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Abstract—This paper presents two novel regularization methods mo-
tivated in part by the geometric significance of biorthogonal bases in
signal processing applications. These methods, in particular, draw upon
the structural relevance of orthogonality and biorthogonality principles
and are presented from the perspectives of signal processing, convex
programming, continuation methods and nonlinear projection operators.
Each method is specifically endowed with either a homotopy or tuning
parameter to facilitate tradeoff analysis between accuracy and numerical
stability. An example involving a basis comprised of real exponential
signals illustrates the utility of the proposed methods on an ill-conditioned
inverse problem and the results are compared to standard regularization
techniques from the signal processing literature.

Index Terms—orthogonality, biorthogonality, regularization, convex
optimization, homotopy maps

I. INTRODUCTION

Signal processing algorithms, notably those in machine learning
and big data applications, make ubiquitous use of dense and sparse
linear algebra subroutines [1], [2]. Numerical errors often arise while
implementing such subroutines and are typically explained using
perturbation analysis tools. For example, finite-precision effects such
as coefficient quantization are quantifiable by invoking sensitivity
theorems after organizing the computation into a linear or nonlinear
signal-flow graph, as discussed in, e.g., [3]. Also, the magnification
and compounding of propagated errors are commonly understood via
the condition number of a functional representation of the processing
system. These unavoidable sources of error contribute significantly
to the total accumulated error in an obtained solution, especially as
problem sizes continue to scale. Algorithms specifically designed to
use orthogonality principles alleviate these issues and, among other
reasons, receive extensive use in practice. Moreover, orthogonality
in other contexts such as quantum measurement and asynchronous
distributed optimization continue to provide inspiration for new signal
processing algorithms, architectures, and applications [4], [5].

Signal processing techniques exploiting natural and efficient rep-
resentations for signal models with inherent geometric structure
often use non-orthogonal bases and frames that may generally
suffer from conditioning issues, e.g. finite rate of innovation [6],
compressed sensing [7], and transient signal analysis [8]-[11]. To
address these issues, we restrict our attention in this paper to two clas-
sical approaches: orthogonalization and regularization. Traditional
orthogonalization routines typically destroy the topological relevance
of an original basis to the problem at hand while simultaneously
weakening the informational significance of the solution obtained.
The orthogonal Procrustes problem has been used for subspace
whitening and machine learning in the matrix setting, i.e. generating
the unitary matrix that optimally maps one matrix to another in the
Frobenius norm sense[12], [13]. In this paper, we specifically translate
and explicate these results using bases and further extend them as
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they pertain to biorthogonalization, nonlinear projections, and novel
regularization methods. The proposed regularization methods permit
natural characterizations of accuracy and stability enabling standard
tradeoff analysis to identify an acceptable balance. Regularization
methods in signal processing have historically focused on directly
obtaining a solution biased toward prespecified signal properties. In
this paper, however, we emphasize the effect the proposed methods
have on the linear problems Euclidean structure itself.

This paper is outlined as follows: In Section II we collect together
geometric facts surrounding orthogonality and biorthogonality that
will be referenced throughout. The orthogonalization and biorthogo-
nalization of a linear system via a nonlinear projection operator is the
central focus of Section III. Two regularization methods for balancing
numerical robustness in the sense of relative conditioning and accu-
racy in the sense of geometric structure are developed in Section IV.
The proposed methods are then applied to the regularization of an ill-
conditioned basis composed of real exponential signals in Section V
as a numerical example. Throughout the presentation, we draw no
distinction between various linear problems and the mathematical
relationships connecting them, e.g. matched filtering, solving linear
systems, changing bases, etc. In this way, the insights and methods
presented may be readily applied to any linear problem equally well.

A. Notational conventions
Vectors are denoted using underscores with subscripts indexing

vectors as opposed to entries, i.e. a1 and a2 represent two distinct
vectors. Boldface letters denote a system or collection of N vec-
tors, typically constituting a basis for RN , i.e. a = {ak}

N
k=1. A

biorthogonal set is denoted using ∼, i.e. ã is biorthogonal to a. The
p-norm of a vector a for p ≥ 1 is denoted ‖a‖p. A capital letter
denotes the matrix form of a set of vectors, i.e. A has columns a. The
Kronecker delta is denoted δk,j . For clarity we assume all systems
are real-valued bases; rigorous extensions to complex-valued bases
and frames follow analogously, e.g. by using appropriate conjugation
and restricting arguments to the range of a system.

