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ABSTRACT
We propose an image colorization method using fast soft-thresholding
of singular values (singular value thresholding). An image coloriza-
tion method with nuclear norm minimization (NNM) has been
proposed and brings good results. NNM usually requires iterative
application of singular value decomposition (SVD) for singular
value thresholding. However, the computational cost of SVD in
the colorization method becomes too expensive to handle high-
resolution images. In this paper, we reduce its computational cost by
using Chebyshev polynomial approximation (CPA). Singular value
thresholding is expressed by a multiplication of certain matrices
derived from the characteristic of CPA. As a result, our CPA-based
technique makes the image colorization method much more effi-
cient. In addition, we replace the optimization method used in the
image colorization method by alternating direction method of mul-
tipliers, which further accelerates the computation. Experimental
results verify the effectiveness of our method with respect to the
computation time and the approximation precision.

Index Terms— Chebyshev polynomial approximation, singular
value thresholding, image colorization

1. INTRODUCTION

Image colorization, assigning suitable colors to grayscale images, is
an important task in image processing and computer vision. Many
image colorization methods have been proposed [1–9] and success-
fully applied not only to art restoration [10, 11] but also to image
compression [12,13]. Among them, recent work [9] revealed that the
state-of-the-art performance of image colorization can be achieved
with the help of nuclear norm minimization (NNM).

Specifically, in the image colorization method [9], the RGB
components of an image are rearranged to a certain matrix, and the
matrix is assumed to be low rank. Since the nuclear norm is the
tightest convex relaxation of the rank function, the method adopts
the nuclear norm of the matrix as a regularization for colorization.
Therefore, they colorize images by minimizing objective functions
involving the nuclear norm.

Usually, NNM requires iterative application of singular value
decomposition (SVD) to shrink singular values. For example, the
method with NNM [9] adopts the so-called augmented Lagrangian
method (ALM) [14], which calls SVD about 50 times to obtain a
colorized image. However, it is clear that the iterative SVDs need
much computation time in the case of high-resolution images.

This work was supported in part by MEXT Tenure-Track Promotion Pro-
gram.

The shrinkage of eigenvalues similarly requires enormous com-
putation time as well as that of singular values. It is applied to im-
prove the smoothing performance of image filters, e.g., bilateral fil-
ter [15–17]. It is realized by filtering eigenvalues of its filter ma-
trix (eigenvalue filtering) [18–20]. Unfortunately, eigendecomposi-
tion (ED) needs much computation time for handling a large matrix.
To overcome the difficulty, we proposed an approach using Cheby-
shev polynomial approximation (CPA) [21–24] in order to accelerate
the eigenvalue filtering [25, 26]. CPA is a traditional and an effec-
tive function approximation method in the field of signal processing.
CPA boils down the eigenvalue filtering to a multiplication of a fil-
ter matrix and an image vector, which significantly accelerates the
eigenvalue filtering.

In this paper, we extend our previously proposed method to soft-
thresholding of singular values (singular value thresholding) for im-
age colorization. CPA is applied to our singular value thresholding,
i.e., our method is represented as a multiplication of matrices, which
does not require singular values/vectors explicitly. As a result, the
computation time of our method becomes much less than that of the
exact method [9]. In addition, we also apply the so-called alter-
nating direction method of multipliers (ADMM) [27, 28] instead of
ALM used in [9], which further accelerates the computation of the
image colorization. Experimental results show that our method re-
duces the computation time up to 30% of that of the exact method
while maintaining the accuracy of colorization.

This paper is organized as follows. Section 2 describes some
notations and definitions. Section 3 presents our fast singular value
thresholding. Firstly, CPA is briefly reviewed and then is extended to
singular value thresholding. We apply the fast thresholding method
to image colorization with ADMM in Section 4, and Section 5 shows
some experimental results. Finally, Section 6 concludes the paper.

