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Abstract—We consider an oligopoly dynamic pricing problem bounded regret over an infinite horizon, where regret is ddfin
where the demand model is unknown and the sellers have gs the expected cumulative profit loss as compared to the
different marginal costs. We formulate the problem as a repated ideal scenario with a known demand model. The resulting
game with incomplete information. We develop a dynamic pring equilibrium also reveals a spontaneous collusion among a
strategy that leads to a Pareto-efficient and ;ubgame-perd:e ) ; .
equilibrium and offers a bounded regret over an infinite horizon, ~Subset of sellers due to the difference in marginal costs.
where regret is defined as the expected cumulative profit losas
compared to the ideal scenario with a known demand model. B- Related Work
The resulting equilibrium also reveals a spontaneous colkion The problem studied in this paper falls into the category

among a subset of sellers due to the difference in marginal sts L . .
among the sellers. of Bertrand competition in an oligopoly first formulated by

Index Terms—Dynamic pricing, repeated game, subgame- Bertrandin 1883 [1]. In Bertrand's original study, a stagame

perfect Nash equilibrium, regret. was considered, and the demand model was assumed known.
Various repeated games for Bertrand competition under know
I. INTRODUCTION demand models have been formulated and studied in the

literature. See [2—6] and references therein.
] ) ) ] ) Dynamic pricing under demand uncertainty has been stud-
We consider an oligopoly in which multiple sellers offetay nder both monopoly [7-10] and oligopoly [11-13]. In
a product to a stream of customers arriving sequentially i icular, Rotemberg and Saloner [11] considered théngric
time. The demand model, characterizing the probability &ha ;rohjem when the demand fluctuates in different business cy-
customer purchases the product at a given price, is unknoWBs. Assuming that all sellers have the same marginal oast a
but assumed to take one 81 possible forms. At each time, yemand fluctuations are i.i.d. following a known distrilouti
the sellers set their price for the product simultaneowstyl i each period, Rotemberg and Saloner characterized salus
the sel_ler(s) offerln_g the Iowe_st price may make a SUCCESSBﬁCing in an infinitely repeated game. In [12] Bertsimas and
sale with a probability determined by the demand model. Th&rakis studied parameterized demand learning in oligopol
objective of each seller is to maximize its long-term pro#o \yhere the unknown demand function is a known parametric
an infinite horizon through a dynamic pricing strategy.  fynction with unknown parameter values. The objective @] [1
Each seller faces the classic tradeoff between learning 88dyiso different from this paper. Rather than formulating a
earning present in all online learning problems. What Cd’mWepeated game and explicitly studying equilibria, Bertsm
cates the problem at hand is that each seller's sellingWistg;nq perakis took an optimization approach based on a joint
is private information. _A_s _a result, each seller is Iear_riihg estimate of each firm’s demand. In our prior work [13], we
demand model from disjoint sets of raljdom obser.vatlons,.aggnsidered oligopoly dynamic pricing under demand uncer-
the sellers compete for not only profit but also |nformat|0{bimy' but assumed that all sellers have the same marginal
for learning the demand model. What further complicates thgsi The symmetry in marginal cost leads to fair competitio
problem is the heterogeneous marginal costs among thessellgmong all sellers as shown in our prior work. However, the
which may lead to collusion among a subset of sellers.  peterogeneous marginal cost results in collusion among a

We formulate the above oligopoly dynamic pricing problerg pset of sellers as demonstrated in this paper.
as an infinitely repeated game with incomplete information,

where the incomplete information is referring to the uncer- [l. PRELIMINARIES

tainty in the payoff function due to the unknown demand |, this section, we briefly review basic concepts of infinyitel

model. We develop a dynamic pricing strategy which leadapeated games with incomplete information. In particute

s to a subgame-perfect Nash equilibrium. Furthermore, t3gyoff functions are determined by an unknown state of eatur

developed pricing strategy is Pareto-efficient and offers acgnsider a repeated game played My players over an

Orpe , infinite horizon. Before the game starts, a state of natuees2
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of private signalg);. At each timet, under the action profile is offered by multiple sellers, the customer randomly clesos
a = (a;)Y, of all players, player receives a private signal one of them with equal probability if he decides to make the
o) (a) € O; and a payoffu'*’(a), both depending on the purchase. The objective of each seller is a dynamic pricing
unknown statev. ' strategy that maximizes its profit over an infinite horizon.

