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ABSTRACT
We present an extension of recent semidefinite programming
formulations for atomic decomposition over continuous dic-
tionaries, with applications to continuous or ‘gridless’ com-
pressed sensing. The dictionary considered in this paper is
defined in terms of a general matrix pencil and is parameter-
ized by a complex variable that varies over a segment of a line
or circle in the complex plane. The main result of the paper is
the formulation as a convex semidefinite optimization prob-
lem, and a simple constructive proof of the equivalence. The
techniques are illustrated with a direction of arrival estima-
tion problem, and an example of low-rank structured matrix
decomposition.

Index Terms— Sparse signal reconstruction, low-rank
matrix completion, compressed sensing, semidefinite opti-
mization, array processing.

1. INTRODUCTION

Few optimization problems have attracted as much interest in
recent years as the problem of minimizing the sum of a convex
function and an `1-norm regularization term. A general form
of problems of this type is

minimize f(
r∑

k=1

xkak) +
r∑

k=1

|xk|

subject to ak ∈ D, k = 1, . . . , r,
(1)

where f is a convex function and D is a set (or dictionary)
of vectors in Cn or Rn. The unknowns in problem (1) are the
real or complex coefficients xk, the vectors (or atoms) a1, . . . ,
ar selected from D, and the number r of selected dictionary
elements. If D is a finite set, it can be represented by a matrix
D with the elements ofD as its columns, and the problem can
be written as

minimize f(Dx) + ‖x‖1.

This includes as special cases the Lasso problem [1], basis
pursuit [2], noisy basis pursuit [3, 4], and numerous other ap-
plications [5–8].
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When reviewing the literature on `1-norm methods in sig-
nal processing [5, 9–11], it is striking that many of the un-
derlying applications involve signals in continuous domains
(time, space, or frequency domain), and the `1-norm prob-
lems arise after discretizing and truncating an infinite dictio-
nary. The discretization is used when no exact method for the
continuous problem is known, or when the discretized prob-
lem is believed to be easier to solve numerically by convex
optimization techniques.

It was recently noted that certain problems of the form (1)
with infinite dictionaries can be exactly solved by semidef-
inite optimization. In particular, the authors of [12–17] con-
sider `1-norm minimization with dictionaries of vectors of un-
damped complex exponentials,

D = { 1√
n

(1, ejω, ej2ω, . . . , ej(n−1)ω) | ω ∈ [0, 2π]}, (2)

and use the fact that problem (1) is equivalent to the finite-
dimensional convex optimization problem

minimize f(y) + (trX + z)/2

subject to
[
X y
yH z

]
� 0

X is Toeplitz.

The variables in this problem are X ∈ Hn, y ∈ Cn, z ∈ R.
(Here Hn denotes the set of Hermitian n× n matrices.)

A useful matrix extension of problem (1) results from al-
lowing the variables xk to be vectors:

minimize f(
r∑

k=1

akx
H
k ) +

r∑
k=1

‖xk‖2
subject to ak ∈ D, k = 1, . . . , r.

(3)

For example, if D is the set of unit-norm vectors in Cn, the
problem can be shown to be equivalent to

minimize f(Y ) + ‖Y ‖∗, (4)

with variable Y ∈ Cn×m, where ‖Y ‖∗ denotes the trace
norm or nuclear norm (sum of singular values). The equiva-
lence can be seen by writing (4) in the equivalent form

minimize f(
r∑

k=1

ukv
H
k ) +

r∑
k=1

(‖uk‖22 + ‖vk‖22)/2
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[18, §5.3], making a change of variables

tk = ‖uk‖22, ak = uk/
√
tk, xk =

√
tkvk,

and eliminating the scalars tk by noting that tk + ‖xk‖22/tk is
minimum for tk = ‖xk‖2.

The authors of [19,20] consider (3) with the dictionary of
complex exponentials (2) and show that the problem is equiv-
alent to the convex problem

minimize f(Y ) + (trX + trZ)/2

subject to
[

X Y
Y H Z

]
� 0

X is Toeplitz,

(5)

with variables X ∈ Hn, Y ∈ Cn×m, Z ∈ Hm. This exten-
sion includes problem (1) as a special case with m = 1. Ap-
plications of (1) or (3) with the dictionary (2) arise frequently
in signal processing, for example, in the estimation of line
spectra, point source localization, and sensor array process-
ing [5, 9, 10, 21].

