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ABSTRACT

The nonnegative matrix factorization (NMF) has been a pampul
model for a wide range of signal processing and machine ilggrn
problems. It is usually formulated as a nonconvex cost nizam
tion problem. This work settles the convergence issue ofpailpo
algorithm based on the alternating direction method of ipligrs
proposed in Boyet al2011. We show that the algorithm converges
globally to the set of KKT solutions whenever certain penala-
rameterp satisfiesp > 1. We further extend the algorithm and its
analysis to the problem where the observation matrix coataiiss-
ing values. Numerical experiments on real and synthetia dats
demonstrate the effectiveness of the algorithms undesiigation.

Index Terms— Nonnegative Matrix Factorization, ADMM,
Convergence Analysis, Nonconvex Optimization.

1. INTRODUCTION
The well-known NMF problem extracts from an observationnrat
M € RV*? two nonnegative factors € RV* X, andy € R¥*€,
A popular nonconvex formulation for NMF is given by [1]:

min f(X,Y)

%HXY —M|%, st.X>0,Y >0, (11

When M contains missing values, one would like to find the non-
negative factors that complete the matrix. Such nonnegjatiatrix
factorization/completion (NMFC) problem can be formuthses [2]

min f(X,Y) = %HPQ (XY = M) |2, 5. X >0, Y >0 (1.2)

wherePq denotes the projection on to the index Setvhich con-
tains the known entries. The seminal work of Lee and Seung [1
has motivated a variety of applications of NMF/NMFC, sucheas
mining [3], pattern discovery [4], bioinformatics [5], a®lvas clus-
tering [6]; for a recent survey, see [7].

Many efficient algorithms have been proposed for NMF/NMFC.
For example the multiplicative update proposed in [1] ali¢es be-
tween solving certain surrogate functions forandY’, respectively.
The convergence of this algorithm is analyzed in [8], butriactice
it often converges slowly [7,9]. The alternating nonnegaieast
square (ANLS) is another class of useful algorithms, whictuides
the projected gradient descent method [10], the block jpah@iv-
oting method [11], and an algorithm proposed in [12]. Relgettie
alternating direction method of multipliers (ADMM) has loece a
popular framework for NMF. In a highly cited survey [13, Ckep
9.2], Boydet al proposed one of the first ADMM algorithms to solve
the nonconvex NMF problem (1.1). At roughly the same timeynan
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variants have been developed, each demonstrating enaoginagr
merical performance; see [2,9, 14, 15]. Unfortunatelyrehe a sig-
nificant gap between the algorithms’ good practical peréoroe and
our understanding for such behavior — to the best of our kedge
the theoretical convergence of such ADMM based method lis sti
opert. Itis the aim of this work to partially close this gap.

This work settles the convergence issue of the nonconvex AD-
MM proposed in [13]. We show that as long as certain penalty pa
rameter is chosen greater thgrthe algorithm globally converges to
the set of KKT points of problem (1.1). This result providhedret-
ical justification for the good practical performance obserfor this
algorithm. Further, we develop an extension to the aford¢imesd
algorithm for the NFMC problem (1.2). We expect that our gsisl
technique will serve as the basis for analyzing a much widege
of ADMM based methods for nonconvex matrix factorization.

2. THE ALGORITHM

We begin with reviewing the algorithm proposed in [13, CleaSt2]
for NMF. Consider the following reformulation of (1.1)

1 2 B
;n)l/nz §HZ—.MHF7 st. X,V >0, Z=XY, (2.3)

where a new variable ¢ RV*? is introduced. The augmented
Lagrangian for the above problem is given by

1 P
Lo(X,Y, ;M) = 5117 = MI[E + (A, Z = XY) + D112 = XY |7

whereA € RV*? s the dual variable. In [13], an ADMM based
algorithm is proposed to solve the nonconvex NMF problert)(1.
The algorithm alternates between updatingnd (X, Z), followed
by the update of the dual variahle see the following tabfe

