
STOCHASTIC PROXIMAL GRADIENT CONSENSUS OVER TIME-VARYING NETWORKS

Mingyi Hong† and Tsung-Hui Chang‡

† Dept. of IMSE and ECE
Iowa State University

Ames, IA, 50011
E-mail: mingyi@iastate.edu

‡ School of Science & Engineering
The Chinese University of Hong Kong, Shenzhen

Shenzhen, China 518172
E-mail: tsunghui.chang@ieee.org

ABSTRACT

We consider solving a convex, nonsmooth and stochastic optimiza-
tion problem over a multi-agent network. Each agent has access to
a local objective function and can communicate with its immediate
neighbors only. We develop a dynamic stochastic proximal-gradient
consensus (DySPGC) algorithm, featuring: i) it works for both the
static and randomly time-varying networks; ii) it can deal with either
the exact or the stochastic gradient information; iii) it has provable
rate of convergence. Interestingly, the developed algorithm includes
as special cases many existing (and seemingly unrelated) first-order
algorithms for distributed optimization over static networks, such
as the EXTRA (Shi et al 2014), the PG-EXTRA (Shi at 2015), the
IC/IDC-ADMM (Chang et al 2014), and the DLM (Ling et al 2015).
It is also closely related to the classical distributed gradient method.

Index Terms— Consensus optimization, alternating direction
method of multipliers, stochastic optimization

1. INTRODUCTION
Consider the following classical global consensus problem

min
y∈RM

f(y) :=

N∑
i=1

fi(y), (1)

where fi(y) is a convex function. Suppose N agents are distributed
over a network defined by an undirected graph G = {V, E}, with
|V| = N vertices and |E| = E edges. Each agent can communicate
with its immediate neighbors, and it is responsible for optimizing
one component function fi. For applications of this model, see a
recent survey [1]. The key research question is: how to enable the
agents to distributedly compute an optimal solution of (1), using only
local, and possibly inexact and stochastic, gradient information.

Suppose each agent i has a local copy of y, denoted as xi ∈ RM ,
then the classical distributed subgradient (DSG) method is given by

xr+1
i =

N∑
j=1

wrijx
r
j − γrdri , ∀ i ∈ V, (2)

where r denotes the iteration counter; dri ∈ ∂fi(xri) is a subgradi-
ent vector; wrij ≥ 0 is the weight for the edge eij ∈ E at iteration
r; and γr > 0 is the stepsize. The convergence of the DSG was
first analyzed in [2], and it has been extended to many scenarios,
e.g., when there are local constraints [3], or when the messages ex-
changed among the agents are quantized [4]. The DSG is known

M. Hong is supported by NSF, Grant No. CCF-1526078. T.-H. Chang is
supported by NSFC, China, Grant No. 61571385.

to converge with rate O(ln(r)/
√
r) [5]. Under certain smoothness

assumption on f , Shi et al [6] propose an EXTRA algorithm which
adds certain error-correction terms to the DSG iteration (2). EXTRA
and its extension [7] achieve anO(1/r) convergence rate for smooth
convex problem and linear convergence for smooth strongly convex
problems. Analysis on related algorithms can be found in [5, 8, 9].

Another popular approach for distributed optimization is based
on the alternating direction method of multipliers (ADMM) [10–13].
The O(1/r) rate of convergence for decentralized ADMM has been
shown by [14] with stochastic communication graph, and the linear
convergence is shown in [15] for smooth strongly convex problems
over static networks. Almost all the ADMM-based methods require
that each agent solves its local problem exactly (cf. [11, 13, 16–18]),
which can be very expensive, except two related works [19,20]. Re-
cently, [21] demonstrates that the ADMM is also capable of solving
certain nonconvex global consensus problem.

In this work, we consider the following popular structured ver-
sion of the global consensus problem (1)

min
y∈RM

f(y) :=

N∑
i=1

fi(y) =

N∑
i=1

gi(y) + hi(y), (3)

where each gi : RM → R is a smooth convex function; each
hi : RM → R is a convex but possibly nonsmooth lower semi-
continuous function. We propose an ADMM based method, named
the dynamic stochastic proximal-gradient consensus (DySPGC), fea-
turing: i) When only an unbiased estimate of ∇gi is known, it con-
verges with a rate O(1/

√
r); ii) When the exact ∇gi is known, the

rate improves toO(1/r); iii) The algorithm works for both the static
and certain randomly time-varying networks.

