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ABSTRACT

The nonnegative matrix factorization (NMF) has been a popular
model for a wide range of signal processing and machine learning
problems. It is usually formulated as a nonconvex cost minimiza-
tion problem. This work settles the convergence issue of a popular
algorithm based on the alternating direction method of multipliers
proposed in Boydet al 2011. We show that the algorithm converges
globally to the set of KKT solutions whenever certain penalty pa-
rameterρ satisfiesρ > 1. We further extend the algorithm and its
analysis to the problem where the observation matrix contains miss-
ing values. Numerical experiments on real and synthetic data sets
demonstrate the effectiveness of the algorithms under investigation.

Index Terms— Nonnegative Matrix Factorization, ADMM,
Convergence Analysis, Nonconvex Optimization.

1. INTRODUCTION

The well-known NMF problem extracts from an observation matrix
M ∈ R

N×Q two nonnegative factorsX ∈ R
N×K , andY ∈ R

K×Q.
A popular nonconvex formulation for NMF is given by [1]:

min f(X, Y ) =
1

2
‖XY −M‖2F , s.t. X ≥ 0, Y ≥ 0. (1.1)

WhenM contains missing values, one would like to find the non-
negative factors that complete the matrix. Such nonnegative matrix
factorization/completion (NMFC) problem can be formulated as [2]

min f̂(X,Y ) =
1

2
‖PΩ (XY −M) ‖2F , s.t. X ≥ 0, Y ≥ 0 (1.2)

wherePΩ denotes the projection on to the index setΩ which con-
tains the known entries. The seminal work of Lee and Seung [1]
has motivated a variety of applications of NMF/NMFC, such astext
mining [3], pattern discovery [4], bioinformatics [5], as well as clus-
tering [6]; for a recent survey, see [7].

Many efficient algorithms have been proposed for NMF/NMFC.
For example the multiplicative update proposed in [1] alternates be-
tween solving certain surrogate functions forX andY , respectively.
The convergence of this algorithm is analyzed in [8], but in practice
it often converges slowly [7, 9]. The alternating nonnegative least
square (ANLS) is another class of useful algorithms, which includes
the projected gradient descent method [10], the block principal piv-
oting method [11], and an algorithm proposed in [12]. Recently, the
alternating direction method of multipliers (ADMM) has become a
popular framework for NMF. In a highly cited survey [13, Chapter
9.2], Boydet alproposed one of the first ADMM algorithms to solve
the nonconvex NMF problem (1.1). At roughly the same time many

variants have been developed, each demonstrating encouraging nu-
merical performance; see [2,9,14,15]. Unfortunately, there is a sig-
nificant gap between the algorithms’ good practical performance and
our understanding for such behavior – to the best of our knowledge
the theoretical convergence of such ADMM based method is still
open1. It is the aim of this work to partially close this gap.

This work settles the convergence issue of the nonconvex AD-
MM proposed in [13]. We show that as long as certain penalty pa-
rameter is chosen greater than1, the algorithm globally converges to
the set of KKT points of problem (1.1). This result provides theoret-
ical justification for the good practical performance observed for this
algorithm. Further, we develop an extension to the aforementioned
algorithm for the NFMC problem (1.2). We expect that our analysis
technique will serve as the basis for analyzing a much wider range
of ADMM based methods for nonconvex matrix factorization.

2. THE ALGORITHM

We begin with reviewing the algorithm proposed in [13, Chapter 9.2]
for NMF. Consider the following reformulation of (1.1)

min
X,Y,Z

1

2
‖Z −M‖2F , s.t. X, Y ≥ 0, Z = XY, (2.3)

where a new variableZ ∈ R
N×Q is introduced. The augmented

Lagrangian for the above problem is given by

Lρ(X, Y,Z; Λ) =
1

2
‖Z −M‖2F + 〈Λ, Z −XY 〉+

ρ

2
‖Z −XY ‖2F .

whereΛ ∈ R
N×Q is the dual variable. In [13], an ADMM based

algorithm is proposed to solve the nonconvex NMF problem (1.1).
The algorithm alternates between updatingY and(X,Z), followed
by the update of the dual variableΛ; see the following table2.