II. THE TOPOLOGY OF THE STIEFEL MANIFOLD AND O(N)

Let a and b denote two general systems and define εBO as the
nonnegative measure of their biorthogonality given by

εBO (a,b) ,
∑
k

∑
j

(〈
ak, bj

〉
− δk,j

)2 (1)

which achieves a unique global minimum of zero provided that b =
ã. It is then straightforward to conclude that

εBO (a,a) = 0 ⇐⇒ a is an orthonormal system. (2)

The Stiefel manifold Vk,N is the orthogonal groups principal ho-
mogenous space (k=N) and is written using (1) as [14]

VN,N =
{
h ∈ RN : εBO(h,h) = 0

}
. (3)

Represented as a quadratic form, (1) is convex quadratic with
positive signature, i.e. all eigenvalues are positive valued, thus any
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optimization problem that uses (1) as a cost function or (3) as a
feasible set is not precluded from being a convex problem.

The orthogonal group of dimension N , denoted by O(N) and
described in set-builder notation using the matrix form of h as

O(N) =
{
H ∈ RN×N : HTH = HHT = IN

}
(4)

where IN is the identity operator on RN , consists of two connected
components M1 and M−1. Furthermore, M1 and M−1 each form
a disjoint smooth manifold in RN×N characterized by

Mi = {H ∈ O(N) : det(H) = i} , i = ±1 (5)

where det(·) denotes the determinant operator. Note that M1 is
precisely the special orthogonal group SO(N). From (5) and the
definition of a connected component it immediately follows that

H ∈Mi ⇔ H̃ ∈Mi, i = ±1. (6)

We conclude this section by noting that appropriately selecting a base
point for VN,N establishes a one-to-one correspondence with O(N)
and, therefore, justifies interchanging between the two notational
descriptions of an orthogonal system, i.e. h and H .

III. ORTHOGONALIZATION AND BIORTHOGONALIZATION

Let a and b continue to denote two general systems and define
εLS as the nonnegative Euclidean measure of their distance given by

εLS (a,b) ,
∑
k

‖ak − bk‖
2
2 (7)

=
∑
k

〈ak − bk, ak − bk〉 (8)

which achieves a unique global minimum of zero provided that b =
a. In the sequel we shall denote by g a general prespecified system.

A. Optimal orthogonalization problems

Consider the optimization problem that identifies the nearest or-
thogonal system to g in the sense of (7), or equivalently the least-
squares orthogonalization of g, given by

ĥ1 = arg min
h
εLS (g,h) s.t. εBO (h,h) = 0. (P1)

Similarly, consider the optimization problem that identifies the nearest
orthogonal system to the biorthogonal system g̃ in the sense of (7)
given by

ĥ2 = arg min
h
εLS (g̃,h) s.t. εBO (h,h) = 0. (P2)

We collectively refer to (P1) and (P2) as optimal orthogonalization
problems and further interpret their solutions as orthogonal systems
that maximally preserve the geometric structure inherent to g and g̃,
respectively.

B. Optimal biorthogonalization problems

Consider the optimization problem that identifies the orthogonal
system which is maximally dual to g in the sense of (1) given by

ĥ3 = arg min
h
εBO (g,h) s.t. εBO (h,h) = 0. (P3)

Finally, consider the optimization problem that identifies the orthog-
onal system which is maximally dual to the biorthogonal system g̃
in the sense of (1) given by

ĥ4 = arg min
h
εBO (g̃,h) s.t. εBO (h,h) = 0. (P4)

We collectively refer to (P3) and (P4) as optimal biorthogonalization
problems and further interpret their solutions as the orthogonal
systems that, switching to the matrix form notation introduced in
Subsection I-A, maximally invert G and G̃, respectively.

Fig. 1. An illustration of the relationships between the matrix forms of g
and g̃ and their adjoints and their projections onto the orthogonal group via
(13) where the projection operator is denoted using P(·). The system g is
chosen such that det(G) > 0 and therefore the projections are onto M1.