What is more interesting is our insight into the connection be-
tween the proposed DySPGC and a few DSG-type methods. In
particular, we show that EXTRA/PG-EXTRA [6, 7] are in fact spe-
cial instances of the proposed DySPGC algorithm (when applied to
a static network with symmetric weights and exact gradients). Fur-
ther, we also establish a close connection between the DSG iteration
(2) and the proposed DySPGC. Additionally our method generalizes
other distributed ADMM-type methods such as the DLM [20] and
the IC-ADMM [19].

2. SYSTEM MODEL

We begin by assuming that each hi admits an “easy prox” operator
[22], i.e., the following problem is easily solvable

proxβh(u) := min
y
hi(y) +

β

2
‖y − u‖2. (4)

4776978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

Assume that ∇gi is Lipschitz continuous, i.e., for some Pi > 0,

‖∇gi(y)−∇gi(v)‖ ≤ Pi‖y − v‖, ∀ y, v ∈ dom(h), ∀ i. (5)

SupposeN agents are defined over a connected undirected graph
G = {V, E}. Define a companion symmetric directed graph given
by Gd = {V,A,W}, where A is the set of directed arcs with
|A| = 2E, and for every edge (i, j) ∈ E , there are two edges
eij , eji ∈ A; W ∈ RN×N+ is a weight matrix. Let us use Ni to
denote the neighborhood of node i, i.e., Ni = {j | eij ∈ A}.
Generally we assume that the weight matrix W is a (row) stochas-
tic matrix, its diagonal elements are all positive, and its off-diagonal
elements satisfy

W [i, j] > 0, if eij ∈ A, W [i, j] = 0, otherwise. (6)

Reformulation: It is well-known that (3) can be reformulated by

min

N∑
i=1

gi(xi) + hi(xi), s.t. xi = zij , xj = zij , ∀ eij ∈ A.

Define x := {xi} ∈ RNM , and z = {zij} ∈ R2EM . Also
introduce two matrices A = [A1;A2] ∈ R4EM×NM and B =
−[I2EM ; I2EM] ∈ R4EM×2EM , where the (q, i)th block of A1

(resp. (q, j)th block of A2) is IM (M by M identity matrix) if the
qth block of z is zij . Then, the previous problem can be transformed
to the following compact representation [1, 13, 19, 20]

min f(x) :=

N∑
i=1

gi(xi) + hi(xi), s.t. Ax+Bz = 0. (P)

Random Graph: We will use the following random graph [9, 14].

Definition 2.1 (The randomly activated graph) At each time r, each
link e ∈ E has a probability pe ∈ (0, 1] of being active. The set
of “active” nodes is: Vr := {i | ∃eij ∈ Ar, ∀ i ∈ V}. Further,
assume that G is connected, and the graph realizations Gr and Gt
are independent ∀ r 6= t.

Define a vector of positive constants ρ := {ρij > 0}
eij∈A. For a

given graph Grd at each time r, construct a time-dependent diagonal
matrix Γr � 0 by Γr = blkdg[Ξr ⊗ IM ,Ξr ⊗ IM] ∈ R4EM×4EM ,
where Ξr ∈ R2E×2E is a diagonal matrix induced by the graph Grd
with Ξr[q, q] = ρij if link eij ∈ Ar and the qth block of z is zij ;
otherwise Ξr[q, q] = 0. Also define matrices Γ � 0 and Ξ � 0
similarly, but over the original graph Gd.
Gradient Information: Assume that each agent i is responsible for
a single component function gi + hi, and it only has an estimate of
∇gi(xi), denoted as g̃i(xi, ξi). Such estimate satisfies

E[g̃i(xi, ξi)] = ∇gi(xi), E
[
‖g̃i(xi, ξi)−∇gi(xi)‖2

]
≤ σ2, ∀ i,

where ξi is a random variable following an unknown distribution; σ2

is the variance of the error. Let G̃(x, ξ) :=
∑N
i=1 g̃i(xi, ξi).