Algorithm 1. ADMM for Problem (1.1)
Initialize : X0, Z0,Λ0

Repeat: Let r = r + 1; updateY , (X,Z) andΛ alternatingly by:

Y r+1 = arg min
Y ≥0

ρ

2

∥

∥

∥

∥

Zr −XrY +
Λr

ρ

∥

∥

∥

∥

2

F

, (2.4a)

(X,Z)r+1 = argmin
X≥0,Z

1

2
‖Z −M‖2F +

ρ

2

∥

∥

∥

∥

Z −XY r+1 +
Λr

ρ

∥

∥

∥

∥

2

F

,

(2.4b)

Λr+1 = Λr + ρ
(

Zr+1 −Xr+1Y r+1
)

. (2.4c)

Until Convergence.

1A few works such as [2] have analyze the convergence of nonconvex AD-
MM based on somenonstandardassumptions that the successive difference
of the iterates goes to zero. These assumptions are made on the algorithm
iterates and hence are impossible to verifya priori.

2Note that this is precisely the algorithm developed in [13, Chapter 9.2],
except that we have exchanged the order of Y and (X,Z) update.
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This algorithm has very good practical performance and the code
can be easily parallelized for high dimensional problems [13]. Un-
fortunately, despite its good performance, there has been no rigorous
convergence analysis available. This is also the case for many AD-
MM based NMF algorithms that follow suite. The main challenge in
analyzing its convergence lies in thenonconvexityandnonseparabil-
ity in (1.1)– most of the known convergence analysis for ADMM is
only applicable to convex separable problems (see, e.g., [13,16,17]),
hence are not applicable in our context. Recently [18] analyzes the
convergence of ADMM for a special nonconvexseparableglobal
consensus problem, but the analysis again does not apply here (the
nonconvexity and nonseparability of the NMF/NMFC problem arise
from its bi-convex structure, which cannot be handled by [18]).

Algorithm 1 can be easily extended to handle the NMFC prob-
lem. Consider the following equivalent reformulation of (1.2)

min
X,Y,Z,W

1

2
‖Z −W‖2F

s.t. X ≥ 0, Y ≥ 0,

Z = XY, PΩ (W −M) = 0,

(2.5)

where new variablesZ ∈ R
N×Q andW ∈ R

N×Q are introduced.
The augmented Lagrangian for the above problem is given by

L̂ρ̂(X, Y,Z,W ; Λ) =
1

2
‖Z −W‖2F + 〈Λ, Z −XY 〉+

ρ̂

2
‖Z −XY ‖2F .

By grouping the variables into(Y,W ) and(X,Z), a direct applica-
tion of the conventional ADMM yields the following algorithm.

Algorithm 2. ADMM for Problem (1.2)
Initialize : X0, Z0,Λ0

Repeat: Let r = r+ 1; update(Y,W ), (X,Z) andΛ alternatingly by:

(Y,W )r+1 = argmin
Y ≥0,PΩ(W−M)=0

1

2
‖Zr −W‖2F

+
ρ̂

2
‖Zr −XrY +Λr/ρ̂‖2F (2.6a)

(X,Z)r+1 = argmin
X≥0,Z

1

2
‖Z −W r+1‖2F

+
ρ̂

2
‖Z −XY r+1 +Λr/ρ̂‖2F (2.6b)

Λr+1 = Λr + ρ̂
(

Zr+1 −Xr+1Y r+1
)

. (2.6c)

Until Convergence.

It is easy to observe that Algorithm 2 reduces to Algorithm 1 if M
is a full matrix (in which case the solution of (2.6a) yieldsW r =
M, ∀ r). Also note that the subproblems (2.6a) and (2.6b) are both
convex therefore can be solved by general purpose solvers such as
CVX [19]. Later in the simulation section we will discuss a particu-
lar efficient implementation for solving these subproblems.

