
LARGE-SCALE l0 SPARSE INVERSE COVARIANCE ESTIMATION

Goran Marjanovic] Magnus Ulfarsson † Victor Solo ‡

]‡ School of Electrical Eng., University of New South Wales, Sydney, AUSTRALIA
† Dept. Electrical Eng., University of Iceland, Reykjavik, ICELAND

ABSTRACT

There has been significant interest in sparse inverse covariance esti-
mation in areas such as statistics, machine learning, and signal pro-
cessing. In this problem, the sparse inverse of a covariance matrix
of a multivariate normal distribution is estimated. A Penalised Log-
Likelihood (PLL) optimisation problem is solved to obtain the ma-
trix estimator, where the penalty is responsible for inducing sparsity.
The most natural sparsity promoting penalty is the non-convex l0
function. Due to speed and memory limitations, the existing algo-
rithms for dealing with the non-convex l0 PLL problem are unable
to be used in high dimensional settings. Here we address this issue
by presenting a new block iterative approach for this problem, which
can handle large-scale data sizes. Simulations demonstrate that our
approach outperforms existing methods for this problem.

Index Terms— sparsity, non-convex, l0 regularisation, itera-
tive shrinkage thresholding, momentum, accelerated gradient, in-
verse covariance estimation, large-scale

1. INTRODUCTION

In the current age of big data acquisition, there is an ever growing in-
terest in the sparse inverse covariance (precision) matrix estimation.
For instance, in large dimensional applications such as biological
inferencing in gene networks, discovery of functional brain connec-
tivity patterns or analysis of social interactions, the sparse inverse
covariance matrix plays a crucial role in identifying relationships
between variables, such as genes, brain regions, or individuals re-
spectively. Specifically, if xp×1 is a normally distributed random
vector, i.e. x ∼ N (µ,Σ), where µp×1 is the mean and Σp×p is
the covariance matrix, the inverse covariance Ω = Σ−1 captures the
conditional dependency of the components x[1], . . . ,x[p] of x [1–4]
– having Ω[i, j] = 0, i 6= j, corresponds to x[i] and x[j] being con-
ditionally independent. In fact, the zero pattern in Ω specifies the
structure of the underlying undirected graph, i.e. Ω[i, j] = 0 corre-
sponds to no link between variables (nodes) i and j. This provides a
fundamental approach to the reduction of large dimensional data.

Following the parsimony principle, the estimation objective is
to choose the simplest model, i.e. the sparsest Ω (undirected graph)

] Email: g.marjanovic@unsw.edu.au. Author information also available
on Research Gate: https://www.researchgate.net/profile/Goran_Marjanovic4
† This work was partially supported by the Research Fund of the

University of Iceland and the Icelandic Research Fund (130635-051).
Email: mou@hi.is. Author information also available on Research Gate:
https://www.researchgate.net/profile/Magnus_Ulfarsson
‡ This work was partially supported by an ARC (Australian Research

Council) grant. Email: v.solo@unsw.edu.au.

that adequately explains the data. The sparsity requirement improves
the interpretability of the model and reduces over-fitting.

The maximum log-likelihood estimator of Σ is given by the
sample covariance matrix S � 0, constructed using n normally dis-
tributed data samples {xi}ni=1. In real life applications, it is fre-
quently the case that n < p, which makes S non-invertible. Hence,
to estimate Ω, here we consider the popular PLL formulation – we
minimise, over the set of positive definite (symmetric) matrices, a
sparsity penalised log-likelihood objective function, i.e.

min
X�0

F (X) = min
X�0

− log det(X) + tr(XS) + λ‖X‖0 (1)

tr(·) is the trace of a matrix, ‖ · ‖0 is the sparsity promoting penalty,
and λ > 0 is a penalty (regularisation) constant. The first two terms
in (1) together represent the negative of the log-likelihood of X,
which promotes goodness-of-fit of the estimator. The penalty is the
non-convex l0 function, defined by

‖X‖0 =

p∑
i=1

p∑
j=1

I (X[i, j] 6= 0) (2)

where I(·) is the indicator function, equaling 1 if (·) is true, and zero
otherwise. ‖X‖0 is the natural sparsity inducing penalty that counts
the number of non-zeros in X, and thus, forces many of the estima-
tor entries to become zero. It is considered in many sparse signal
estimation problems, e.g. inverse covariance estimation, linear re-
gression, matrix completion, and others [5–17].