In this paper we discuss extensions of the semidefinite
programming formulations of (1) and (3) to a large class of
dictionaries defined in terms of matrix pencils. In §2.1 we de-
fine the general dictionary and show that it includes as special
cases the dictionary of complex exponentials (2) and subsets
of the form

D = { 1√
n

(1, ejω, ej2ω, . . . , ej(n−1)ω) | |ω − α| ≤ β}, (6)

in which we restrict the frequencies to intervals [α − β, α +
β]. In §2.2 we give a semidefinite programming formulation
of (3) for the matrix pencil dictionary, and outline a simple
and constructive proof of the equivalence. Section 3 illus-
trates the use of constrained dictionaries with two examples.
Section 4 gives the concluding remarks.

2. SEMIDEFINITE OPTIMIZATION FORMULATION

2.1. Dictionary

Define two (n− 1)× n matrices

F =
[

0 In−1

]
, G =

[
In−1 0

]
(7)

(where In−1 is the identity matrix of order n−1) and let C be
the unit circle in the complex plane. Then the set

D = {a ∈ Cn | ‖a‖2 = 1, (λG− F )a = 0, λ ∈ C} (8)

contains all vectors of the form

a =
c√
n

(1, ejω, ej2ω, . . . , ej(n−1)ω) (9)

with |c| = 1. Up to a phase factor c, this is the dictionary of
undamped complex exponentials in (2).

We generalize (8) in two ways. First, we allow F , G to
be arbitrary matrices, so λG − F is a general matrix pencil.
Second, we define C to be a subset of the closed complex
plane defined by a quadratic equality and inequality,

C = {λ ∈ C ∪ {∞} | gΦ(λ, 1) = 0, gΨ(λ, 1) ≤ 0} , (10)

where Φ and Ψ are 2× 2 Hermitian matrices with det Φ < 0,
and for a 2× 2 Hermitian matrix Λ, we define

gΛ(µ, ν) =

[
µ
ν

]H
Λ

[
µ
ν

]
.

When Φ11 = 0 and Ψ11 ≤ 0 we admit the point λ =∞ in the
set (10). (When λ =∞, the condition (λG− F )a = 0 in (8)
is interpreted as Ga = 0.) The solution set of the equality
gΦ(λ, 1) = 0 is a circle or straight line in the complex plane.
For the purposes of this paper the most important example is

Φ =

[
1 0
0 −1

]
, (11)

which parameterizes the unit circle. By adding the inequality
in (10) we obtain segments of circles or lines [22]. For exam-
ple, the dictionary of vectors (9) with |ω − α| ≤ β is defined
by (11) and Ψ11 = 0, Ψ12 = −ejα, Ψ22 = 2 cosβ.

2.2. Main result

The following theorem gives a convex formulation of prob-
lem (3), with the dictionary D defined in (8) and (10). To
simplify the handling of the point at infinity, we define

C = {(µ, ν) 6= 0 | gΦ(µ, ν) = 0, gΨ(µ, ν) ≤ 0} .

The pair (µ, ν) is identified with a finite λ = µ/ν if ν 6= 0
and with λ =∞ otherwise.

Theorem 2.1 Let F , G be matrices in Cp×n, and Φ, Ψ be
Hermitian 2× 2 matrices with det Φ < 0. Then the problem

minimize f(
r∑

k=1

akx
H
k ) +

r∑
k=1

‖xk‖2

subject to µkGak = νkFak, k = 1, . . . , r

‖ak‖2 = 1, k = 1, . . . , r

(µk, νk) ∈ C, k = 1, . . . , r

(12)

with variables ak ∈ Cn, xk ∈ Cm, (µk, νk) ∈ C2, and r, is
equivalent to the semidefinite optimization problem

min. f(Y ) + (trX + trZ)/2

s. t. Φ11FXF
H + Φ21FXG

H

+ Φ12GXF
H + Φ22GXG

H = 0

Ψ11FXF
H + Ψ21FXG

H

+ Ψ12GXF
H + Ψ22GXG

H � 0[
X Y
Y H Z

]
� 0,

(13)

with variables X ∈ Hn, Y ∈ Cn×m, and Z ∈ Hm.
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Problem (5) is a special case with F , G defined in (7), Φ
defined in (11), and Ψ = 0. In this case, the matrix equality
FXFH = GXGH states that the upper-left (n−1)×(n−1)
block of X equals its lower-right (n− 1)× (n− 1) block, or
equivalently, X is Toeplitz.