2. NOTATIONS AND PRELIMINARIES

2.1. Notations

Upper case bold-face and capital letters indicate a matrix and a vec-
tor, respectively. Superscript ·> is the transpose of a matrix and
a vector, and superscript ·−1 is the inverse of a matrix. The ma-
trix I is the identity matrix. The `p norm for p ≥ 1 is defined as
‖x‖p = (

∑n
i=1 |xi|

p)
1
p (∀x ∈ Rn). The operator rank(·) com-

putes the rank of a matrix. For a given matrix X ∈ Rm×n, its i-th
largest singular value is denoted by σi(X), where i ∈ {1, 2, . . . ,K}
(K := min(m,n)), and the nuclear norm of X is defined as

‖X‖∗ :=
∑K
i=1 σi(X). (1)
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We also use some mathematical tools introduced as follows.

2.2. Proximity Operator [29]

Let Γ0(RN ) be the set of all proper lower semicontinuous con-
vex1 functions over RN . The proximity operator of a function f ∈
Γ0(RN ) of index γ > 0 is defined as follows:

proxγf : RN → RN : x 7→ arg min
y∈RN

f(y) + 1
2γ
‖x− y‖2. (2)

The proximity operator will play a central role in the optimization of
image colorization in Sec. 4.

2.3. Alternating Direction Method of Multipliers [27, 28]

ADMM is an algorithm for solving a convex optimization problem
represented as

min
x∈Rn1 ,y∈Rn2

g1(x) + g2(y) s.t. y = Kx, (3)

where g1 ∈ Γ0(Rn1), g2 ∈ Γ0(Rn2) and K ∈ Rn2×n1 . For
arbitrary y0, p0 ∈ Rn2 , and γ > 0, ADMM algorithm is given
by  xn+1 := arg minx g1(x) +

γ
2
‖yn −Kx− pn‖22

yn+1 := prox 1
γ
g2
(Kxn+1 + pn)

pn+1 := pn + Kxn+1 − yn+1.

(4)

We recall a convergence analysis of ADMM by Eskstein-Bertsekas
[28].

Fact 1 (Convergence of ADMM [28]) Consider Prob. (3). Assume
that K>K is invertible and that a saddle point of its unaugmented
Lagrangian L0(x,y, z) := g1(x) + g2(y) − 〈z,Kx − y〉 exists.
Then the sequence (xn)(n≥1) generated by (4) converges to a solu-
tion of Prob. (3).

3. SINGULAR VALUE THRESHOLDING USING
CHEBYSHEV POLYNOMIAL APPROXIMATION

3.1. Chebyshev Polynomial Approximation for Scalar Func-
tions

Let h(y) and h∗(y) be a real-valued function defined on the interval
y ∈ [−1, 1] and the function approximated by using CPA, respec-
tively. CPA [21–24] gives an approximation of h(y) by using its
truncation:

h∗(y) := 1
2
c0 +

∑α−1
k=1 ckTk(y), (5)

where ck and α denote a Chebyshev coefficient described later and
an approximation order, respectively. Additionally, Tk(·) denotes
the k-th order Chebyshev polynomial of first kind defined as

Tk(y) := cos(k arccos(y)). (6)

It can also be computed by using the stable recurrence relation:

Tk(y) = 2yTk−1(y)− Tk−2(y),

T0(y) = 1, T1(y) = y.
(7)

1A function f : RN → R ∪ {∞} is called proper lower semicontinuous
convex if dom(f) := {x ∈ RN | f(x) < ∞} 6= ∅, lev≤a(f) := {x ∈
RN | f(x) ≤ a} is closed in ∀a ∈ R, and f(λx+ (1 − λ)y) ≤ λf(x) +
(1− λ)f(y) in ∀x,y ∈ RN and ∀λ ∈ (0, 1), respectively.

The initial condition is defined by using T0(y) and T1(y). Since
the polynomial consists of cosine functions, the value of Tk(y) is
bounded between−1 and 1 for y ∈ [−1, 1]. By using Tk(y) and the
orthogonality of sine waves, the Chebyshev coefficient ck is calcu-
lated as

ck := 2
π

∫ 1

−1

Tk(y)h(y)√
1−y2

dy = 2
π

∫ π
0
cos(kθ)h(cos θ)dθ. (8)

Practically, ck is discretely calculated as in [23].