3. CONVERGENCE ANALYSIS

We begin analyzing the convergence of Algorithm 1 and 2. Due
to its generality we will focus on proving the latter algorithm, and
make comments on the former whenever necessary. To highlight,
we provide below the main steps of the analysis:

1. Bound the size of the successive difference of the multipliers
by that of the successive difference of the primal variables.

2. Show that the augmented Lagrangian is lower bounded and
decreasing.

3. Combine the previous two steps and show convergence.

We note that our analysis differs from that of [18], because we have
to deal with the following two challenging issues:1) The noncon-
vexityin the constraintZ = XY ; 2) The absence of the Lipschitzian
gradient forLρ(X,Y, Z; Λ) andL̂ρ̂(X,Y, Z,W ; Λ) 3.

The following lemma represents the first step of the proof.

Lemma 3.1 We have the following estimates of‖Λr+1 − Λr‖:

1. For Algorithm 1, the following is true

‖Λr+1 − Λr‖2F ≤ ‖Z
r+1 − Zr‖2F (3.7)

2. For Algorithm 2, the following is true

‖Λr+1 − Λr‖2F ≤ 2(‖Zr+1 − Zr‖2F + ‖W r+1 −W r‖2F ) (3.8)

Proof. The optimality condition of (2.6b) for variableZ is given by

Zr+1 −W r+1 + ρ̂
(

Zr+1 −Xr+1Y r+1 + Λr/ρ̂
)

= 0. (3.9a)

This condition combined with (2.6c) can be equivalently written as

W r+1 − Zr+1 = Λr+1. (3.10)

Then it is easy to see that we have

‖Λr+1 − Λr‖2F ≤ 2(‖Zr+1 − Zr‖2F + ‖W r+1 −W r‖2F ). (3.11)

The lemma is proved. Q.E.D.

Our second step shows that the augmented Lagrangian functions are
lower bounded and decreasing, provided that the penalty parameters
ρ and ρ̂ are chosen sufficiently large. Note that the analysis below
explicitly makes use of the property of the nonconvex quadratic func-
tion of (1.1), therefore it is different from what is presented in [18].
For notational simplicity, defineSr := {Xr, Y r, Zr,W r}.

Lemma 3.2 We have the following estimates for the decent of the
augmented Lagrangian function

1. For Algorithm 1, ifρ > 1, then for somec1, c2, c3 > 0,

Lρ(X
r+1, Y r+1, Zr+1; Λr+1)− Lρ(X

r, Y r, Zr; Λr)

≤ −c1‖Z
t+1 − Zt‖2F − c2‖X

r(Y r+1 − Y r)‖2F

− c3‖(X
r+1 −Xr)Y r+1‖2F .

Further, we have thatLρ(X
r, Y r, Zr; Λr) ≥ 0.

2. For Algorithm 2, ifρ > 4, then for somêc1, ĉ2, ĉ3, ĉ4 > 0,

L̂ρ̂(S
r+1; Λr+1)− L̂ρ̂(S

r; Λr)

≤ −ĉ1‖Z
t+1 − Zt‖2F − ĉ2‖W

t+1 −W t‖2F

− ĉ3‖X
r(Y r+1 − Y r)‖2F − ĉ4‖(X

r+1 −Xr)Y r+1‖2F .

Further, we havêLρ̂(S
r; Λr) ≥ 0.

Proof. First let us examine the(Y,W )-step (2.6a). We have

L̂ρ̂(X
r , Y r+1, Zr,W r+1; Λr)− L̂ρ̂(S

r ; Λr)

=
〈

W r+1 − Zr,W r+1 −W r
〉

−
1

2
‖W r+1 −W r‖2F

+
〈

ρ̂
(

XrY r+1 − Λr/ρ̂− Zr
)

,Xr(Y r+1 − Y r)
〉

−
ρ̂

2
‖Xr(Y r+1 − Y r)‖2F

≤ −
1

2
‖W r+1 −W r‖2F −

ρ̂

2
‖Xr(Y r+1 − Y r)‖2F (3.12)

3The gradient ofL(X, Y,Z,W ; Λ) with respect to eitherX or Y is not
Lipschitz continuous, because the potential unboundedness ofX andY .
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where the first equality comes from the fact that the second order
Taylor expansion for a quadratic function is exact. Note that here the
expansion is performed on the variableXrY . The last inequality is
due to the optimality condition of problem (2.6a).