The l0 vs. l1 sparsity penalty – The convex l1 norm is a popu-
lar sparsity surrogate for the non-convex l0 penalty (2), making the
resulting l1 PLL objective function, for sparse inverse covariance
estimation, also convex. Having convexity is very useful when de-
veloping algorithms for minimising large-scale instances of the l1
PLL, e.g. see [18–22]. These latest algorithms rely on CD, quasi-
Newton and Majorisation-Minimisation (MM) flavoured techniques.
However, the procedures considered heavily depend on the fact that
the objective function is convex, and hence, are unique to the l1 PLL.
Due to non-convexity and non-continuity of the l0 PLL, these tech-
niques cannot be directly exploited for minimising (1), and, if ap-
plied blindly, could result in an unstable algorithm.

Lastly, replacing the l0 penalty with the l1 penalty in sparsity pe-
nalised problems is undesirable because it is increasingly becoming
known that using the l1 norm results in less sparse and negatively
biased solutions (estimators) [7–9, 15, 16, 23–25].

Prior Work – Existing Methods for Minimising the l0 PLL
criterion (1) – The l0 function (2) is not continuous and non-convex.
This makes the l0 PLL criterion (1) also non-convex, and thus, diffi-
cult to minimise. Despite this, several algorithms have recently been

4767978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

developed for its minimisation, see [7–9, 16, 17]. They are either
coordinate-wise [7, 16] and/or block-wise [8, 9, 17] Cyclic Descent
(CD) methods. The coordinate-wise CD algorithm updates each ma-
trix entry at a time by fixing all the other entries. Similarly, the block-
wise CD algorithm updates each row-column at a time by keeping
all the other rows-columns fixed. To update the entries in the target
row-column [8, 9, 17] use a coordinate-wise CD algorithm.

The existing methods perform well on relatively smaller prob-
lem sizes, i.e. when p < 103. However, for large-scale instances of
(1), i.e. when p is several thousand, they are not desirable. Examples
of large problem sizes occur in brain imaging and gene expression
analysis applications, and so, in the current age of big data, there is
an ever increasing need to scale up algorithms.

Due to the presence of the log-likelihood in (1), one must deal
with the elements and/or columns of the inverse of a sparse matrix
iterate – a dense matrix. Hence, a large p introduces certain limi-
tations: (i) Computing the inverse – this is expensive even if rank
one/two updates (Sherman-Morrison-Woodbury (SMW) formulae)
are considered since they require up to O(p2) products. (ii) Storing
the inverse – a sparse matrix iterate will always fit in memory since
we only need to store its non-zeros and their locations. However,
because its inverse is usually dense, it has O(p2) values, and so, it
might not fit into memory. Thus, formulae such as the SMW are not
desirable, and because the existing methods heavily rely on them,
they are not suitable for solving large-scale instances of (1).

Current Contribution – For minimising large-scale instances
of the l0 PLL criterion (1), here we present a block-wise CD al-
gorithm that incorporates a fast MM type procedure. We note that
there are no methods capable of handling large-scale instances of
(1). In the algorithm we present: (i) Only matrix-vector and vector-
vector products (predominantly sparse) are used. (ii) Only the sparse
matrix iterate and two vectors need to be stored in memory per iter-
ation. (iii) No computation of (dense) matrix inverses is required.
This makes our algorithm fundamentally different to the existing al-
gorithms for minimising (1).

The rest of the paper is organised as follows. Section 2 describes
the algorithm procedure, which is stated in Section 3. Simulations
are provided in Section 4, while concluding remarks in Section 5.