3.2. Chebyshev Polynomial Approximation for Eigenvalue Fil-
tering Method

Let A ∈ Rn×n be a symmetric full rank matrix, and A =
XADAX>A be its ED, where XA ∈ Rn×n is the matrix com-
posed of eigenvectors, and DA = diag(dA1 , . . . , dAi , . . . , d

A
n ) is the

diagonal matrix with the corresponding eigenvalues. We assume that
the eigenvalues are bounded between −1 and 1, i.e., dAi ∈ [−1, 1],
and this allows us to apply CPA to the eigenvalues. CPA of the
matrix form gives an approximation of an eigenvalue filter function
whose truncated Chebyshev seriesH∗(A) is defined as

H∗(A) := 1
2
c0I +

∑α−1
k=1 ckTk(A), (9)

where the k-th order polynomial of the matrix form is defined as

Tk(A) := XAdiag(cos kθ1, . . . , cos kθi, . . . , cos kθn)X
>
A. (10)

Similarly to (7), its Chebyshev polynomials are obtained by using
the recurrence relation:

Tk(A) = 2ATk−1(A)− Tk−2(A),

T0(A) = I, T1(A) = A.
(11)

Furthermore, the eigenvalue filter function H∗(A) can also be rep-
resented with h∗(dAi ) as

H∗(A) = XAdiag(h∗(dA1 ), . . . , h∗(dAi ), . . . , h
∗(dAn ))X

>
A.

(12)
Since ck in (9) is calculated as (8), this resulting matrix is an approx-
imation of the original filter H(A). The derivation realizes eigen-
value filtering without ED. It is usually faster than the exact method
based on ED as long as A is sparse because the dominant computa-
tional complexity comes from a multiplication of two matrices.

3.3. Shifted Chebyshev Polynomial Approximation

CPA can only be defined in the interval of eigenvalues bounded −1
and 1. For a matrix whose eigenvalues are outside [−1, 1], its eigen-
value distribution is adjusted by using the method introduced below.

Let B ∈ Rn×n be a full rank and diagonalizable matrix, and
B = XBDBX−1

B be its ED. Additionally, we assume that the eigen-
values are bounded between 0 and dBmax, where dBmax > 1. The
eigenvalues of DB are firstly scaled to [−1, 1] for utilizing the re-
currence relation as (11). To shift the eigenvalues, the matrix B̃ is
defined as

B̃ := 2
dBmax

B− I. (13)

The k-th order polynomial of B̃ is defined as

Tk(B̃) :=Tk
(

2
dBmax

B− I
)

=XB

(
2

dBmax
DB − I

)
X−1

B

=XBdiag(cos kθ1, . . . , cos kθn)X
−1
B . (14)
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Similarly to (11), the Chebyshev polynomials are obtained by using
the recurrence relation:

Tk(B̃) = 2B̃Tk−1(B̃)− Tk−2(B̃),

T0(B̃) = I, T1(B̃) = B̃.
(15)

As a result, CPA of B gives an approximation of an eigenvalue filter
functionHs(B) whose truncated Chebyshev series is defined as

Hs(B) := 1
2
c̃0 +

∑α−1
k=1 c̃kTk(B̃). (16)

Recall that the Chebyshev polynomial Tk(B̃) is limited in [−1, 1].
Therefore, the range of eigenvalues is modified by deriving the
Chebyshev coefficient c̃k as

c̃k = 2
π

∫ π
0
cos(kθ)h

(
dBmax

2
(cos θ + 1)

)
dθ. (17)

The term h
(
dBmax

2
(cos θ + 1)

)
returns the shifted range back to the

original range. From (17), the eigenvalue filter function Hs(B) can
also be represented by using h∗(dBi ) as

Hs(B) = XBdiag(h∗(dB1 ), . . . , h∗(dBn ))X
−1
B . (18)

3.4. Singular Value Thresholding Using Chebyshev Polynomial
Approximation

Let a rectangular matrix be C ∈ Rm×n (m > n) and its SVD be
C = Y1ΣY>2 , where Y1 ∈ Rm×m and Y2 ∈ Rn×n are orthog-
onal matrices. Σ ∈ Rm×n is the singular value matrix represented
as

Σ =


σ1 O

. . .
O σn

O

 , (19)

where σ1 ≥ . . . ≥ σn. When the eigenvalue matrix of C>C is
defined as DC2 = diag(dC2