Next let us examine the(X,Z)-step (2.6b). Similarly, we have

L̂ρ̂(S
r+1; Λr)− L̂ρ̂(X

r , Y r+1, Zr,W r+1; Λr)

=
〈(

Zr+1 −W r+1
)

+ ρ̂
(

Zr+1 −Xr+1Y r+1 +Λr/ρ̂
)

, Zr+1 − Zr
〉

−
〈

ρ̂(Zr+1 −Xr+1Y r+1 + Λr/ρ̂)(Y r+1)T ,Xr+1 −Xr
〉

−
1 + ρ̂

2
‖Zr+1 − Zr‖2F −

ρ̂

2
‖(Xr+1 −Xr)Y r+1‖2F

≤ −
1 + ρ̂

2
‖Zr+1 − Zr‖2F −

ρ̂

2
‖(Xr+1 −Xr)Y r+1‖2F . (3.13)

Utilizing the above two inequalities, we can bound the successive
difference of the augmented Lagrangian by

L̂ρ̂(S
r+1; Λr+1)− L̂ρ̂(S

r; Λr)

=L̂ρ̂(X
r, Y r+1, Zr,W r+1; Λr)− L̂ρ̂(S

r; Λr)

+ L̂ρ̂(S
r+1; Λr)− L̂ρ̂(X

r, Y r+1, Zr ,W r+1; Λr)

+ L̂ρ̂(S
r+1; Λr+1)− L̂ρ̂(S

r+1; Λr)

(3.12),(2.6c)
≤ −

1

2
‖W r+1 −W r‖2F −

ρ

2
‖Xr(Y r+1 − Y r)‖2F

+ L̂ρ̂(S
r+1; Λr)− L̂ρ̂(X

r, Y r+1, Zr ,W r+1; Λr)

+ L̂ρ̂(S
r+1; Λr+1)− L̂ρ̂(S

r+1; Λr)

(3.13)
≤ −

ρ̂+ 1

2
‖Zr+1 − Zr‖2F −

1

2
‖W r+1 −W r‖2F

−
ρ̂

2
‖Xr(Y r+1 − Y r)‖2F −

ρ̂

2
‖(Xr+1 −Xr)Y r+1‖2F

+
1

ρ̂
‖Λr+1 − Λr‖2F . (3.14)

Utilizing (3.11), we have

L̂ρ̂(S
r+1; Λr+1)− L̂ρ̂(S

r ; Λr)

≤ −

(

ρ̂+ 1

2
−

2

ρ̂

)

‖Zr+1 − Zr‖2F − (
1

2
−

2

ρ̂
)‖W r+1 −W r‖2F

−
ρ̂

2
‖Xr(Y r+1 − Y r)‖2F −

ρ̂

2
‖(Xr+1 −Xr)Y r+1‖2F (3.15)

Therefore ifρ̂ > 4, the augnmented Lagrangian is decreasing.
Next we show the lower boundedness of the augmented La-

grangian. We have

L̂ρ̂(S
r; Λr)

=
1

2
‖Zr −W r‖2F + 〈Λr, Zr −XrY r〉+

ρ̂

2
‖Zr −XrY r‖2F

(3.10)
=

1

2
‖Zr −W r‖2F + 〈W r − Zr, Zr −XrY r〉+

ρ̂

2
‖Zr −XrY r‖2F

=
ρ̂− 1

2
‖Zr −XrY r‖2F +

1

2
‖W r − Zr + Zr −XrY r‖2F

=
ρ̂− 1

2
‖Zr −XrY r‖2F +

1

2
‖W r −XrY r‖2F ≥ 0. (3.16)

The claim is proved. We mention that similar analysis can be done
for Algorithm 1, however in that case the range of the penaltypa-
rameter can be made even wider (ρ > 1 instead of̂ρ > 4). Q.E.D.

Our final step collects all the results we have so far to show con-
vergence. The following is our main result.