Additional Notation – Given a vector v, v[i] is its i-th entry.
M[i, j] is the ij-th entry of a matrix M. σs(M) and σl(M) denotes
the smallest and the largest eigenvalue of a square M respectively.
If f : Rp → Rq , then given x ∈ Rp, f(x)[i] denotes the i-th
component of f(x) ∈ Rq . Given a vector v, diag(v) is a diagonal
matrix with v on its main diagonal, i.e. diag(v)[i, i] = v[i].

2. ALGORITHM DEVELOPMENT

The algorithm proceeds in two stages. The first stage is a Block-wise
CD (BCD) procedure, where the plan is to optimise over one row
and column of the variable matrix X at a time. The BCD reduces the
problem of optimising over a matrix in (1) to a problem of optimising
over a vector. The second stage does the latter optimisation using a
fast and novel MM type method. We now describe in detail the BCD
and the MM procedures in the following two subsections.

2.1. The Block-wise Cyclic Descent (BCD) Stage

Letting X denote the current iterate, the new row-column to be up-
dated is identified and the rest of the matrix entries are fixed. To

describe the updating procedure we have to deal with permutations
of X and S, which have the identified target row and column placed
at the end i.e.

Xπ =

[
V u
uT w

]
Sπ =

[
Γ γ
γT γ0

]
(3)

where V � 0 and Γ � 0 are (p − 1) × (p − 1), u,γ are (p −
1) × 1, and w > 0, γ0 > 0 are scalars. Since F |X,S= F |Xπ,Sπ ,
updating the rows-columns in X is equivalent to updating u and w.
So, substituting (3) in F (·), and using the well known properties of
determinant and trace functions, it is easy to see that

F (X) = F (Xπ) = − log det(Xπ) + tr(XπSπ) + λ‖Xπ‖0

= − log
{

det(V)(w − uTV−1u)
}

+ tr(VΓ) + tr(uγT)

+ γTu + γ0w + λ‖V‖0 + 2λ‖u‖0

By fixing V, minimising F (X) reduces to minimising

− log(w − uTV−1u) + 2γTu + γ0w + 2λ‖u‖0 (4)

with respect to u and w > 0, where ‖u‖0 =
∑p−1
i=1 I(u[i] 6= 0).

The positive definite constraint on X becomes w − uTV−1u > 0,
which is implicitly enforced by log(·). (4) is now minimised using a
fast and novel MM type procedure described next.

2.2. The Majorisation-Minimisation (MM) Stage

Firstly, elementary calculus applied to (4) yields the minimiser

ŵ = ŵ(u) = uTV−1u + γ−1
0 > 0 (5)

Since ŵ − uTV−1u > 0, substituting (5) back into (4) gives
− log(γ−1

0) + 2γTu + γ0u
TV−1u + 1 + 2λ‖u‖0, which we now

need to minimise with respect to u, and is equivalent to minimising

J(u) =
1

2
γ0u

TV−1u + γTu + λ‖u‖0 (6)

with respect to u. Our approach for achieving this extends our
approach in [5] for minimising an l0 penalised least squares crite-
rion. Specifically, we use an accelerated MM flavoured method –
the Momentumised Iterative Shrinkage Thresholding (MIST) algo-
rithm, with an additional line-search procedure to efficiently min-
imise the non-convex function (6). MIST relies on the basic MM
technique [26], which uses a majorisation function to achieve min-
imisation. So, defining φ(u) = 1

2
γ0u

TV−1u + γTu, the function
Qµ(z,u) = φ(u) +∇φ(u)T (z − x) + µ

2
‖z − x‖22 + λ‖z‖0 is a

majorisation function of J(·), i.e. it is easy to check that J(z) ≤
Qµ(z,u) for any u, z, and µ ≥ γ0σl(V

−1). So, letting Pµ(u) =
arg minz Qµ(z,u) leads to the basic MM result

J(Pµ(u)) ≤ Qµ(Pµ(u),u) ≤ Qµ(u,u) = J(u) (7)

Thus, in the basic MM algorithm, if u is the current iterate, letting
Pµ(u) be the next iterate guarantees descent in J(·). MIST acceler-
ates this algorithm [5] by incorporating a momentum term, and relies
on the following result that extends the basic MM result (7)