C. Equivalence of εLS and εBO over VN,N

The measures (1) and (7), respectively interpreted as optimal
biorthogonalization and orthgonalization cost functions, produce gen-
erally unequal cost surfaces over the space of all N -dimensional
bases. However, for fixed g and orthogonal h, it follows that

εBO(g,h) =
∑
k, j

(
〈g

k
, hj〉

[
〈g

k
, hj〉 − 2δk,j

]
+ δ2k,j

)
(9)

=
∑
k

(
〈g

k
, g

k
〉 − 2〈g

k
, hk〉+ 〈hk, hk〉

)
(10)

=
∑
k

〈g
k
− hk, gk − hk〉 (11)

= εLS(g,h) (12)

where the restriction of h to VN,N is used to obtain (10) from (9),
in particular since 〈a, b〉 =

∑
j〈a, hj〉〈hj , b〉 and δk,j = 〈hk, hj〉.

D. Analytic solution and projection interpretation of (P1)-(P4)

In Subsection III-C, we established that the solution to (P1) solves
(P3) and likewise that the solution to (P2) solves (P4). In this
subsection, we first state and interpret the analytic expression that
minimizes (P1) followed by discussing one way (P1) and (P2) may
be argued to have the same minimizer. Indeed, the matrix form of
the orthogonal system ĥ1 which solves (P1) is given by

Ĥ1 = UV T (13)

where G = UΣV T is the Singular Value Decomposition (SVD)
of the matrix form of g. Observe that verifying the orthogonality
of (13) folllows immediately from the closure property of O(N); a
sketch of the full argument that (13) minimizes (P1) is deferred to the
Appendix. Interpreting (13) as a nonlinear operator acting upon G, it
is straightforward to verify idempotency, hence (13) is the projection
of G onto O(N). Figure 1 illustrates this, i.e. that the action of (13)
on G, G̃ and their transposes is a projection onto the orthogonal
group. From the perspective of bases, generating (13) consists of N
radial projections along the semiaxes of the ellipsoid described by
the SVD of G such that the associated singular values become unity.

An equivalence between (P1) and (P2) is established by using the
matrix and basis representation equivalence discussed earlier where
the matrix form of g̃, i.e. the linear functionals biorthogonal to g
in the dual linear space, corresponds to the inverse of the adjoint of
G. The desired result is obtained by straightforward manipulations
that further simplify (P2), in particular by exploiting SVD properties.
For arbitrary systems g, we comment that it is possible to identify a
priori which manifold (13) belongs to, i.e. combining the manifold
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characterizations in (5) and using the connected component property
in (6) we conclude that

Ĥ ∈Mi ⇐⇒ sgn (det(G)) = i, i = ±1. (14)

E. Incremental projection methods for nearly orthogonal g

Although many numerical algorithms exist to compute (13), we
call special attention to the case of G being “nearly” orthogonal. Let
R = GTG− IN be a Grammian residual. Re-writing (13) as

Ĥ = G(IN +R)−
1
2 , (15)

we proceed assuming the spectral norm of R is less than 1 which may
be efficiently certified using, e.g. Gershgorin’s circle theorem [15].
After some straightforward manipulations we obtain the power series

Ĥ = G

[
∞∑

n=0

(
− 1

2

n

)
Rn

]
(16)

and thus the solution to (P1)-(P4) may be generated to any desired
level of accuracy without explicitly computing an SVD by truncating
(16) to an appropriate number of terms.

IV. TRADING ACCURACY FOR NUMERICAL STABILITY

Many applications of signal processing as well as engineering more
broadly require considerably less accuracy than what is available
on modern computational platforms. By pairing systems in VN,N

with backward stable algorithms, computation can be made to not
magnify propagated errors. Motivated by these observations, we
next propose two regularization methods that facilitate accuracy and
stability tradeoffs readily explained through homotopy maps and
convex analysis, respectively. We comment upfront that while our
treatment focuses on interpretation, the utility of these methods is in
regularizing ill-conditioned problems while preserving some of the
original systems Euclidean structure as is illustrated in Section V.

Regularization methods are often described initially using the
language of optimization theory; the methods surveyed in Sub-
section V-B serve as examples. Some regularization techniques,
primarily those related to least squares formulations, admit solutions
in closed-form. Setting these special cases aside, the remaining
techniques conventionally solve directly for a solution to the problem
at hand without first generating a regularized system. The methods
proposed in this section specifically make this intermediary step,
i.e. they explicitly generate a regularized linear system from which
a solution is then generated, potentially making further use of any
regularization techniques belonging to the class just mentioned in
which the regularized system takes the place of the original system.