3. THE PROPOSED ALGORITHMS

Our proposed algorithm is based on the ADMM [11,23]. To proceed,
we express the augmented Lagrangian of (P) as

L(x, z, λ)=

N∑
i=1

gi(xi) + hi(xi) + 〈λ,Ax+Bz〉+
1

2
‖Ax+Bz‖2Γ,

where λ ∈ R4EM is the dual variable. Note that here a matrix pe-
nalization parameter Γ replaces the single parameter used in con-
ventional ADMM. For each i ∈ V , define Ωi := ωiIM � 0 as a
proximal matrix. Define Ω := blkdiag[Ω1, · · · ,ΩN] � 0. Let

M+ := AT1 +AT2 ∈ RNM×2EM , M− := AT1 −AT2 ∈ RNM×2EM .

To model the time-varying network, let us define G̃r+1(xr, ξr+1) :=
[a1; a2; · · · ; aN] ∈ RMN with

ai =

{
g̃i(x

r, ξr+1) if i ∈ Vr+1

0 otherwise

Define hr+1(x) :=
∑
i∈Vr+1 hi(xi). Also define the matrices

Ar, Br,Ωr,Mr
+,M

r
− similarly as A, B, Ω, M+ and M−, but over

the graph realization Grd (i.e., entries corresponding to the inactive
links/nodes are set to zeros). Using these definitions, we present in
the table below the proposed algorithm, named the dynamic stochas-
tic proximal-gradient consensus (DySPGC) algorithm.

Algorithm 1. The DySPGC Algorithm
At iteration 0, let BTλ0 = 0, z0 = 1

2
MT

+x
0.

At each iteration r + 1, update the variable blocks by:

xr+1 = arg min
〈
G̃r+1(xr, ξr+1), x− xr

〉
+ hr+1(x)

+
1

2

∥∥Ar+1x+Br+1zr + Γ−1λr
∥∥2

Γ

+
1

2
‖x− xr‖2Ωr+1+ηr+1IMN

(7a)

xr+1
i = xri , if i /∈ Vr+1 (7b)

zr+1 = arg min
1

2

∥∥Ar+1xr+1 +Br+1z + Γ−1λr
∥∥2

Γ
(7c)

zr+1
ij = zrij , if eij /∈ Ar+1 (7d)

λr+1 = λr + Γ
(
Ar+1xr+1 +Br+1zr+1) (7e)

When the network is static and the exact gradient is known, i.e.,
Grd = Gd and G̃r+1(xr, ξr+1) = ∇g(xr) for all r, we can set
ηr+1 = 0 for all r. The DySCPA reduces to the following proximal
gradient consensus (PGC) algorithm.

Algorithm 2. The PGC Algorithm
At iteration 0, let BTλ0 = 0, z0 = 1

2
MT

+x
0.

At each iteration r + 1, update the variable blocks by:

xr+1 = arg min
x
〈∇g(xr), x− xr〉+ h(x) + 〈λr, Ax+Bzr〉

+
1

2
‖Ax+Bzr‖2Γ +

1

2
‖x− xr‖2Ω (8a)

zr+1 = arg min
z

1

2

∥∥Axr+1 +Bz + Γ−1λr
∥∥2

Γ
(8b)

λr+1 = λr + Γ
(
Axr+1 +Bzr+1) (8c)

Below we present distributed implementation of the proposed
algorithms. Define a stepsize parameter βr+1

i as

βr+1
i := 2

(∑
j∈Nr+1

i

ρ̂ij +
wi
2

)
, with ρ̂ij :=

ρij + ρji
2

, ∀ i.

4777

Let us define a new stepsize matrix Υr+1:= diag([βr+1
1 , · · · , βr+1

N])⊗
IM � 0 and specialize the weight matrix W r+1 ∈ RN×N as

(W [i, j])r+1=

ρji+ρij∑

`∈Nr+1
i

(ρ`i+ρi`)+ωi
=

ρji+ρij

βr+1
i

, if eij ∈ Ar+1,

ωi∑
`∈Nr+1

i

(ρ`i+ρi`)+ωi
= wi

βr+1
i

, i = j, i ∈ Vr+1

0, otherwise,
(9)

Clearly, for any given r, W r is a row stochastic matrix (but not dou-
bly stochastic) and it satisfies (6).

