
k
i + ρ(xk+1

i − x
k+1

0) ∀i ∈ V, and broad-

casts(xk+1

0 ,λk+1

i) to each workeri ∈ Ak. Essentially, under the
synchronous protocol, such a modification3 does not change the con-
vergence conditions of the distributed ADMM fundamentally. How-
ever, intriguingly, under the asynchronous protocol, sucha modified
AD-ADMM requires a very distinct convergence condition from Al-
gorithm 1 and behave very differently in practice. To analyze the
modified AD-ADMM, we make the following assumption.

Assumption 3 Each functionfi is strongly convex with modulus
σ2 > 0.

Under the strong convexity assumption, one is able to show the fol-
lowing convergence result.

Theorem 2 Suppose that Assumption 1 and Assumption 3 hold true.
Moreover, letγ = 0 and

0 < ρ ≤
σ2

(5τ − 3)max{2τ, 3(τ − 1)}
. (12)

Then, every limit point of({xk
i }

N
i=1,x

k
0 , {λ

k
i }

N
i=1) generated by the

modified AD-ADMM is a global optimal solution of(2).

As fi’s are assumed to be strongly convex, Theorem 2 somehow
implies that the modified AD-ADMM may require stronger conver-
gence conditions than Algorithm 1 in the asynchronous network. Be-
sides, different from Theorem 1 whereρ is advised to be large for
Algorithm 1, Theorem 2 indicates thatρ needs to be small for the
modified algorithm. Interestingly and surprisingly, in some problem
instances, the strongly convexfi’s and a smallρ seem to benec-
essaryfor the convergence of the modified algorithm. We illustrate
this by presenting some simulation examples in the next section.

5. NUMERICAL RESULTS AND DISCUSSIONS

5.1. Example 1: Small data case (Sparse PCA and LASSO)
Theorem 1 has shown that the AD-ADMM in Algorithm 1 converges
for non-convex problems. To verify this point, let us consider the
following sparse PCA problem [10]

min
w∈R

n
−

∑N

j=1
w

T
B

T
j Bjw+θ‖w‖1, (13)

whereBj ∈ R
m×n ∀j = 1, . . . , N, andθ > 0. In the simula-

tion, each matrixBj is a sparse random matrix with approximately
1% non-zero entries;θ is set to0.1 andN = 32. We solve (13)
by implementing an equivalent algorithm that is obtained byex-
pressing Algorithm 1 from the master’s point of view; see [16, Al-
gorithm 3]. To simulate the asynchrony, at each iteration, half of
the workers have a probability 0.1 to be arrived independently and
half of the workers have a probability 0.8 to be arrived indepen-
dently. Figure 1 shows the simulation results, where the accuracy
is |Lρ(x

k,xk
0 ,λ

k)− F̂ |/F̂ , whereLρ is an augmented Lagrangian
function andF̂ denotes the optimal objective value of (13) obtained
by running the synchronous distributed ADMM for 10000 iterations
(it is found in the experiments that the AD-ADMM converges tothe
same KKT point for different values ofτ). One can observe from
Figure 1 that the proposed AD-ADMM indeed converges properly
even though (13) is a non-convex problem. Interestingly, wenote
that for the example considered here, the AD-ADMM withγ = 0
works well for different values ofτ , even though Theorem 1 sug-
gests thatγ should be a larger value in the worst case. However, we
do observe from Figure 1 that if one setsβ = 1.5 (i.e., a smaller

3It is equivalent to interchange the order of (3) and (4).

4783

0 100 200 300 400 500
10

−20

10
−10

10
0

10
10

10
20

Iteration

A
cc

ur
ac

y

τ=1,β=3
τ=5,β=3
τ=10,β=3
τ=50,β=3
τ=1,β=1.5
τ=5,β=1.5

Fig. 1. Convergence curves of Algorithm 1 for solving the sparse
PCA problem (13) withN = 32, m = 1000, n = 500, θ = 0.1,
ρ = βmaxj=1,...,N λmax(B

T
j Bj) andγ = 0.

value ofρ), then the AD-ADMM diverges even in the synchronous
case (τ = 1). This implies that the claim of a large enoughρ is
necessary for the non-convex sparse PCA problem.