1 , . . . , dC2
i , . . . , dC2

n ), C>C is decom-
posed as

C>C = Y2Σ
>ΣY>2 = Y2DC2Y>2 , (20)

where DC2 = Σ>Σ. With the eigenvalue filter functionHs(·), the
eigenvalue filtering of C>C is approximately calculated by using
(16) as

Hs(C>C) = Y2diag(h∗(σ2
1), . . . , h

∗(σ2
n))Y

>
2 . (21)

To derive the coefficients in (17), a real-valued function h(·) is de-
fined as

h(x) = g(x)√
x
, (22)

where g(·) is the desired filter response for C and x is an input value.
Consequently, the singular value thresholding of C is represented as

CHs(C>C)

≈CY2diag
(
g(σ2

1)

σ1
, . . . ,

g(σ2
n)

σn

)
Y>2

=Y1


g(σ2

1) O
. . .

O g(σ2
n)

O

Y>2 . (23)

As can be seen in (23), the singular value thresholding of C is cal-
culated by the truncated eigenvalue filterHs(C>C).

4. APPLICATION TO IMAGE COLORIZATION

The image colorization method [9] consists of the local-color con-
sistency method [2] and the optimization method based on NNM. In
this section, the singular value thresholding using CPA is applied to
the latter optimization part.

Let Rc, Gc, Bc ∈ Rm×n be three color components of an
image. The components are arranged into L := [Rc Gc Bc] ∈
Rm×3n. Given color labels are denoted by Q ∈ Rm×3n (entries
without color labels are set to 0), and some additive error is rep-
resented by S ∈ Rm×3n. An observed luminance image is de-
fined as W ∈ Rm×n. The linear operator extracting pixels with
assigned color labels is denoted as PΩ(·). Then, the image coloriza-
tion method [9] yields a color image by solving the following convex
optimization problem:

min
L,S
‖L‖∗ + λ‖PΩ(S)‖1

s.t. PΩ(Q) = PΩ(L) + PΩ(S), W = 1
3
(Rc + Gc + Bc).

(24)

In what follows, (24) is converted to the ADMM-applicable form in
(3). Let vec(·) be the operator vectorizing a matrix, and then, the
vector forms of L, S, and W are defined as l := vec(L), s :=
vec(S) ∈ R3mn, and w := vec(W) ∈ Rmn, respectively. The
matrix form of PΩ(·) is represented as Ω ∈ R3mn×3mn, which is a
diagonal matrix whose diagonal entries are 1 w.r.t. assigned pixels
and 0 otherwise. Additionally, indicator functions of the set Q and
W are defined as ιQ and ιW , where Q := {x ∈ R3mn| Ωx =

Ω · vec(Q)} and W := {x ∈ R3mn| x(1),x(2),x(3) ∈ Rmn,x :=

[(x(1))>, (x(2))>, (x(3))>]>, 1
3
(x(1) + x(2) + x(3)) = w}. Then,

(24) is rewritten as

min
l,s
‖l‖∗ + λ‖Ωs‖1 + ιQ(l + s) + ιW (l). (25)

Next, by setting u := [l>, s>]>, we define an auxiliary variable
vector z as follows:

z :=


z(1)

z(2)

z(3)

z(4)

 =

I 0
0 Ω
I I
I 0

u = Ku, (26)

where I ∈ R3mn×3mn. Finally, the colorization problem in (24) is
reformulated into

min
z,u
‖z(1)‖∗+λ‖z(2)‖1+ιQ(z(3))+ιW (z(4)) s.t. z = Ku. (27)

Let p0 := [(p
(1)
0 )>, (p

(2)
0 )>, (p

(3)
0 )>, (p

(4)
0 )>]> be an arbitrary

vector, where p
(i)
0 ∈ R3mn in i = 1, . . . , 4. Applying ADMM to

(27) yields the following algorithm:

un+1 :=(K>K)−1K>(zn − pn)

z
(1)
n+1 :=prox 1

ρ
‖·‖∗(ln+1 + p(1)

n )

z
(2)
n+1 :=prox 1

ρ
‖·‖1(Ωsn+1 + p(2)

n )

z
(3)
n+1 :=PQ(ln+1 + sn+1 + p(3)

n )

z
(4)
n+1 :=PW (ln+1 + p(4)

n )

pn+1 :=pn + Kun+1 − zn+1.

