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Abstract—We consider an oligopoly dynamic pricing problem
where the demand model is unknown and the sellers have
different marginal costs. We formulate the problem as a repeated
game with incomplete information. We develop a dynamic pricing
strategy that leads to a Pareto-efficient and subgame-perfect
equilibrium and offers a bounded regret over an infinite horizon,
where regret is defined as the expected cumulative profit lossas
compared to the ideal scenario with a known demand model.
The resulting equilibrium also reveals a spontaneous collusion
among a subset of sellers due to the difference in marginal costs
among the sellers.

Index Terms—Dynamic pricing, repeated game, subgame-
perfect Nash equilibrium, regret.

I. I NTRODUCTION

A. Oligopoly Dynamic Pricing

We consider an oligopoly in which multiple sellers offer
a product to a stream of customers arriving sequentially in
time. The demand model, characterizing the probability that a
customer purchases the product at a given price, is unknown
but assumed to take one ofM possible forms. At each time,
the sellers set their price for the product simultaneously,and
the seller(s) offering the lowest price may make a successful
sale with a probability determined by the demand model. The
objective of each seller is to maximize its long-term profit over
an infinite horizon through a dynamic pricing strategy.

Each seller faces the classic tradeoff between learning and
earning present in all online learning problems. What compli-
cates the problem at hand is that each seller’s selling history
is private information. As a result, each seller is learningthe
demand model from disjoint sets of random observations, and
the sellers compete for not only profit but also information
for learning the demand model. What further complicates the
problem is the heterogeneous marginal costs among the sellers,
which may lead to collusion among a subset of sellers.

We formulate the above oligopoly dynamic pricing problem
as an infinitely repeated game with incomplete information,
where the incomplete information is referring to the uncer-
tainty in the payoff function due to the unknown demand
model. We develop a dynamic pricing strategy which lead-
s to a subgame-perfect Nash equilibrium. Furthermore, the
developed pricing strategy is Pareto-efficient and offers a
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bounded regret over an infinite horizon, where regret is defined
as the expected cumulative profit loss as compared to the
ideal scenario with a known demand model. The resulting
equilibrium also reveals a spontaneous collusion among a
subset of sellers due to the difference in marginal costs.

B. Related Work

The problem studied in this paper falls into the category
of Bertrand competition in an oligopoly first formulated by
Bertrand in 1883 [1]. In Bertrand’s original study, a staticgame
was considered, and the demand model was assumed known.
Various repeated games for Bertrand competition under known
demand models have been formulated and studied in the
literature. See [2–6] and references therein.

Dynamic pricing under demand uncertainty has been stud-
ied under both monopoly [7–10] and oligopoly [11–13]. In
particular, Rotemberg and Saloner [11] considered the pricing
problem when the demand fluctuates in different business cy-
cles. Assuming that all sellers have the same marginal cost and
demand fluctuations are i.i.d. following a known distribution
in each period, Rotemberg and Saloner characterized collusive
pricing in an infinitely repeated game. In [12] Bertsimas and
Perakis studied parameterized demand learning in oligopoly
where the unknown demand function is a known parametric
function with unknown parameter values. The objective of [12]
is also different from this paper. Rather than formulating a
repeated game and explicitly studying equilibria, Bertsimas
and Perakis took an optimization approach based on a joint
estimate of each firm’s demand. In our prior work [13], we
considered oligopoly dynamic pricing under demand uncer-
tainty, but assumed that all sellers have the same marginal
cost. The symmetry in marginal cost leads to fair competition
among all sellers as shown in our prior work. However, the
heterogeneous marginal cost results in collusion among a
subset of sellers as demonstrated in this paper.

II. PRELIMINARIES

In this section, we briefly review basic concepts of infinitely
repeated games with incomplete information. In particular, the
payoff functions are determined by an unknown state of nature.

Consider a repeated game played byN players over an
infinite horizon. Before the game starts, a state of natureω ∈ Ω
is chosen, which is unknown to the players, and fixed over the
infinite horizon. Each playeri has a set of actionsAi and a set
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of private signalsOi. At each timet, under the action profile
a = (ai)

N
i=1 of all players, playeri receives a private signal

o
(ω)
i (a) ∈ Oi and a payoffu(ω)

i (a), both depending on the
unknown stateω.

Let At be thet-fold Cartesian product of(Ai)
N
i=1, i.e., an

element ofAt is a list of action profiles specifying the actions
played by all players from time0 to t. Similarly, letOt

i denote
the t-fold Cartesian product ofOi. Let Ht

i = At ×Ot
i denote

the history space of playeri at timet. A strategyσi of player
i is a sequence of mappings, one for eacht, that specifies the
action of playeri at time t under each historyht

i ∈ Ht
i . We

define the payoff of a strategy profileσ = (σi)
N
i=1 using the

limit of means criterion

U
(ω)
i (σ) = lim inf

T→∞

1

T

T
∑

t=1

u
(ω)
i (at(σ)), (1)

whereat(σ) is the action profile induced byσ at time t.
Let σ−i = (σj)j 6=i. A strategy profileσ is a Nash equilib-

rium if for all i andω, we have

U
(ω)
i (σ) ≥ U

(ω)
i (σ′

i, σ−i), (2)

whereσ′
i is any strategy for playeri. For a repeated game,

there exist Nash equilibria that violate the notion of optimality
at out-of-equilibrium information sets. Subgame perfection
enforces sequential rationality which requires optimal behav-
ior in both in-equilibrium and out-of-equilibrium information
sets [14].