Let A* be thet-fold Cartesian product ofA4;)Y,, i.e., an ~ The above problem can be formulated as a repeated game
element ofA* is a list of action profiles specifying the actiongvith incomplete information as follows. The unknown demand
played by all players from time to ¢. Similarly, letO! denote model p()(p) is determined by the state of nature. The set
the ¢-fold Cartesian product af;. Let ! = A* x Of denote Of private signals (i.e., observations) for selteis given by
the history space of playérat timet. A strategyo; of player O; = {0,1} where1 indicates a successful sale afdan
i is a sequence of mappings, one for eacthat specifies the unsuccessful one. At each timeonly thosen (n > 1) sellers
action of playeri at time¢ under each historyit € H!. We offering the lowest price receive a private observation which

define the payoff of a strategy profite= (c;)., using the is a realization of a Bernoulli random variable with mean

limit of means criterion p“)(p)/n. The one-shot payoff for each of thesesellers
1 & o is given by the expected profil’ (p) = (p — ¢:)p™ (p) /.
U (o) = lim inf > u“(at (o)), (1)  We assume that each possible demand mpléte(p) is con-
e =1 tinuously differentiable and strictly decreasing over, p,].
wherea! (o) is the action profile induced by at timet. Define
Let o_; = (0;);i. A strategy profiles is a Nash equilib- @) (p,¢) = (p — ¢)p“) (p) ®)

rium if for all 7 andw, we have

@) @), s which is the expected profit for a seller with marginal cost

U; " (o) 2 U; " (05, 0-4), (2)  and offering pricep under monopoly. Let

where o} is any strategy for playei. For a repeated game,
there exist Nash equilibria that violate the notion of opatiity
at out-of-equilibrium information sets. Subgame perf&tti genote the profit-maximizing price under demand model
enforces sequential rationality which requires optimdiese  ,(«)(p) and marginal cost: in monopoly. We assume that
ior in both In-eqUIIIbrlum and Out-Of-eqUIllbrlum infornian p(w)(C) is unique andf,«(w) (p7 C) is continuous and Stricﬂy
sets [14]. increasing withp over [¢, p)(¢)]. This assumption imposes
Definition 1. A strategy profiles is a subgame-perfect equi-CNy @ mild condition on the demand model and follows
librium of a repeated game if for any histohy = U;ht, the from the IGFR (increasing generalized failure rate) asgionp
induced continuation strategyl,: is a Nash equilibrium of commonly adopted on demand models [15].

P (c) = arg max r“)(p, c) 4)
PE[c,pul

the continuation game that startstafbllowing history A’ IV. OLIGOPOLY DYNAMIC PRICING UNDER KNOWN
Definition 2. A Nash equilibriume is Pareto-efficient if DEMAND MODEL
no strategy can improve the payoff of one player without We first consider the case when the demand model is known.
decreasing the payoff of at least one other player. The results obtained here will be used in subsequent ssction
When the demand model“)(p) is known, the dynamic
[1l. PROBLEM FORMULATION pricing problem is a repeated Bertrand game and a subgame-

An oligopoly is a market where a small number of seller@erfect trigger strategy with pure actions exists. As shawn
(referred to as oligopolists) dominate the market. Cormggarithe theorem below, a subgame-perfect grim trigger strategy
to a perfectly competitive market, oligopolists are prietteys With pure actions is given by a collusion of a subset/of
rather than price takers. Each seller’s objective is to mige Sellers with the lowest marginal cosf, . .., cx. The number

its own long run profit (revenue minus cost) through a pricinff Of colluding sellers is determined by the marginal costs
strategy. ¢;}N, and the demand model“)(p) as specified below.

Consider an oligopoly withV sellers offering a certain N this colluding strategy (referred to ag:), seller1, the
product to a stream of customers. The marginal cost forrself’® With the lowest marginal cost, sets the price and forms
i to produce one unit of the productds The marginal cost of _the optimal coI_Iu3|on to maximize its own profit. Specifigall
each seller is common knowledge to all sellers. Without lodfsSeller 1 decides to (:,?Jl)u_de with selle to seller &, the
of generality, we assum@ < ¢ < ... < cy. At each given Profitmaximizing pricep,” is given by
time ¢, selleri (: = 1,...,N) proposes a price;(t) from (@)
A; = [ci, pu] (NOte that a price below the seller's marginal cost P
¢; is not an option ang,, is the maximal possible price). The ) ) ) ) ) )
customer purchases from the seller offering the Iowestepri§'”ce7"(w> (p, c1) is continuous and strictly increasing with
p = min, p;(£) with probability p(p) which is referred to as We have
the demand model. The demand model is unknown and takes (W) cky1 k<N 6
one of theM possible formg p() (p)} M, . If the lowest price Pe = p@(e) k=N, ©)