Let us split λr by λr = [δr; γr] where δr, γr ∈ R2EM . It can
be show that the DySPCA is equivalent to (see [24] for a proof):

xr+1
i +

1

βr+1
i

ζr+1
i +

ηr+1

βr+1
i

(xr+1
i − xri) +

∑
j∈Nr+1

i
(δrij − δrji)

βr+1
i

=
−1

βr+1
i

(
g̃i(x

r
i , ξ

r+1
i) +

∑
j∈Nr+1

i

(
ρijz

r
ij + ρjiz

r
ji

)
+ ωix

r
i

)
, ∀ i ∈ Vr+1

(10a)

xr+1
i = xri , ∀ i /∈ Vr+1 (10b)

zr+1
ij =

{
1
2

(
xr+1
i + xr+1

j

)
, if eij ∈ Ar+1

zrij , otherwise
(10c)

δr+1
ij =

{
δrij +

ρij
2

(xr+1
i − xr+1

j), if eij ∈ Ar+1

δrij otherwise.
(10d)

for some ζr+1
i ∈ hi(xr+1

i).
Surprisingly, when the network is static and G̃(x; ξ) = ∇g(x),

the PGC algorithm admits a single-variable characterization.
Proposition 3.1 The iteration (8a) – (8c) has the following compact
characterization for all r ≥ 1:

xr+1 − xr + Υ−1(ζr+1 − ζr)−Υ−1 (−∇g (xr) +∇g
(
xr−1))

= (W ⊗ IM)xr − 1

2
(IMN +W ⊗ IM)xr−1. (11)

In particular, each agent i implements the following iteration

xr+1
i − xri +

1

βi
(ζr+1
i − ζri)− 1

βi

(
−∇gi

(
xri
)

+∇gi
(
xr−1
i

))
=

1∑
j∈Ni ρ̂ij + ωi

(∑
j∈Ni

ρ̂ijx
r
j + ωix

r
i

)
− 1

2

(
xr−1
i +

1∑
j∈Ni ρ̂ij + ωi

(∑
j∈Ni

ρ̂ijx
r−1
j + ωix

r−1
i

))
Remark 3.1 If h ≡ 0 (no nonsmooth term), the iteration (10a)–
(10d) can be implemented in a straightforward manner (i.e., in closed-
form). Specifically, at iteration r + 1, each node i updates xi and
{zij , δij | ∀ j ∈ N r+1

i }. As long as node i can communicate with
its neighbors, these updates can be easily performed. When h is
present, it can be shown that the iteration (11) is equivalent to

xr+1
i = proxβihi

(
− 1

βi
∇gi(xri) + Ŵix

r +

r∑
t=1

(Ŵi − W̃i)x
t−1).

where Ŵi and W̃i are respectively the ith block-column of

Ŵ := W ⊗ IM , W̃ :=
1

2
(IMN +W ⊗ IM), (12)

and W is given in (9); proxβihi is the usual proximity operator.

4. CONVERGENCE RATE ANALYSIS
4.1. Convergence Analysis
We begin analyzing the (rate of) convergence of the proposed meth-
ods. Our main results are summarized in the following table. The
proofs of various results can be found in [24].

Table 1. Main Convergence Results.
Algorithm Conv. Condition Conv. Rate

Network/Gradient

Static/Exact Ω + 1
2
M+(Ξ⊗ IM)MT

+ � P̃ /2 O(1/r)

Static/Inexact Ω + 1
2
M+(Ξ⊗ IM)MT

+ � P̃ O(1/
√
r)

Random/Exact Ω � P̃ /2 O(1/r)

Random/Inexact Ω � P̃ O(1/
√
r)

Due to its relative simplicity, we first analyze Algorithm 2 in
which the exact gradient is available and the network is static.

Theorem 4.1 Suppose problem (3) has a nonempty optimal solution
set. Let Gr = G for all r, where G is connected. Then Algorithm 2
converges to a primal-dual optimal solution of problem (P) if

2Ω +M+(Ξ⊗ IM)MT
+ = ΥW + Υ � P̃ . (13)

where P̃ := diag([P1, · · · , PN])⊗ IM ∈ RMN×MN .

A sufficient condition for (13) is that 2Ω � P̃ , which is equivalent
to ωi > Pi/2 for all i ∈ V . Comparing with existing convergence
results on proximal-based ADMM such as [25] and [26], our bound
for the penalty parameter ωi is reduced by half. More importantly,
no global information is needed at each agent to verify this condition,
as it is neither related to the network structure nor any information
about the global objective function.