Algorithm 1. ADMM for Problem (1.1)
Initialize : X, 29, A©
] Repeat Letr = r + 1; updateY’, (X, Z) andA alternatingly by:
. AT |2
Z" - X"Y + —
P

yr+t (2.4a)

3

F

= arg min L
Y>0 2

. AT |2
Z— Xyt 4 =
pllp
(2.4b)

(2.4¢)

)

1
(X,Z)"! = argmin- || Z — M|% + £ H
X>0,Z 2 2

A'r‘+1 — Ar JFP (Zr+1 _ Xr+1yr+1) .

Until Convergence.

1A few works such as [2] have analyze the convergence of naesokD-
MM based on someonstandardassumptions that the successive difference
of the iterates goes to zero. These assumptions are made afgtrithm
iterates and hence are impossible to vesifgriori.

2Note that this is precisely the algorithm developed in [1Bagtter 9.2],
except that we have exchanged the order of Y and (X,Z) update.
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This algorithm has very good practical performance and thdec
can be easily parallelized for high dimensional problen8.[Un-
fortunately, despite its good performance, there has beeigorous
convergence analysis available. This is also the case fay AB-
MM based NMF algorithms that follow suite. The main challerg
analyzing its convergence lies in thenconvexityandnonseparabil-

ity in (1.1)— most of the known convergence analysis for ADMM is

only applicable to convex separable problems (see, e3)16¢117]),
hence are not applicable in our context. Recently [18] aealythe
convergence of ADMM for a special nonconvegparableglobal
consensus problem, but the analysis again does not apy(tner
nonconvexity and nonseparability of the NMF/NMFC problemse
from its bi-convex structure, which cannot be handled by)[18

We note that our analysis differs from that of [18], becausehave
to deal with the following two challenging issues) The noncon-
vexityin the constrainZ = X'Y'; 2) The absence of the Lipschitzian
gradient forL,(X,Y, Z; A) andL;(X,Y, Z,W; A) °.

The following lemma represents the first step of the proof.
Lemma 3.1 We have the following estimates|gf™ ™" — A" ||:

1. For Algorithm 1, the following is true
AT = ATE <127 - 27| @7
2. For Algorithm 2, the following is true

AT = ATE <2127 = Z7F + W - WTR) (3.8)

Algorithm 1 can be easily extended to handle the NMFC prob-

lem. Consider the following equivalent reformulation ofQ)L

1
i ~|Z-w|?
PRl 2|| I
st. X>0,Y>0, (25)

Z =XY, Pq(W—-M)=0,

where new variableg € RV*? andW e RV*? are introduced.
The augmented Lagrangian for the above problem is given by

N 1 b
La(X, Y, Z,W;A) = 5\|Z W%+ (A Z - XY) + §|\Z — XY|3.

By grouping the variables int@Y, W) and(X, Z), a direct applica-
tion of the conventional ADMM vyields the following algoritin

Algorithm 2. ADMM for Problem (1.2)
Initialize: X0, 29, A0
Repeat Letr = r + 1; update(Y, W), (X, Z) andA alternatingly by:
(Y, w)rtt =

1
arg min —|z" - w|%

Y>0,Pqo(W-M)=0

+ gnzr - X"Y +AT/pl% (2.6a)
(X,2)" " = argmin 1Hz - w4
X>0,Zz 2
+ 217 - Xyl (2.60)
ATTE = AT 4 p (Zr T - xrtly T (2.6c)

Until Convergence.