A. Homotopic continuation formulation

Motivated by the extensive use of floating-point arithmetic in big
data computation, we measure the stability of a system g through its
relative condition number, i.e. the ratio of extremal singular values
of G. Loosely speaking, when this measure is on the order 10k then
only d−k digits of the computed solution are reliable where d is the
maximum number available on the chosen computational platform
[16]. This loss in accuracy is inherent to the system itself and says
nothing about further degradations that accumulate due to a particular
algorithms stability nor to errors that arise from round-off noise and
coefficient quantization.

We first introduce a continuation scheme to generate a parameter-
ized family of regularized systems along the trajectory corresponding
to the smooth deformation of g into ĥ1. The utility of this scheme
for solving a linear system of equations Gx = y, with known y,

is to sequentially or approximately solve for x while substituting
different systems along this continuum for G. The parameterization
of the system mitigates numerical conditioning issues at the expense
of accuracy, i.e. the continuation terminates when a system associated
with an acceptable solution is identified. The function describing
these deformations is referred to as a homotopy map. In this paper,
we use the specific homotopy map

ĥ5(ρ,g),
{
hk : hk = (1−ρ)g

k
+ ρzk where z solves (P1)

}
(17)

where the parameter ρ ∈ [0, 1] balances the previously addressed
tradeoff. The family of linear systems achieved using the homotopy
map ĥ5 is ĥ5(ρ,g) ↔ Ĥ5 for ρ ∈ [0, 1] and the standard
implementation strategy is to track the solution to the problem using
Ĥ5 instead of G starting from (ρ,g) = (0,g) as ρ progresses from
0 to ρ? where ρ? generates the system associated with an acceptable
solution. In Section V, solutions to a similar problem are obtained by
discretizing [0, 1] and evaluating a performance metric for all values
of ρ in this interval. Standard line search methods help to efficiently
identify the optimal homotopy value ρ?.

Since the condition number of G is equal to the condition number
of G̃, and with the equivalence between the minimizer of (P1) and
(P2), we conclude the discussion in this subsection by noting that
replacing g with g̃ results in the same presentation with the geometric
structure of the biorthogonal system g̃ being preserved instead.

B. Unconstrained optimization formulation

Prompted by the exposition on characterizing numerical accuracy
and stability in the previous subsection, we next formulate an
optimization problem whose cost function is the sum of the metrics
(7) and (1), i.e. each summand is respectively minimized by ĥ5(0,g)
and ĥ5(1,g). We formally write this problem as an unconstrained
quartic convex optimization problem of the form

ĥ6(ρ,g) , arg min
h
εLS(g,h) + ρεBO(h,h) (18)

where ρ again determines the previously addressed tradeoff. Indeed,
consistent with the discussion surrounding the positive definite nature
of (1) represented as a quadratic form and the fact that the sum
of unconstrained convex functions results in a convex function, it
is straightforward to verify that any solution to (18) that is locally
optimal is also globally so. Although the cost function of (18) is
purposefully constructed using the endpoints of the continuum of
regularized systems achievable using (17), it is readily possible to
generate solutions to (18) that do not lie on this continuum nor are
obtainable using (17) for any value of the homotopy parameter ρ.

In response to the global optimality guarantees established above
and for the sake of completeness, we conclude this section by
including gradient primitives that may be used by any number of
gradient-based nonlinear programming algorithms in solving (18):

∇εLS(g,h) |hk
= 2

∑
j

(〈g
j
, hk〉 − δj,k)g

j
(19)

∇εBO(h,h) |hk
= 4 (〈hk, hk〉 − 1)hk + 2

∑
j 6=k

〈
hj , hk

〉
hj .(20)

Note that an analytic expression for the system ĥ6 which minimizes
(18) is currently unknown due to the cubic nature of the first order
optimality conditions, i.e. the nonlinear system of equations defined
by setting the appropriately weighted sum of the two terms above
equal to zero for each value of k.
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V. NUMERICAL EXAMPLE

Solving linear equations using regularization, a common approach
to ill-posed problems, modifies the problem so that (i) the new
problem is biased toward expected solutions and (ii) the previously
mentioned numerical issues are reduced. In signal processing, regular-
ization appears in many forms: Tikhonov regularization and Wiener
filtering, total variation denoising in image processing, and basis
pursuit denoising in compressive sensing. In this section, we use the
methods developed in Section IV to solve a numerical example.