Theorem 1. Let Bµ = µI− γ0V−1, where µ > γ0σl(V
−1), and

α = 2η

(
δTBµ(Pµ(u)− u)

δTBµδ

)
, η ∈ [0, 1] (8)

4768

where δ 6= 0. Then,

J(Pµ(u + αδ)) ≤ Qµ (Pµ(u + αδ),u + αδ) ≤ J(u) (9)

The proof is omitted due to lack of space. MIST is essentially a
repeated application of Theorem 1 – if u is the current iterate, then
Pµ(u + αδ) is the next iterate, where αδ is the momentum term.
Note that setting η = 0 gives the basic MM algorithm. We choose
δ to be the difference between the current iterate u and the previous
iterate u−, i.e. δ = u− u−. (9) makes MIST a monotonic method,
i.e. J(u) ≤ J(u−). It was demonstrated in [5] that having αδ 6= 0
accelerates the basic MM algorithm.

Remark 1. (line-search) Implementing MIST requires knowing
the Lipschitz constant γ0σl(V−1). However, for large-scale in-
stances of criterion (6), this quantity is too expensive to compute. We
therefore use a back-tracking step-size rule – noting that σl(V−1) =
1/σs(V), and mini V[i, i] ≥ σs(V), we let µ0 = γ0

miniV[i,i]
, set

µ = µ0 ζ
r , where ζ > 1, and choose the smallest r = 0, 1, . . . ,

such that ∆ = Qµ(Pµ(u + αδ),u + αδ)− J(Pµ(u + αδ)) ≥ 0.

Lastly, an expression for Pµ(·) is needed. Letting g(u) = u −
(1/µ)∇φ(u), it is easy to show that its components Pµ(·)[i] are
given by the well known hard-thresholding operator (a shrinkage-
thresholding map) [5, Section 2.1], [9, 13, 27]

Pµ(u)[i] = Hλ/µ(g(u))[i] = g(u)[i]I(|g(u)[i]| >
√

2λ/µ) (10)

Remark 2. (Dense Inverse Matrices) Updating u, w using MIST
and (5) requires computing v = V−1u, where V−1 is dense and u
is sparse. When p is large, obtaining v by direct methods that rely
on the Cholesky factorisation is not efficient since up to O(p3) op-
erations are required. Iterative methods, such as Conjugate Gradient
(CG), is preferred because the cost of each iteration is proportional
to the number of non-zeros in the sparse matrix V – a small number.

3. ALGORITHM STATEMENT

The algorithm for minimising the l0 PLL – The Momentimised IST
for sparse Inverse Covariance (MISTIC) estimation, is given below

The MISTIC Algorithm for minimising the l0 PLL criterion (1)

Input: Initial X � 0 (in sparse format, see [28]), S, λ > 0.

01. Identify the new target row-column of X, i.e. u, w.

02. Identify the corresponding row-column of S, i.e. γ, γ0.

Beginning of MIST (with line-search) for minimising J(·) in (6):

03. Let µ0 = γ0
miniV[i,i]

, and choose ζ > 1 and N ≥ 1.

04. u− ← u

05. v = γ0V
−1u % compute using CG

06. v− ← v

07. for k = 1, . . . , N do:
08. δ = u− u−

09. r = 0 and ∆ = −ε < 0

10. while ∆ < 0 do: % line-search, see Remark 1

11. µ = µ0 ζ
r

12. ε = Bµδ = µδ − (v − v−)

13. β = δTBµδ = εT δ

14. while β ≤ 0 & k 6= 1 do:
15. r ← r + 1

16. µ = µ0ζ
r

17. ε = µδ − (v − v−)

18. β = εT δ

19. end
20. g = u− 1

µ
∇φ(u) = u− 1

µ
(v + γ)

21. if β < 10−15 then: % improves stability

22. α = 0

23. else
24. p = Hλ/µ(g)− u

25. Choose η ∈ [0, 1] and compute

α = 2η

(
δTBµ(Pµ(u)− u)