Definition 1. A strategy profileσ is a subgame-perfect equi-
librium of a repeated game if for any historyht = ∪ih

t
i, the

induced continuation strategyσ|ht is a Nash equilibrium of
the continuation game that starts att following history ht.

Definition 2. A Nash equilibriumσ is Pareto-efficient if
no strategy can improve the payoff of one player without
decreasing the payoff of at least one other player.

III. PROBLEM FORMULATION

An oligopoly is a market where a small number of sellers
(referred to as oligopolists) dominate the market. Comparing
to a perfectly competitive market, oligopolists are price setters
rather than price takers. Each seller’s objective is to maximize
its own long run profit (revenue minus cost) through a pricing
strategy.

Consider an oligopoly withN sellers offering a certain
product to a stream of customers. The marginal cost for seller
i to produce one unit of the product isci. The marginal cost of
each seller is common knowledge to all sellers. Without loss
of generality, we assumec1 < c2 < . . . < cN . At each given
time t, seller i (i = 1, . . . , N ) proposes a pricepi(t) from
Ai = [ci, pu] (note that a price below the seller’s marginal cost
ci is not an option andpu is the maximal possible price). The
customer purchases from the seller offering the lowest price

¯
p = mini pi(t) with probability ρ(

¯
p) which is referred to as

the demand model. The demand model is unknown and takes
one of theM possible forms{ρ(ω)(p)}Mω=1. If the lowest price

is offered by multiple sellers, the customer randomly chooses
one of them with equal probability if he decides to make the
purchase. The objective of each seller is a dynamic pricing
strategy that maximizes its profit over an infinite horizon.

The above problem can be formulated as a repeated game
with incomplete information as follows. The unknown demand
model ρ(ω)(p) is determined by the state of nature. The set
of private signals (i.e., observations) for selleri is given by
Oi = {0, 1} where 1 indicates a successful sale and0 an
unsuccessful one. At each timet, only thosen (n ≥ 1) sellers
offering the lowest price

¯
p receive a private observation which

is a realization of a Bernoulli random variable with mean
ρ(ω)(

¯
p)/n. The one-shot payoff for each of thesen sellers

is given by the expected profitu(ω)
i (

¯
p) = (

¯
p− ci)ρ

(ω)(
¯
p)/n.

We assume that each possible demand modelρ(ω)(p) is con-
tinuously differentiable and strictly decreasing over[c1, pu].
Define

r(ω)(p, c) = (p− c)ρ(ω)(p), (3)

which is the expected profit for a seller with marginal costc
and offering pricep under monopoly. Let

p(ω)(c) = arg max
p∈[c,pu]

r(ω)(p, c) (4)

denote the profit-maximizing price under demand model
ρ(ω)(p) and marginal costc in monopoly. We assume that
p(ω)(c) is unique andr(ω)(p, c) is continuous and strictly
increasing withp over [c, p(ω)(c)]. This assumption imposes
only a mild condition on the demand model and follows
from the IGFR (increasing generalized failure rate) assumption
commonly adopted on demand models [15].

IV. OLIGOPOLY DYNAMIC PRICING UNDER KNOWN

DEMAND MODEL

We first consider the case when the demand model is known.
The results obtained here will be used in subsequent sections.
When the demand modelρ(ω)(p) is known, the dynamic
pricing problem is a repeated Bertrand game and a subgame-
perfect trigger strategy with pure actions exists. As shownin
the theorem below, a subgame-perfect grim trigger strategy
with pure actions is given by a collusion of a subset ofK
sellers with the lowest marginal costc1, . . . , cK . The number
K of colluding sellers is determined by the marginal costs
{ci}

N
i=1 and the demand modelρ(ω)(p) as specified below.

In this colluding strategy (referred to asσC ), seller 1, the
one with the lowest marginal cost, sets the price and forms
the optimal collusion to maximize its own profit. Specifically,
if seller 1 decides to collude with seller2 to seller k, the
profit-maximizing pricep̂(ω)

k is given by

p̂
(ω)
k = arg max

p∈(ck,ck+1]

1

k
r(ω)(p, c1). (5)

Sincer(ω)(p, c1) is continuous and strictly increasing withp,
we have

p̂
(ω)
k =

{

ck+1 k < N
p(ω)(c1) k = N,

(6)
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where without loss of generality, we have assumed that
p(ω)(c1) > cN and setcN+1 = p(ω)(c1) for notation con-
venience. The optimal collusionK for seller 1 is thus given
by

K = arg max
k=1,...,N

1

k
r(ω)(p̂

(ω)
k , c1). (7)

For the ease of notation, let̂p(ω) denote the profit-maximizing
colluding price (i.e., the subscriptK is omitted). Thus inσC ,
K sellers with marginal costci < p̂(ω) collusively offers price
p̂(ω) and any deviations will trigger a everlasting punishment.
Specifically, sellerj > 1 will punish deviations by offering its
marginal costcj . Seller 1 will punish deviations by offering
price p = c2 − ǫ for an arbitrarily small positiveǫ.