Next we analyze the case where the graph is static and the gra-
dient is stochastic.

Theorem 4.2 Suppose that problem (3) has a nonempty optimal so-
lution set, and the graph is static and connected (with Gr = G for
all r). Assume that dom(h) is a bounded set, i.e., there exists a fi-
nite C > 0 such that dx := sup

x̂, x̃∈dom(h)
‖x̂ − x̃‖ ≤ C. Let

w := [x; z;λ]. Define w̄r+1 := 1
r+1

∑r
t=0 w

t,

dz := sup
x̂, x̃∈dom(h)

√√√√ ∑
ij:eij∈A

2ρij‖x̂i − x̃j‖2,

where {wt} are the iterates generated by Algorithm 1. Suppose that
ηr+1 =

√
r + 1, ∀ r, and the stepsize matrix satisfies

2Ω +M+(IM ⊗ Ξ)MT
+ = ΥW + Υ � 2P̃ . (14)

Then at a given iteration r, we have

E [f(x̄r)− f(x∗)] + ρ‖Ax̄r +Bz̄r‖

≤ σ2

√
r

+
d2
x

2
√
r

+
1

2r

(
d2
z + d2

λ(ρ) + max
i
ωid

2
x

)
where dλ(ρ) := supλ∈Bρ ‖λ− λ

0‖2Γ−1 , Bρ = {λ | ‖λ‖ ≤ ρ}, and
ρ > 0 is any finite constant.
Specializing the above result to the exact gradient case, we can easily
show that Algorithm 2 converges with a faster rate of O(1/r). Fur-
ther we can analyze the convergence of the DySPCA with random
network activation.

4778

Theorem 4.3 Define dx, dz and w̄r+1 as in the statement of Theo-
rem 4.2. Suppose {wt} = {xt, zt, λt} is a sequence generated by
Algorithm 1 (DySPCA), and that

ηr+1 =
√
r + 1, ∀ r, and Ω � P̃ .

Suppose that the graph {Gr} follows Definition 2.1. Then we have

E [f(x̄r)− f(x∗) + ρ‖Ax̄r +Bz̄r‖]

≤ σ2

√
r

+
d2
x

2
√
r

+
1

2r

(
2dJ + d2

z + d2
λ(ρ) + max

i
ωid

2
x

)
where dλ(ρ) := supλ∈Bρ ‖λ− λ

0‖2Γ−1 , Bρ = {λ | ‖λ‖ ≤ ρ}, and
ρ > 0 is any finite constant, and dJ := supλ∈Bρ J(x0, z0, λ) for
some function J(·).

4.2. Connection with Existing Algorithms
We briefly discuss the connection of the proposed DySPCA with a
few existing algorithms; See Table 2 for a summary.

Table 2. Comparison with Different Algorithms with DySPGC.

Algorithm Relation Special Setting

EXTRA Special Case Static, h ≡ 0, W = WT , G̃ = ∇g
DSG Different x-step Static, g smooth, G̃ = ∇g
ICADMM Special Case Static, G̃ = ∇g, g composite
DLM Special Case Static, h ≡ 0, W = WT , G̃ = ∇g

First, one can show that the DySPCA is a generalization of the
EXTRA algorithm [6]. Consider applying Algorithm 2 to problem
(P) with a smooth objective. According to Proposition 3.1, the re-
sulting iterates become (the weight matrices are given in (12))

xr+1 = xr + Υ−1 (∇g(xr−1)−∇g(xr)
)

+ Ŵxr − W̃xr−1

This is precisely the EXTRA algorithm [6], except that here a more
general matrix stepsize Υ−1 is used instead of a scalar stepsize. If
one insists on having a scalar stepsize β = βi = βj > 0, ∀ i, j, then
this implies that the weight matrix W must be symmetric. There are
at least two ways to construct such single scalar stepsize; see [24].
To compare the convergence result in Theorem 4.1 and that of [6,
Theorem 3.3], note that when a single stepsize is used, we have Υ =
βIMN . Therefore a sufficient condition to guarantee the condition
given in Theorem 4.1 is that βλmin (IMN +W) > maxi Pi. This
is precisely the condition set forth in [6, Theorem 3.3].