Consider the following LASSO problem

min
w∈R

n

∑N

i=1
‖Aiw − bi‖

2 + θ‖w‖1, (14)

whereAi ∈ R
m×n, bi ∈ R

m, i = 1, . . . , N , andθ > 0 is a regu-
larization parameter. The elements ofAi’s are randomly generated
following the Gaussian distribution with zero mean and unitvari-
ance; eachbi is generated bybi = Aiw

0 + νi wherew0 ∈ R
n is

ann × 1 sparse random vector with approximately0.05n non-zero
entries andνi is a noise vector with entries followingN (0, 0.01).
To simulate an asynchronous scenario, at each iteration, half of the
workers are assumed to have a probability 0.1 to be active indepen-
dently, 4 workers are assumed to have a probability 0.3 to be active
independently, and the remaining 4 workers are assumed to have a
probability 0.8 to be active independently.

Figure 2 displays the convergence curves of AD-ADMM and
the modified AD-ADMM in Section 4.2 for solving (14). Here,
the accuracy is defined asaccuracy = |Lρ(x

k,xk
0 ,λ

k)− F ⋆|/F ⋆

whereF ⋆ denotes the optimal objective value of problem (14). Note
that, givenm = 200 andn = 1000, the cost functionsfi(wi) ,

‖Aiwi − bi‖
2 in (14) are not strongly convex. One can observe

from Figure 2 that, under the synchronous setting (i.e.,τ = 1), the
modified AD-ADMM exhibits a similar behavior as Algorithm 1 in
Figure 2. However, the modified AD-ADMM always diverges for
various values ofρ even when the delayτ is as small as two. As a
result, even though the two algorithms are the same under thesyn-
chronous protocol, they exhibit significantly different convergence
behaviors whenτ > 1.

5.2. Example 2: Large data case (Logistic regression)
In this example, we consider the following logistic regression prob-
lem

min
w∈W

∑m

j=1
log

(

1 + exp(−yja
T
j w)

)

(15)

wherey1, . . . , ym are the binary labels of them training data,w ∈
R

n is the regression variable andAi = [a1, . . . ,am]T ∈ R
m×n

500 1000 1500 2000 2500
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Iteration

A
cc

ur
ac

y

Modified scheme τ=1,ρ=500
Modified scheme τ=2,ρ=500
Modified scheme τ=2,ρ=1
Modified scheme τ=2,ρ=0.01
Modified scheme τ=2,ρ=0.0001
Algorithm 1 τ=50,ρ=500
Algorithm 1 τ=1,ρ=500
Algorithm 1 τ=2,ρ=500

Fig. 2. Convergence curves of Algorithm 1 and modified AD-
ADMM for solving (14) with N = 16, m = 200, n = 1000,
θ = 0.1 andγ = 0.

0 500 1000 1500
4.55

4.6

4.65

4.7

4.75

4.8

4.85

4.9
x 10

4

Iterations

O
bj

ec
tiv

e
V

al
ue

 τ=1
 τ=2
 τ=6
 τ=11

(a)

2000 4000 6000 8000
4.55

4.6

4.65

4.7

4.75

4.8

4.85

x 10
4

Running Time (s)

O
bj

ec
tiv

e
V

al
ue

τ=1
τ=2
τ=6
τ=11

(b)

Fig. 3. Convergence curves of Algorithm 1 for solving (15).