Theorem 1. The colluding strategyσC is a subgame-perfect
and Pareto-efficient Nash equilibrium.

V. OLIGOPOLY DYNAMIC PRICING UNDER UNKNOWN

DEMAND MODEL

In this section, we develop an oligopoly dynamic pricing
strategy under an unknown demand model to approach the
performance ofσC given in Sec. IV. The learning efficiency of
a dynamic pricing strategyσ is measured by regretRσ, which
is defined as the accumulated total profit loss as compared to
σC under a known demand model.

Rσ =

N
∑

i=1

∞
∑

t=1

(

u
(ω)
i (at(σC)− u

(ω)
i (at(σ))

)

. (8)

Without loss of generality, we propose an oligopoly dynam-
ic pricing strategy under the assumption thatp̂(1) < p̂(2) <
· · · < p̂(M) andρ(i)(p̂(ω)) 6= ρ(j)(p̂(ω)) for all i 6= j and all
ω. Referred to as Demand Learning under Collusion (DLC),
this dynamic pricing strategy partitions the time horizon into
fixed-length epochs with epoch lengthl ≥ 2 (see Fig. 1).
Each epoch starts with a declaration time slot followed by
l − 1 cooperation time slots. In the declaration slot of epoch
t, seller 1 first carries out a maximum likelihood estimate
ω̂(t) of the underlying demand model based on its private
sale history in the cooperation time slots of the previoust− 1
epochs (̂ω(1) can be set to a default value, say1). Seller1 then
offers the profit-maximizing colluding pricêp(ω̂(t)) based on
the estimated demand model in this declaration slot. All other
sellers offer the same price (p̂(1) if in the first epoch) they
offered in the cooperation slots in the previous epoch. In all
the cooperation time slots of epocht, all sellers with marginal
costs lower than̂pω̂(t) collusively offer pricep̂ω̂(t). The trigger
strategy for punishing any deviation is the same as that inσC .

Epoch 1 Epoch 2 Epoch 3

Declaration time slots Cooperation time slots

Fig. 1. Demand Learning under Collusion

In DLC, the declaration time slots work like public signals
which are used by seller1 to coordinate with other sellers.
The cooperation time slots enable learning by the property
that all participating sellers offer the same price. The seller
1’s actions are restricted to theM profit-maximizing colluding
prices{p̂(ω)}Mω=1. And the actions in the cooperation time are
determined by the actions from the declaration time in the
same epoch.

In the following theorem, we summarize the properties of
the DLC dynamic pricing strategy.

Theorem 2. Properties of DLC:

• DLC is a subgame-perfect Nash equilibrium.
• DLC is a Pareto-efficient Nash equilibrium.
• DLC achieves a bounded regret, i.e., under any demand

modelρ(ω) ∈ {ρ(ω)}Mω=1, there exists a positive constant
C such that

RDLC ≤ C.

The proof is omitted due to space limit.

VI. N UMERICAL EXAMPLE

In this section, we present simulation examples to study the
learning efficiency of DLC. The simulation shows the average
profit for the dynamic pricing problem withN = 2 sellers and
M = 2 demand models. The demand models areρ(1)(p) =
1.3− 0.6p andρ(2)(p) = 1.1− 0.4p. The maximum pricepu
is set to2. The epoch length in DLC is set tol = 6.

Fig. 2 - Fig. 4 clearly demonstrate the convergence of the
average profit under DLC toward that under known demand
models. While the underlying demand model is the same in
Fig. 3 and Fig. 4, seller1 chooses to share the market with
seller 2 by offering pricep(1)(c1) = 1.33 in Fig. 3 and to
dominate the market by offering pricêp(1) = 1. This is due
to the change in the marginal cost of seller2.
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Fig. 2. Average Profit when demand model isρ
(2) (c1 = 0.5, c2 = 0.6)

VII. C ONCLUSION

In this paper, we studied a oligopoly dynamic pricing under
an unknown demand model and private observations. We
developed a dynamic pricing strategy that was shown to be
subgame-perfect and Pareto-efficient. It was further shownthat
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Fig. 3. Average Profit when demand model isρ
(1) (c1 = 0.5, c2 = 0.6)
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Fig. 4. Average Profit when demand model isρ
(1) (c1 = 0.5, c2 = 1)

the proposed strategy offers bounded regret over an infinite
horizon. It is thus order optimal in terms of the efficiency of
learning the underlying demand model.
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