Theorem 3.1 We have the following convergence results:

1. For Algorithm 1, ifρ > 1, then the primal gap is satisfied in
the limit, i.e.,

lim
r→∞

‖Xr+1Y r+1 − Zr+1‖F → 0. (3.17)

Further, every limit point of the iterates(Xr, Y r) is a KKT
point of the problem(1.1).

2. For Algorithm 2: Ifρ̂ > 4, then the primal gap is satisfied in
the limit, i.e.,

lim
r→∞

‖Xr+1Y r+1 − Zr+1‖F → 0. (3.18)

Further, every limit point of the iterates(Xr, Y r) is a KKT
point of the original problem(1.2).

Proof. We focus on analyzing the second claim. Whenρ̂ > 4, by

(3.15) we have

Zr+1 − Zr → 0, Xr(Y r+1 − Y r)→ 0,

(Xr+1 −Xr)Y r+1 → 0, W r+1 −W r → 0, (3.19)

By Lemma 3.1, we have:Λr+1 − Λr → 0, which further implies

Xr+1Y r+1 − Zr+1 → 0. (3.20)

Once the constraint violation is shown to go to zero, the restof
the proof simply involves in checking the KKT solution of problem
(1.2). Due to space limitation we will not show them here.Q.E.D.

4. NUMERICAL RESULTS

In this section we compare the performance of Algorithms 1-2with
some existing methods for NMF/NMFC. Our experiments are per-
formed using Matlab 2013a on a PC with 8GB memory and Intel
Core i5-4690 CPU.

4.1. Procedures for solving the subproblems

To efficiently implement Algorithm 1 and 2, we use a procedure
inspired by the recent work [12] to solve the convex subproblems
(2.4a), (2.4b) and (2.6a), (2.6b). Below we outline the procedure for
solving (2.6a). Procedures for the rest of the subproblems can be
developed similarly.

First, we reformulate the subproblem (2.6a) for updating(Y,W )

by introducing a new variablêY :

min
Y,W,Ŷ

1

2
‖Zr −W ‖2F +

ρ̂

2
‖Zr −XrY + Λr/ρ̂‖2F

s.t. Y = Ŷ , Ŷ ≥ 0

PΩ (W −M) = 0.

The augmented Lagrangian for the above problem is given by

L̃(Y,W, Ŷ ; Û) =
1

2
‖Zr −W ‖2F +

ρ̂

2
‖Zr −XrY + Λr/ρ̂‖2F

+ 〈Û , Y − Ŷ 〉+
α

2
‖Y − Ŷ ‖2F

The ADMM steps are summarized in the following table.
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Algorithm 3. ADMM for Problem (2.6a)
Input: M,Zr, Xr,Λr, Û ,Ω, α, ρ
Initialize : Y 0, computeP = (ρ̂(Xr)TXr + αI)−1

Repeat

S1 : W ← Zr + PΩ (M − Zr)

S2 : Ŷ ← max(0, Y + Û/α)

S3 : Y ← P
(

ρ̂(Zr + Λr/ρ̂) + (Ŷ − Û/α)
)

S4 : Û ← Û + α(Y − Ŷ )

Until Convergence.
Output: Ŷ ,W, Û

We note that the algorithm involves performing the inversion of a
K×K matrix ρ̂(Xr)TXr +αI once, an operation that is relatively
easy because in most practical NMF/NMFC problems we haveK ≪
min{Q,N}.

A similar procedure can be developed for solving the subprob-
lem (2.6b), by introducing a variablêX to handle the constraint
X ≥ 0. The associated augmented Lagrangian is given by

L̄(Z,X, X̂ ; V̂ ) =
1

2
‖Z −W r+1‖2F +

ρ̂

2
‖Z −XY r+1 + Λr/ρ̂‖2F

+ 〈V̂ ,X − X̂〉+
β

2
‖X − X̂‖2F

We omit the details due to space limitation.

4.2. The Performance of Algorithm 1

In this subsection we compare the performance of Algorithm 1with
the following algorithms for solving (1.1):1) the multiplicative up-
dating rule (MULT) [1]; 2) the AO-ADMM proposed recently by
Huanget al [12]; 3) The AO-BPP proposed by Kimet al [11]; 4) the
ADM method proposed by Xuet al [2].