A. Problem formulation

Let E denote the matrix form of a real exponential basis e, i.e. E
is Vandermonde and, for 0 < σ1 < · · · < σN < 1, generated by

Ei, j = σi−1
j , 1 ≤ i, j ≤ N. (21)

The relative condition number of E, and consequently Ẽ too, grows
exponentially in N [17]. This fact justifies using regularization to
solve a linear problem of the form

Ex = y (22)

for x where y is analytically generated according to a synthetic solu-
tion x̄ to help limit observed numerical effects to the regularization
effect each method has on the matrix E in (22).

B. Numerical methods for comparison

This subsection briefly reviews three regularization methods from
the signal processing literature, two of which originate in the com-
pressive sensing setting, to compare against (17) and (18) in solving
(22) [7]. The first method, Tikhonov regularization, is formulated as

x? = arg min
x
‖Ex− y‖22 + ‖Tx‖22. (23)

where we proceed to take the Tikhonov matrix T = ρIN . The
objective in (23) is convex quadratic, thus the solution has an analytic
expression, namely x? = (ETE + ρ2I)−1ET y. Next, the basis
pursuit denoising problem is formulated as

x? = arg min
x
‖Ex− y‖2 + ρ‖x‖1 (24)

where ρ balances the absolute size of the solution with the desired
agreement of (22). Finally, the Dantzig selector is given by

x? = arg min
x
‖ET (Ex− y)‖∞ + ρ‖x‖1 (25)

and may be solved using standard linear programming techniques.

C. Numerical results

Our experimental setup is as follows: We generate E on each trial
by selecting N = 18 values σk uniformly at random from the interval
[0.1, 0.9] and solve (22) using the various methods discussed. We
select ρ to within 10−6 for each method per trial to minimize the
residual ‖x? − x̄‖2. The solution x? to (17) and (18) is found by
directly solving the regularized equations via Gaussian elimination.
Table 1 lists the average residual and value of ρ taken over 107

trials. Solving (22) directly yields an average error of 8.64. The
condition number of E for this experiment is lower bounded by 1016.
In summary, we remark that (17) outperforms the alternatives and (18)
outperforms all but (23) for the Vandermonde linear systems tested.
The larger error for (25) is due in part to the condition number of
ETE being the square of the condition number of E.

Figure 2 illustrates an accuracy versus numerical stability tradeoff
curve for the proposed regularization methods where accuracy is
given by the residual ‖x?−x̄‖2 and numerical stability is given by the
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Fig. 3. An illustration of a subset of the real exponential basis elements e
and the corresponding elements from the proposed regularization methods.

relative condition number. For both methods, it is clear that a non-zero
value of ρ is optimal corresponding to a system whose conditioning is
several orders of magnitude less than E’s. Figure 3 depicts a subset
of regularized signals for the optimal selection of ρ in Figure 2.
As depicted and consistent with elements not shown, the regularized
signals have similar structure to e, i.e. they decay at similar rates to
their exponential counterparts, also depicted for comparison. Signals
produced by (18) retain a smooth nature with an additive offset and
slight upward curvature and those produced by (17) contain small
fluctuations that seem to alleviate conditioning issues.

TABLE 1. NUMERICAL COMPARISON OF REGULARIZATION METHODS

Solution reference (17) (18) (23) (24) (25)

average ‖x? − x̄‖2 0.096 0.153 0.139 0.147 13.46
average optimal ρ 0.002 0.028 0.025 0.015 0.044

APPENDIX

Sketch of the argument that (13) solves (P1):

arg min
h∈VN,N

εLS (g,h) = arg min
h∈VN,N

∑
k

〈g
k
− hk, gk − hk〉

= min
h∈VN,N

∑
k

(
〈g

k
, g

k
〉+ 〈hk, hk〉 − 2〈g

k
, hk〉

)
= arg max

h∈VN,N

〈g
1
, h1〉+ · · ·+ 〈g

N
, hN 〉

Switching to matrix notation for convenience, utilizing properties of
a trace, and writing G using its SVD G = UΣV T , we proceed as:

arg max
h∈VN,N

∑
k

〈g
k
, hk〉 → arg max

H∈O(N)
trace

(
V ΣUTH

)
= U

(
arg max

H∈O(N)
trace (ΣH)

)
V T

= UV T
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