δTBµδ

)
= 2η

(
εTp

β

)
26. end
27. û = Pµ(u + αδ) = Hλ/µ

(
g + α

µ
ε
)

28. v̂ = γ0V
−1û % compute using CG

29. d = û− (u + αδ)

30. Compute z = γ0V
−1d, i.e.

z = γ0V
−1û− γ0V−1u

−αγ0V−1(u− u−)

= v̂ − (1 + α)v + αv−

31. Compute ∆, i.e.

∆ = Qµ(Pµ(u + αδ),u + αδ)

−J(Pµ(u + αδ))

=
1

2
dTBµd =

1

2
dT (µd− z)

32. r ← r + 1

33. end % end of line-search

34. u− ← u

35. u← û

36. v− ← v

37. v← v̂

38. end

End of MIST (with line-search) for minimising J(·) in (6).

39. Using the final u and v from MIST (above), denoted by u+ and
v+ respectively, compute w+ = ŵ using (5), i.e.

w+ = ŵ(u+) = γ−1
0 uT+v+ + γ−1

0 = γ−1
0 (uT+v+ + 1) (11)

40. Replace the old row-column in X, i.e. u, w, with the new
row-column, i.e. u+, w+. Go to 01.

4769

Theorem 2. If X � 0 is the current iterate and X+ is X with the
updated target row-column, then X+ � 0 and F (X+) ≤ F (X).

Remark 3. (a) MISTIC only consists of matrix-vector and vector-
vector products. The matrix iterate we are dealing with is sparse and
so are a lot of the vectors, making these products efficient. (b) The
non-sparse vectors are v,v−, ε,g, v̂ and z. v and v̂ are calculated
efficiently using CG because V is sparse. ε, g and z are obtained
simply by vector addition (efficient). Operations with the non-sparse
vectors are vector addition, multiplication (inner-products) all done
with sparse vectors, and zeroing – all efficient operations. (c) Initial-
ising X such that it is in the sparse format is done using the Matlab
function sparse [28]. In this case, the target row-column of X,
i.e. u, and hence, all the variables in MISTIC will also be in the
sparse format. (d) The vector Hλ/µ(a) (for a given a) used in lines
24 and 27 of the algorithm is constructed by: (i) finding the index
set I = {i : |a[i]| >

√
2λ/µ} – a small set since Hλ/µ(·) is

sparse, and (ii) using I in the Matlab function sparse to add the
non-zeros a[i], i ∈ I, formingHλ/µ(a). (e) The algorithm requires
storing only two vectors (in each iteration of MIST): u−, v−.

4. SIMULATIONS

We compare MISTIC with all the existing methods [7–9, 16, 17] for
minimising the l0 PLL (1). The lqCOV algorithm from [9, 17] with
q = 0 is identical to the LOCOV algorithm from [8]. The algo-
rithm from [7, 16] will be referred to as l0CD. To test the perfor-
mance of MIST for minimising J(·), we make additional compar-
isons. Specifically, we compare MISTIC with two algorithms that
use the described BCD procedure (Section 2.1), where MIST with
Line-Search (LS) (lines 03-38) is replaced with: (i) the basic MM
algorithm with LS (Section 2.2), and (ii) a direct (naive) implemen-
tation of the fast FISTA method from [29] with LS and the hard-
thresholding map (10). We refer to these methods as BCD-MM and
BCD-FISTA respectively, and note that, they do not exist.

All algorithms are initialised with a diagonal matrix diag(s) (in
sparse format), and s[i] = 1/S[i, i], see [17, Theorem 3]. All algo-
rithms are terminated if F (X)−F (X+)

|F (X)| ≤ tol, where X+ is a single
sweep of all the rows-columns of X, or when 30 iterations (sweeps)
have been reached. In MISTIC, N = 0.5p, ζ = 2, and η = 1,
and MIST with LS is terminated if ‖δ‖2 ≤ 10−5. The CG (Polak-
Ribiere) method is terminated if the norm of the residual ≤ 10−4.
All algorithms are implemented in Matlab R2013a, and run on a 3.20
GHz Intel Core i5 machine with 16 GB of RAM and Windows 7 OS.