1
=arg max —r“(p,¢). (5)
pE(cr,Chi1]
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where without loss of generality, we have assumed thatin DLC, the declaration time slots work like public signals
p“)(c1) > ey and setexy; = p@)(c;) for notation con- which are used by seller to coordinate with other sellers.
venience. The optimal collusiof” for seller1 is thus given The cooperation time slots enable learning by the property
by that all participating sellers offer the same price. Thdesel
1 w N . S n L .
K = arg max —r(“)(p( ) cr). @) 1's actions are restricted to the profit-maximizing colluding
k=1,...N k k prices{p“)} ) . And the actions in the cooperation time are
For the ease of notation, Igt~) denote the profit-maximizing determined by the actions from the declaration time in the
colluding price (i.e., the subscrigt is omitted). Thus inve, Same epoch. _ _
K sellers with marginal cost, < ) collusively offers price In the followm_g th_eprem, we summarize the properties of
) and any deviations will trigger a everlasting punishmerf?® DLC dynamic pricing strategy.
Specifically, sellej > 1 will punish deviations by offering its Theorem 2. Properties of DLC:
marginal costc;. Seller1 will punish deviations by offering

) Lo" " o DLC is a subgame-perfect Nash equilibrium.
price p = ¢o — € for an arbitrarily small positive.

o DLC is a Pareto-efficient Nash equilibrium.
Theorem 1. The colluding strategy ¢ is a subgame-perfect « DLC achieves a bounded regret, i.e., under any demand
and Pareto-efficient Nash equilibrium. modelp) € {p()} M there exists a positive constant
C' such that
V. OLIGOPOLY DYNAMIC PRICING UNDER UNKNOWN Rpe < C.

DEMAND MODEL The proof is omitted due to space limit.

In this section, we develop an oligopoly dynamic pricing VI
strategy under an unknown demand model to approach the ) . .
performance o given in Sec. IV. The learning efficiency of N this section, we present simulation examples to study the
a dynamic pricing strategy is measured by regret,,, which Iearmng efficiency qf DLC The S|mulat|pn shows the average
is defined as the accumulated total profit loss as compared?fgfit for the dynamic pricing problem with’ = 2 sellers and

. NUMERICAL EXAMPLE

o under a known demand model. M = 2 demand models. The demand models alré(p) =
N 1.3 — 0.6p and p® (p) = 1.1 — 0.4p. The maximum price,
_ S (W) ¢ (@)t is set to2. The epoch length in DLC is set fo= 6.
Rp=3% (“i (a'(oc) —u;"(a (U)))' ®) " Fig. 2 - Fig. 4 clearly demonstrate the convergence of the

==t average profit under DLC toward that under known demand

Without loss of generality, we propose an oligopoly dynamnodels. While the underlying demand model is the same in
ic pricing strategy under the assumption tat! < 5 < Fig. 3 and Fig. 4, sellet chooses to share the market with
< M and p@ (p)) # p)(p)) for all i # j and all seller2 by offering pricep™)(¢1) = 1.33 in Fig. 3 and to
w. Referred to as Demand Learning under Collusion (DLCominate the market by offering prigé?) = 1. This is due

this dynamic pricing strategy partitions the time horizatoi g the change in the marginal cost of selter
fixed-length epochs with epoch length> 2 (see Fig. 1).

Each epoch starts with a declaration time slot followed by
[ — 1 cooperation time slots. In the declaration slot of epoch
t, seller 1 first carries out a maximum likelihood estimate 0%/ o
w(t) of the underlying demand model based on its private 02es”
sale history in the cooperation time slots of the previousl
epochs@(1) can be set to a default value, sBy Seller1 then
offers the profit-maximizing colluding price“®)) based on
the estimated demand model in this declaration slot. Aleoth
sellers offer the same pricg({) if in the first epoch) they
offered in the cooperation slots in the previous epoch. In al
the COOperation time slots of epochall sellers with marginal 02500 1000 1500 2000 _2500 3000 3500 4000 4500 5000
costs lower thap®®) collusively offer pricep®*). The trigger Time

strategy for punishing any deviation is the same as thatin
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Fig. 2. Average Profit when demand modelpi®) (c; = 0.5, co = 0.6)

VII. CONCLUSION

Epoch 1 Epoch 2 Epoch 3
In this paper, we studied a oligopoly dynamic pricing under
Declaration time slots [] Cooperation time slots

an unknown demand model and private observations. We
developed a dynamic pricing strategy that was shown to be

Fig. 1. Demand Learning under Collusion o
subgame-perfect and Pareto-efficient. It was further shiban
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Fig. 3.
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the proposed strategy offers bounded regret over an infinite
horizon. It is thus order optimal in terms of the efficiency of
learning the underlying demand model.
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