Our proof of theorem 2.1 relies on the following result,
which is an immediate consequence of Corollary 1 in [23].

Lemma 2.1 Suppose X is positive semidefinite, has rank r,
and satisfies the first two constraints in (13). Then X can be
factorized as X = UUH where U ∈ Cn×r and

FU = W diag(µ), GU = W diag(ν),

for some W ∈ Cp×r and vectors µ, ν ∈ Cr that satisfy

(µk, νk) ∈ C, k = 1, . . . , r.

We omit the proof of this lemma, but emphasize that the proof
outlined in [23] gives a simple constructive algorithm, based
on singular value and Schur decompositions, for computing
the factorization of X .

Proof of Theorem 2.1. We first show that (13) is a relaxation
of (12). Suppose a1, . . . , ar, x1, . . . , xr are feasible in (12).
Without loss of generality assume that xk 6= 0 for all k. De-
fine tk =

√
‖xk‖2 and[

X Y
Y H Z

]
=

r∑
k=1

[
tkak

(1/tk)xk

] [
tkak

(1/tk)xk

]H
.

Then X , Y , Z are feasible in (13) with objective function
equal to f(

∑
k akx

H
k ) +

∑
k ‖xk‖2.

To establish the converse, we assume X , Y , Z are fea-
sible in (13) and show how to find a set of vectors ak, xk
that are feasible in (12) with objective function less than or
equal to the objective of (13). Suppose X has rank r. We can
factorize X as in lemma 2.1 and define ak = uk/‖uk‖2 and
θk = ‖uk‖22, where uk is the kth column of U . This gives a
factorization

X =

r∑
k=1

θkaka
H
k (14)

where θk > 0 and the vectors ak are linearly independent
and satisfy the constraints in (12). The third constraint in (13)
then implies that there exist vectors x1, . . . , xr such that

Y =

r∑
k=1

akx
H
k , Z �

r∑
k=1

1

θk
xkx

H
k .

Substituting the expressions forX , Y ,Z in the objective gives

f(Y ) +
1

2
(tr(X) + tr(Z))

≥ f(

r∑
k=1

akx
H
k ) +

1

2

r∑
k=1

(θk +
1

θk
‖xk‖22)

≥ f(

r∑
k=1

akx
H
k ) +

r∑
k=1

‖xk‖2.

The last line follows from the arithmetic-geometric mean in-
equality. 2

3. EXAMPLES

3.1. Direction of arrival estimation

The first example illustrates the interval constraints in dictio-
naries of the form (6). We consider a uniform linear array of
n = 50 sensors. The signal arriving at the array is a super-
position of a small number of planar waves arriving from dif-
ferent directions in [−π/2, π/2]. We take 2d/λc = 1, where
d is the distance between the sensors and λc the signal wave-
length [21, §6.2]. When all sensor measurements are avail-
able, the directions of arrival can be estimated by classical
methods, such as MUSIC and ESPRIT [21, 24, 25]. In this
example, however, we assume that only a randomly selected
subset of 30 sensors is used. Moreover the sensors are not
omnidirectional. The 30 sensors are randomly partitioned in
two groups of size 15. Sensors of group 1 measure signals
arriving from directions in [−π/2, π/6]; sensors in group 2
measure signals arriving from directions [−π/6, π/2]. The
output of the remaining 20 sensors is not used. To simplify
notation we will assume the measurements are noise-free.

The direction of arrival (DOA) estimation problem can be
put in the framework discussed in this paper by defining three
dictionaries

Dj = {(1, ejω, ej2ω, . . . , ej(n−1)ω) | |ω − αj | ≤ βj},

for j = 1, 2, 3. Here ω = π sin θ is the spatial frequency asso-
ciated with a direction of arrival θ. The three intervals [αj −
βj , αj + βj ] are the images of the intervals [−π/2,−π/6],
[−π/6, π/6], and [π/6, π/2] after the transformation ω =
π sin θ. The DOA estimation problem can be formulated as
an infinite-dimensional ‘basis-pursuit’ problem

minimize
∑3
j=1

∑r
k=1 |xjk|

subject to yj =
∑rj
k=1 xjkajk, j = 1, 2, 3

ajk ∈ Dj , k = 1, . . . , rj , j = 1, 2, 3

(y1 + y2)I1 = b1, (y2 + y3)I2 = b2.