Two types of ground truth sparse Ω’s are constructed for estima-
tion, corresponding to: (i) Chain Graphs – Ω is set to be Ω[i, i] =
1.25 and Ω[i, i − 1] = Ω[i − 1, i] = −0.5. (ii) Graphs with ran-
dom sparse structure – We consider the procedure in [30, Example
1]. Specifically, we first generate a sparse matrix U with non-zeros
equal to ±1, set Ω to be UTU and then add a diagonal term to en-
sure Ω � 0. We control the number of non-zeros in U so that the
resulting Ω has approximately 2p non-zeros.

Given Ω, we draw a limited number, n = 0.4p, of data samples
fromN (0,Ω−1) to construct S. λ is chosen such that the algorithm
solutions have (approx.) the correct number of non-zeros. Their
quality is measured by the Matthew’s Correlation Coefficient [31]:
MCC = TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
, where TP, TN, FP, FN are

the number of true positives/negatives, false positives/negatives. The
closer the MCC is to 1 the preferable the solution [9, 31].

Fig. 1: Plot of runtime vs. F (X)−F (X?)
|F (X?)| , where X? is the final

iterate (tol = 10−13). (Left) MCC ≥ 0.88 for all. (Right) MCC ≥
0.997 for all. The qualities of all the solutions are very similar, and
MISTIC clearly outperforms the existing methods for p = 1000.

Fig. 2: tol = 10−4. (Left) p vs. average runtimes. (Right) p
vs. average MCC. The averages are over 5 instances of S. The
vertical bars represent standard error. p = {1, 5, 10, 15, 20} × 103.
We see that MISTIC outperforms the two constructed methods. The
runtimes for LOCOV/lqCOV (q = 0) and l0CD are not included
because they are too large, e.g. for p = 5000, the former takes
10.46 hours, while the latter 2 hours to reach a solution.

Fig. 3: tol = 10−4. (Left) p vs. average runtimes. (Right) p vs.
average MCC. The averages are over 5 instances of S. The vertical
bars are standard errors. p = {1, 5, 10, 15, 20}× 103. The runtimes
for LOCOV/lqCOV (q = 0) and l0CD are too large to include, e.g.
for p = 5000 it takes > 3 hours to reach a solution.

5. CONCLUSION

We have presented a BCD algorithm (MISTIC) that uses a fast MM
type procedure (MIST with line-search), for minimising large-scale
instances of the l0 PLL problem (1). The given simulations show
that MISTIC significantly outperforms the existing methods that deal
with the l0 PLL criterion. Additionally, using MIST in the block-
wise procedure resulted in a superior performance compared to using
the basic MM algorithm and the naive implementation of FISTA.

4770

6. REFERENCES

[1] O. Banerjee, L. E. Ghaoui, and A. d‘Aspremont, “Model selec-
tion through sparse maximum likelihood estimation for multi-
variate gaussian or binary data,” J. Mach. Learn. Res., vol. 9,
pp. 485–516, 2008.

[2] A. P. Dempster, “Covariance selection,” Biometrics, vol. 28,
pp. 157–175, 1972.

[3] J. Whittaker, Graphical Models in Applied Mathematical Anal-
ysis. New York: Wiley, 1990.

[4] S. L. Lauritzen, Graphical Models. Oxford: Oxford Univer-
sity Press, 1991.

[5] G. Marjanovic, M. O. Ulfarsson, and A. O. Hero III, “MIST:
l0 Sparse linear regression with momentum,” IEEE ICASSP,
2015.

[6] M. O. Ulfarsson, V. Solo, and G. Marjanovic, “Sparse and low
rank decomposition using l0 penalty,” IEEE ICASSP, 2015.

[7] G. Marjanovic and A. O. Hero III, “l0 Sparse Inverse Covari-
ance Estimation,” IEEE T. Signal Proces., vol. 63, no. 12, pp.
3218–3231, 2015.