(28)

The update of un is very easy since K is composed of simple di-
agonal matrices. The update of z

(1)
n can be computed by singular
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(a) (b) (c) (d) (e)

Fig. 1. Image colorization results with the 10th-order approximation. (a) Original image Koala. (b) Gray scaled image + color labels. (c)
Exact method [9] (ADMM ver.). (d) Proposed method. (e) The 2× amplified difference between (c) and (d), where 0.5 is added to all the
pixel values.

Table 1. The computation time of algorithms and PSNR. The 10th order approximation is good for our method.
Approximation order ofHs(C>C) 5 10 15 20 Exact method

Total computation time (s) 21.99 29.96 36.15 44.67 41.57(s)
Computation time of singular value thresholding (s) 1.13 1.72 2.3 2.95 3.12(s)

PSNR (dB) compared with the exact method 40.08 41.19 41.73 42.15 -

value thresholding, which is performed by our CPA-based technique.
The update of z

(2)
n is reduced to a well-known soft-thresholding, i.e.,

shrinking the absolute value of each entry. In the update of z
(3)
n and

z
(4)
n , PQ(·) and PW (·) are the metric projections onto Q and W ,

respectively. Practically, PQ(·) is given by maintaining the assigned
pixel values. Additionally, the auxiliary vector is calculated as a
difference between w and the vector averaged with three color com-
ponents of ln+1 + p

(4)
n . PW (·) is derived by adding the auxiliary

vector to each color components of ln+1 + p
(4)
n . As said before, the

proximity operator prox 1
ρ
‖·‖∗ is approximately calculated by using

our technique. To filter the singular values, the filter function in (22)
is emprically defined as

h(x) := max(
√
x−200,0)√
x

, (29)

where max(x1, x2) is an operator choosing the greater one out of
x1 and x2.

5. EXPERIMENTS

5.1. Experimental Condition

We examined the effectiveness of our method w.r.t the computation
speed and the approximate precision. An eight-bit grayscale image
Koala2 was used as W in (24) whose size is 2400 × 1600. Ad-
ditionally, 1% pixels in Fig. 1(a) were automatically chosen color
labels, and then, the local-color consistency method was applied to
the labeled image for pre-colorization which was used as Q in (24).
The column vectors l0, s0, p0, and z0 were initialized by all one
vectors. We used 5th, 10th, 15th, and 20th-order polynomial ap-
proximations to calculate Hs(C>C). Our method was compared

2The image Koala was used in [9], and the image was provided in the
author’s website.

with the exact method, i.e., SVD is performed for the singular value
thresholding. In the results, PSNR was calculated by using the re-
sults of our method and the exact method to verify the approximate
precision. All algorithms were implemented in MATLAB and run
on a 2.9 GHz Intel Xeon E5-2690 processor.

5.2. Experimental Results

Fig. 1 shows the results of image colorizations using the 10th-
order approximation. Although our method approximates the exact
method, the result of ours is perceptually equivalent to that of the
exact method as shown in Fig. 1(c) and (d). Moreover, the difference
between the exact method and ours is quite small even though the
pixel values of Fig. 1(e) are amplified for visualization.

Table 1 indicates the computation time of the entire algorithm
and that for singular value thresholding. PSNR between our method
and the exact method is also shown to verify the approximation pre-
cision. Even when the singular value thresholding is approximated
with low order, the proposed method indicates high PSNR. As can
be seen, the singular value thresholding is computed quickly by us-
ing CPA. Moreover, our method reduces the total computation time
up to 30% of that of the exact method.

6. CONCLUSION

In this paper, we proposed the fast image colorization method using
Chebyshev polynomial approximation. The singular value thresh-
olding can be represented as a multiplication of matrices derived
from CPA. The approximation method was applied to the image col-
orization method with nuclear norm minimization. The experimental
results showed that our colorization method is much faster than the
conventional method and has the high approximation precision. As a
future work, we will investigate to further reduce computation time.
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