(15)

Each of the variables yj is a linear combination of rj elements
of the dictionary Dj , i.e., an n-vector that represents a sum of
rj signals arriving from directions in the jth interval. In the
last two constraints, I1 ⊂ {1, 2, . . . , n} is an index set con-
taining the indices of the sensors in group 1, and I2 is an index
set for group 2. The vector b1 contains the 15 measurements
at the sensors of group 1, and b2 contains the measurements
for group 2. The variables in the problem are the vectors yj ,
ajk, the coefficients xjk, and the number of elements rj cho-
sen from each dictionary.

Following the same idea as in theorem 2.1 we can cast the
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Fig. 1. DOA estimation with and without interval constraints.

problem as the SDP

min.
∑3
j=1(tr(Xj) + zj)/2

s.t.
[
Xj yj
yHj zj

]
� 0, j = 1, 2, 3

X1, X2, X3 are Toeplitz

−e−jαjFXjG
H − ejαjGXjF

H

+ 2 cosβjGXjG
H � 0, j = 1, 2, 3

(y1 + y2)I1 = b1, (y2 + y3)I2 = b2

(16)

with variables Xj ∈ Hn, yj ∈ Cn, zj ∈ R, for j = 1, 2, 3.
The matrices F , G are defined in (7).

Figure 1 shows an example. The red dots show the angles
and magnitudes of 7 signals used to compute the measure-
ment vectors b1, b2. The estimated angles and coefficients are
shown with blue lines. The figure on the left-hand side shows
that the angles and the coefficients are exactly recovered from
the solution of (15) and (16). The right-hand plot shows the
solution recovered from the SDP (16) if we omit the third
set of constraints (which enforces the interval constraints).
We also repeated the simulation with the same angles as in
figure 1, different, randomly generated coefficients, and dif-
ferent random selections of the two sensor groups. The so-
lution of the SDP (16) gave the exact answer in all instances,
whereas the SDP without the interval constraints was success-
ful in only about 27% of the instances.

3.2. Structured matrix decomposition

The second example is an application of theorem 2.1 with
m > 1. We generate a 30×30 matrixC = AB+N as a prod-
uct of a 30× 3 matrix A with entries Aij = exp(j(i− 1)ωj),
for given values of ω1, ω2, ω3, and a randomly generated
complex 3×30 matrix B with entries from a normal distribu-
tion, plus a Gaussian noise matrix N . The goal is to estimate
the parameters ωj and the matrix B from the noisy measure-
ments C.

We compare two methods. In the first method we assume
we are given a narrow interval that includes the parameters
ωj . In this case we define a dictionary

D = { 1√
n

(1, ejω, ej2ω, . . . , ej(n−1)ω) | |ω − α| ≤ β}
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Fig. 2. Structured matrix decomposition of a matrix with
rank 3, with and without interval constraint.

(with n = 30), and consider the optimization problem

minimize τ‖
∑r
k=1 akx

H
k − C‖F +

∑r
k=1 ‖xk‖2

subject to ak ∈ D, k = 1, . . . , r.
(17)

with τ a positive parameter. In the example, we use α = 0,
β = π/12 = 0.2618. Using theorem 2.1, the problem can be
converted to the SDP

minimize τ‖Y − C‖F + (tr(X) + tr(Z))/2

subject to
[

X Y
Y H Z

]
� 0

X is Toeplitz
−FXGH −GXFH + 2 cosβ GXGH � 0.

In the second method, we omit the third constraint (imposing
the interval), i.e., solve (17) with the dictionary (2). Figure 2
shows the two solutions, for independently tuned values of
τ , with the estimates of ωi on the horizontal axis, and the
norms of the vectors xk on the vertical axis. As can be seen,
adding the interval constraints allowed the method to identify
the parameters ωi, and thus ‖xk‖, more accurately.

4. CONCLUSION

The proof technique and the factorization result in lemma 2.1
appear in the control literature on the generalized Kalman-
Yakubovich-Popov lemma and its connections with SDP du-
ality [23, 26–28]. In these applications, F and G are defined
as

F =
[
A B

]
, G =

[
I 0

]
,

and the vectors a in (8) take the form a = ((λI−A)−1Bu, u).
The link is important for two reasons. First, it suggests a range
of similar applications in system and control theory, statistics,
and numerical analysis, with different choices for the matri-
ces F , G, and the sets C. Second, specialized techniques for
solving SDPs derived from the Kalman-Yakubovich-Popov
lemma, for example, by exploiting real symmetries and rank-
one structure [29–32], will be useful in the development of
fast solvers for SDPs of the form (13).
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