We chooseρ = 1.1, which satisfies the condition given in Theo-
rem (3.1). Furthermore, we chooseα = ‖W ‖F , andβ = 1, for
the subproblems. The stopping criteria for Algorithm 1 is given
by: Lρ(S

r+1; Λr+1) − Lρ(S
r; Λr) ≤ 10−4, ‖M−XY ‖F

‖M‖F
≤ 10−4.

First we randomly generateM which satisfiesM = WH + N ,
whereW ∈ R

N×R, andH ∈ R
R×Q are random matrices with i-

id entries generated fromUniform(0, 1); N ∈ R
N×Q is a random

matrix with iid entries generated fromN (0, 0.012). Different algo-
rithms are compared in terms of the quality of solutions as well as
their convergence speed. In this experiment we set the problem size
N = Q = 5000, R = 1000, andK = 200. The results which
are averaged over 50 independent trials are summarized in Table 1.
As we can observe, Algorithm 1 outperforms other algorithmsfor
this specific test problem in terms of both absolute error of the final
solution as well as the run time. We further demonstrate the conver-

Table 1. The performance of Algorithm 1 on synthetic data sets
Method ‖Y −WH‖F Run Time (s) Iterations
Algorithm 1 10176 80 22
AO ADMM [12] 10187 129 39
ADM [2] 10191 500 242
AO BPP [11] 10179 134 23
MULT [1] 19311 497 500

gence speed of different algorithms by testing on problems of differ-
ent sizes. We setN = Q ∈ {100, 200, · · · , 1000}, K = Q/2, and

Problem Size
100 200 300 400 500 600 700 800 900 1000

T
im
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)
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Algorithm 1
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ADM [2]
AO-BPP [11]
MULT [1]

Fig. 1. The convergence speed of different algorithms

R = Q/10. The results are shown in Fig. 1. Thex-axis displays the
size of the problem (N,Q), andy-axis displays running time. The
results are averaged over 50 independent trials.

From Figure 1 it can be seen that Algorithm 1 converges faster
compared with other algorithms, especially for the large-size prob-
lems. Also note that the behavior of the objective values of different
algorithms are similar as in the previous case (omitted due to space
limitation).

Next we demonstrate the performance of various algorithms on
the ORL face data set [20]. In this case the data matrixM is a
10304×400 matrix, each column of which is a picture with112×92
pixels. We apply different algorithms on this data set to geta non-
negative basis matrixX and a nonnegative coefficient matrixY such
thatM ≈ XY . The results are given in Table 2. We observe that
Algorithm 1 enjoys a slight advantage over the rest of the methods.

Table 2. The performance of Algorithm 1 on ORL face data set
Method ‖Y −WH‖F Run Time (s) Iterations
Algorithm 1 90 185 109
AO ADMM [12] 91 202 46
ADM [2] 646 301 500
AO BPP [11] 94 202 23
MULT [1] 104 246 500

4.3. The Performance of Algorithm 2

In this subsection we compare the performance of Algorithm 2with
the algorithm in [2], both of which deal with problems with missing
values in the observation. The data matrices we use are generated
similarly as in the previous section, except that the entries ofM are
sampled uniformly according to different sample rates (percentages
of known entries). Specifically we setN = Q = 3000, R = 1000,
K = 300 and the comparison results are reported on Table 3. From
Table 3 we can see that Algorithm 2 has significantly better perfor-
mance than the ADM proposed in [2].

Table 3. The performance of Algorithm 2 on synthetic data sets
Algorithm Algorithm 2 ADM [2]
Sample Rate 25% 50% 75% 25% 50% 75%
Absolute Error 2875 3679 4827 2922 3712 4881
Run Time (S) 110 88 54 139 92 131
Iteration 310 75 40 406 230 249

Acknowledgement: The authors would like to thank Stephen
Boyd from Stanford and Kejun Huang from University of Minnesota
for helpful comments and discussions.
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