is the training data matrix. We used the MiniBooNE particle iden-
tification Data Set4 which contains 130065 training samples (m =
130065) and the learning parameter has a size of50 (n = 50). The
constraint setW is set toW = {w ∈ R

n | |wi| ≤ 10 ∀i =
1, . . . , n}. The AD-ADMM is implemented over an HP ProLiant
BL280c G6 Linux Cluster. Then training samples are uniformly dis-
tributed to a set ofN = 10 workers. For each worker, we employed
the fast iterative shrinkage thresholding algorithm (FISTA) [17] to
solve the corresponding subproblem (8). The stepsize of FISTA is
set to0.0001 and the stopping condition is that the 2-norm of the gra-
dient is less than0.001. The penalty parameters of the AD-ADMM
method are set toρ = 0.01 andγ = 0. Figure 3(a) and Figure 3(b)
respectively show the convergence curves (objective value) of the
AD-ADMM versus the iteration number and the running time (sec-
ond), for various valuesτ . One can observe from Figure 3(a) that, in
terms of the iteration number, the convergence speed of AD-ADMM
slows down whenτ increases. However, as seen from Figure 3(b),
the running time of the AD-ADMM actually is smaller than its syn-
chronous counterpart (τ = 1). Specifically, for achieving the objec-
tive value4.6×104, the running time forτ = 11 is about 25% faster
than the synchronous algorithm (τ = 1).

4https://archive.ics.uci.edu/ml/datasets/
MiniBooNE+particle+identification

4784

6. REFERENCES

[1] R. Bekkerman, M. Bilenko, and J. Langford,Scaling up Machine
Learning- Parallel and Distributed Approaches. Cambridge Univer-
sity Press, 2012.

[2] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and distributed computa-
tion: Numerical methods. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1989.

[3] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed op-
timization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

[4] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild!: A lock-free ap-
proach to parallelizing stochastic gradient descent,”Proc. Advances in
Neural Information Processing Systems (NIPS), vol. 24, pp. 693-701,
2011, [Online] http://arxiv.org/abs/1106.5730.

[5] A. Agarwal and J. C. Duchi, “Distributed delayed stochastic opti-
mization,” Proc. Advances in Neural Information Processing Systems
(NIPS), vol. 24, pp. 873-881, 2011, [Online] http://arxiv.org/abs/1104.
5525.

[6] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A.Smola,
“Parameter server for distributed machine learning,” [Online] http:
//www.cs.cmu.edu/∼muli/file/ps.pdf.

[7] M. Li, D. G. Andersen, and A. Smola, “Distributed delayedprox-
imal gradient methods,” [Online] http://www.cs.cmu.edu/∼muli/file/
ddp.pdf.

[8] J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent:
Parallelism and convergence properties,”SIAM J. Optim.,, vol. 25,
no. 1, pp. 351–376, Feb. 2015.

[9] R. Zhang and J. T. Kwok, “Asynchronous distributed ADMM for con-
sensus optimization,” inProc. 31th ICML, , 2014., Beijing, China, June
21-26, 2014, pp. 1–9.

[10] P. Richtárik, M. Takáč, and S. D. Ahipasaoglu, “Alternating maximiza-
tion: Unifying framework for 8 sparse PCA formulations and efficient
parallel codes,” [Online] http://arxiv.org/abs/1212.4137.

[11] Q. Ling, Y. Xu, W. Yin, and Z. Wen, “Decentralized low-rank matrix
completion,” inProc. IEEE ICASSP, Kyoto, Japan, March 25-30, 2012,
pp. 2925–2928.

[12] B. He and X. Yuan, “On theo(1/n) convergence rate of Douglas-
Rachford alternating direction method,”SIAM J. Num. Anal., vol. 50,
2012.

[13] W. Deng and W. Yin, “On the global and linear convergenceof the
generalized alternating direction method of multipliers,” Rice CAAM
technical report 12-14, 2012.

[14] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear conver-
gence of the ADMM in decentralized consensus optimization,” IEEE
Trans. Signal Process., vol. 62, no. 7, pp. 1750–1761, April 2014.

[15] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family ofnoncon-
vex problems,” technical report; available on http://arxiv.org/pdf/1410.
1390.pdf.

[16] T.-H. Chang, M. Hong, W.-C. Liao, and X. Wang, “Asynchronous dis-
tributed ADMM for large-scale optimization- Part I: Algorithm and
convergence analysis,” submitted for publication.

[17] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,”SIAM J. Imaging Sci., vol. 2, no. 1,
pp. 183–202, 2009.

4785