[8] G. Marjanovic and V. Solo, “l0 sparse graphical modeling,”
IEEE ICASSP, pp. 2084–2087, 2011.

[9] ——, “On lq optimization and sparse inverse covariance selec-
tion,” IEEE T. Signal Proces., vol. 62, no. 7, 2014.

[10] R. Mazumder, T. Hastie, and R. Tibshirani, “Spectral regular-
ization algorithms for learning large incomplete matrices,” J.
Mach. Learn. Res., vol. 11, pp. 2287–2322, 2010.

[11] M. Ulfarsson and V. Solo, “Vector l0 sparse variable PCA,”
IEEE T. Signal Proces., vol. 59, no. 5, pp. 1949–1958, 2011.

[12] A. Seneviratne and V. Solo, “On vector l0 penalized multivari-
ate regression,” IEEE ICASSP, pp. 3613–3616, 2012.

[13] T. Blumensath, M. Yaghoobi, and M. E. Davies, “Iterative hard
thresholding and l0 regularisation,” IEEE ICASSP, vol. 3, pp.
1–4, 2007.

[14] T. Blumensath and M. Davies, “Iterative thresholding for
sparse approximations,” J. Fourier Anal. Appl., vol. 14, no. 5,
pp. 629–654, 2008.

[15] D. Lin, E. Pitler, D. P. Foster, and L. H. Ungar, “In Defense of
l0,” The Journal of Machine Learning Research 7, pp. 1861–
1885, 2006.

[16] G. Marjanovic and A. O. Hero III, “l0 sparse inverse covariance
estimation,” 2014, arXiv: http://arxiv.org/abs/1408.0850.

[17] ——, “On lq estimation of sparse inverse covariance,” IEEE
ICASSP, 2014.

[18] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, and P. Ravikumar,
“Sparse inverse covariance matrix estimation using quadratic
approximation,” 2011.

[19] C.-J. Hsieh, M. A. Sustik, I. S. Dhillon, P. Ravikumar, and
R. Poldrack, “Big & Quic: Sparse inverse covariance estima-
tion for a million variables,” pp. 2339–2347, 2013.

[20] E. Treister and J. Turek, “A block–coordinate descent approach
for large–scale sparse inverse covariance estimation,” NIPS,
vol. 27, 2014.

[21] P. A. Olsen, F. Oztoprak, J. Nocedal, and S. J. Rennie,
“Newton-like methods for sparse inverse covariance estima-
tion,” NIPS, 2012.

[22] D. Guillot, B. Rajaratnam, B. T. Rolfs, A. Maleki, and I. Wong,
“Iterative thresholding algorithm for sparse inverse covariance
estimation,” NIPS, 2012.

[23] G. Marjanovic and V. Solo, “On exact lq denoising,” IEEE
ICASSP, pp. 6068–6072, 2013.

[24] ——, “lq sparsity penalized linear regression with cyclic de-
scent,” IEEE T. Signal Proces., vol. 62, no. 6, pp. 1464–1475,
2014.

[25] ——, “On lq optimization and matrix completion,” IEEE T.
Signal Proces., vol. 60, no. 11, pp. 5714–5724, 2012.

[26] J. M. Ortega and W. C. Rheinboldt, Iterative Solutions of Non-
linear Equations in Several Variables. New York: Academic,
1970.

[27] G. Marjanovic, M. O. Ulfarsson, and A. O. Hero III,
“MIST: l0 Sparse linear regression with momentum,” 2015,
http://arxiv.org/abs/1409.7193.

[28] MATLAB command: sparse, weblink: http://www.
mathworks.com/help/matlab/ref/sparse.html.

[29] A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM J.
Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[30] L. Li and K. C. Toh, “An inexact interior point method for
l1-regularized sparse covariance selection,” Math. Program.
Comp., no. 3, pp. 291–315, 2010.

[31] P. Baldi, S. Brunak, Y. Chauvin, C. A. F. Andersen, and
H. Nielsen, “Assessing the accuracy of prediction algorithms
for classification: An overview,” Bioinformatics, vol. 16, pp.
412–424, 2000.

4771