Second, we can show that when the problem is smooth (hi ≡ 0),
and the x-step of the PGC algorithm (8a) is replaced by

xr+1= arg min 〈∇g(xr), x− xr〉+
1

2
‖Ax+Bzr‖2Γ +

1

2
‖x− xr‖2Ω

then we recover the DSG iteration (2). Obviously, our convergence
analysis does not work for this variant, as the x-update is no longer
related to the dual variable λ. Nevertheless, the above observa-
tion reveals a fundamental connection between the ADMM-based
method and the classical DSG. We can further show that DySPCA
generalizes the IC-ADMM proposed in [19] and the PG-EXTRA [7].
Due to space limitations we do not further expand our discussion.

5. NUMERICAL RESULTS
We show some preliminary numerical results of the proposed algo-
rithms by solving a LASSO problem

min
x

1
2

∑N
i=1 ‖Aix− bi‖

2 + ν‖x‖1 (15)

0 200 400 600 800 1000
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

Iteration

A
c
c
u

ra
c
y
 +

 C
o

n
s
e

n
s
u

s
 E

rr
o

r

PG−EXTRA

Proposed PGC

0 100 200 300 400 500 600 700 800 900 1000
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

Iteration

A
c
c
u

ra
c
y
 +

 C
o

n
s
e

n
s
u

s
 E

rr
o

r

SGD

Proposed Stochastic PGC

Fig. 1. Top: Comparison of PGC with PG-EXTRA. Bottom: Comparison of SPGC
with distributed SGD

where Ai ∈ RK×M , bi ∈ RK , where the parameters of the problem
are given by: N = 16, M = 100, ν = 0.1, K = 200. Each
data matrix Ai is randomly generated as Ai = Li × Qi where
Li ∼ Uniform[0, 10], and Qi ∈ RK×M whose entries are iid
standard Gaussian random variables; bi = Aic + di where c ∈
RN is a sparse random vector with 0.01 percent of uniformly dis-
tributed non-zero entries; di ∈ RK is a vector of iid zero-mean
Gaussian random variables with standard deviation 0.01. Note that
here Pi = ‖AiATi ‖, ∀ i. Due to space limitation, we only consider
static graphs which are generated according to the method proposed
in [27], with a radius parameter set to 0.4.

In our simulation, we compare Algorithm 2 (PGC) with the PG-
EXTRA [7], and compare the static version of Algorithm 1 (the
stochastic PGC) with the D-SGD [28]. The stepsize for the EXTRA
is chosen according to the sufficient condition suggested in [7], and
the weight matrix W is the Metropolis constant edge weight matrix.
For Algorithm 1 (resp. Algorithm 2), ωi = Pi/2 (resp. ωi = Pi)
and ρij = 10−3 for all i, j. For the D-SGD, the stepsize is set as
10−5. The error of the gradient estimate is σ2 = 0.1. To measure
the progress of different algorithms, we define the following

accuracy = |f(x̄r)−f∗|
f∗ ,where x̄r = 1

N

∑N
i=1 x

r
i ,

consensus error =
∑N
i=1 ‖x

r
i − x̄r‖2.

The performance of different algorithms is shown in Fig. 1. Clearly
the proposed algorithm outperforms both the EXTRA and the D-
SGD. This is expected since compared with the EXTRA, the PGC is
able to use larger and more flexible stepsizes, while it is known that
the D-SGD with constant stepsize does not converge to the global
optimal solution, and D-SGD with diminishing stepsizes has very
slow convergence (without convergence rate guarantee).

4779

6. REFERENCES

[1] G. B. Giannakis, Q. Ling, G. Mateos, I. D. Schizas, and H. Zhu, “Prox-
imal splitting methods in signal processing,” in Splitting Methods in
Communication and Imaging. Springer New York, 2015.

[2] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, 2009.

[3] A. Nedic, A. Ozdaglar, and P.A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Transactions on Auto-
matic Control, vol. 55, no. 4, pp. 922–938, April 2010.

[4] A. Nedic, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “Distributed
subgradient methods and quantization effects,” in IEEE Conference on
Decision and Control, Dec 2008, pp. 4177–4184.

[5] I. Chen, “Fast distributed first-order methods,” 2012, Master’s thesis,
Massachusetts Institute of Technology.

[6] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: An exact first-order
algorithm for decentralized consensus optimization,” 2014, online at
arXiv:1404.6264.

[7] W. Shi, Q. Ling, G. Wu, and W. Yin, “A proximal gradient algorithm for
decentralized nondifferentiable optimization,” in International Confer-
ence on Acoustics, Speech and Signal Processing, 2015.

[8] D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast distributed gradient
methods,” IEEE Transactions on Automatic Control, vol. 59, no. 5, pp.
1131–1146, May 2014.

[9] J. C. Duchi, A. Agarwal, and M. J. Wainwright, “Dual averaging for
distributed optimization: Convergence analysis and network scaling,”
IEEE Transactions on Automatic Control, vol. 57, no. 3, pp. 592–606,
March 2012.

[10] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods, Athena-Scientific, second edition, 1999.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating direc-
tion method of multipliers,” Foundations and Trends in Machine Learn-
ing, vol. 3, no. 1, pp. 1–122, 2011.

[12] R. Glowinski, Numerical methods for nonlinear variational problems,
Springer-Verlag, New York, 1984.

[13] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc wsns
with noisy links - part i: Distributed estimation of deterministic sig-
nals,” IEEE Transactions on Signal Processing, vol. 56, no. 1, pp. 350
– 364, 2008.

[14] E. Wei and A. Ozdaglar, “On the O(1/k) convergence of asynchronous
distributed alternating direction method of multipliers,” 2013, Preprint,
available at arXiv:1307.8254.

[15] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear conver-
gence of the ADMM in decentralized consensus optimization,” IEEE
Transactions on Signal Processing, vol. 62, pp. 1750–1761, 2014.

[16] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel, “D-
admm: A communication-efficient distributed algorithm for separable
optimization,” IEEE Transactions on Signal Processing, vol. 61, no.
10, pp. 2718–2723, May 2013.

[17] H. Zhu, A. Cano, and G.B. Giannakis, “Distributed consensus-based
demodulation: algorithms and error analysis,” IEEE Transactions on
Wireless Communications, vol. 9, no. 6, pp. 2044–2054, June 2010.

[18] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast con-
sensus by the alternating direction multipliers method,” IEEE Transac-
tions on Signal Processing, vol. 59, no. 11, pp. 5523–5537, Nov 2011.

[19] T.-H. Chang, M. Hong, and X. Wang, “Multi-agent distributed opti-
mization via inexact consensus admm,” IEEE Transactions on Signal
Processing, vol. 63, no. 2, pp. 482–497, Jan 2015.

[20] Q. Ling, W. Shi, G. Wu, and A. Ribeiro, “DLM: Decentralized lin-
earized alternating direction method of multipliers,” IEEE Transactions
on Signal Processing, vol. 63, no. 15, pp. 4051–4064, Aug 2015.

[21] M. Hong, Z.-Q. Luo, and M. Razaviyayn, “Convergence analysis of
alternating direction method of multipliers for a family of nonconvex
problems,” 2014, submitted for publication.

[22] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 1–112, 2013.

[23] J. Eckstein, “Some saddle-function splitting methods for convex pro-
gramming,” Optimization Methods and Software, vol. 4, no. 1, pp.
75–83, 1994.

[24] M. Hong and T.-H. Chang, “Stochastic proximal gradient consensus
over time-varying networks,” 2015, Technical Report.

[25] X. Gao, B. Jiang, and S. Zhang, “On the information-adaptive variants
of the admm: An iteration complexity perspective,” 2014, Preprint.

[26] Y. Ouyang, Y. Chen, G. Lan, and Jr. E. Pasiliao, “An accelerated lin-
earized alternating direction method of multipliers,” SIAM Journal on
Imaging Sciences, vol. 8, no. 1, pp. 644–681, 2015.

[27] M. E. Yildiz and A. Scaglione, “Coding with side information for rate-
constrained consensus,” IEEE Trans. Signal Process., vol. 56, no. 8,
pp. 3753–3764, 2008.

[28] S. Sundlhar Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochas-
tic subgradeint projection algorithms for convex optimization,” J. Op-
tim. Theory Appl., vol. 147, pp. 516–545, 2010.

4780