It is easy to observe that Algorithm 2 reduces to Algorithni A/
is a full matrix (in which case the solution of (2.6a) yields" =

M, ¥ r). Also note that the subproblems (2.6a) and (2.6b) are both

convex therefore can be solved by general purpose solversasu
CVX[19]. Later in the simulation section we will discuss a paurti
lar efficient implementation for solving these subproblems

3. CONVERGENCE ANALYSIS

We begin analyzing the convergence of Algorithm 1 and 2. Due

to its generality we will focus on proving the latter algbrit, and

make comments on the former whenever necessary. To highligh

we provide below the main steps of the analysis:

1. Bound the size of the successive difference of the migtipl
by that of the successive difference of the primal variables

2. Show that the augmented Lagrangian is lower bounded and

decreasing.

3. Combine the previous two steps and show convergence.
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Proof. The optimality condition of (2.6b) for variablg is given by
Zr Wt (27T - XYY TP AT /p) = 0. (3.9a)
This condition combined with (2.6c) can be equivalentlytten as
Wt zrth = AT (3.10)

Then it is easy to see that we have
AT — AT <227 = Z7|[F 4+ W =W R). (3.11)
The lemma is proved. Q.E.D.

Our second step shows that the augmented Lagrangian fosctie
lower bounded and decreasing, provided that the penalanpeters

p and p are chosen sufficiently large. Note that the analysis below
explicitly makes use of the property of the nonconvex quicifanc-

tion of (1.1), therefore it is different from what is presedtn [18].

For notational simplicity, defin€” := {X",Y", Z", W"}.

Lemma 3.2 We have the following estimates for the decent of the
augmented Lagrangian function

1. For Algorithm 1, ifp > 1, then for some, c2,¢3 > 0,
LP(XT+17Yr+17ZT+1;AT+1) — L,(X",Y",Z";\")
< —al 27 = Z'F - el XTI - Y
—eal| (X7 = XY
Further, we have thaL,(X",Y",Z"; A") > 0.
2. For Algorithm 2, ifp > 4, then for some, ¢, ¢3, éx > 0,
zﬁ(sT+1;AT+1) _ Lﬁ(sT;AT‘)
< —al|z™tt = 2% - ewttt - W%
—&XTYTT = Y)|E - all(XT = XY
Further, we havel,(S™; A™) > 0.
Proof. First let us examine theY, W)-step (2.6a). We have
Lo(X™, Y™ 27 WL AT — Ly(ST™3 A7)
= (W = 2T W) — W -
(b (XY AT /p— Z7) X7 (YT - YT))

b
- 5HXT(YT“ -Y")%

1., . 2 r
S =S IWTH = WTE - SIXTOTH =Y DIE - B12)

3The gradient ofL.(X, Y, Z, W; A) with respect to eitheX or Y is not
Lipschitz continuous, because the potential unboundedofeX¥ andY.



where the first equality comes from the fact that the secodéror
Taylor expansion for a quadratic function is exact. Not¢ tiege the
expansion is performed on the variabté'Y". The last inequality is

due to the optimality condition of problem (2.6a).
Next let us examine theX, Z)-step (2.6b). Similarly, we have

ﬁﬂ(ST'H; A") — ﬁ‘;(XT,YT‘H,ZT, WL AT
— <(Z'r'+1 _ W7'+1) +ﬁ (Z'r'+1 _ X7'+1y'r'+1 +A7/ﬁ) ,ZT+1 _ Z7>
_ <ﬁ(Z7‘+1 7XT+1Y7‘+1 +AT//3)(YT+1)T7XT+] _ X7‘>

1+p, » b )
-SRIz = 2T - St - XY,

(3.13)

145 p
< - Rz = 27 = BT - Xy

Utilizing the above two inequalities, we can bound the sasive
difference of the augmented Lagrangian by

iﬁ(ST+I;AT+1) _ i/ﬁ(ST,AT)
Zi/ﬁ(XT,YT+1,ZT,WT+1;AT) _ I:ﬁ(ST;AT)
+ i/ﬁ(sr+1;A7') _ i]ﬁ(X'r~7Yr+17Z7'7W'r~+1;Ar~)
+ Lp(STTH AT = Ly(STTAT)

(312)(2.6c) 1 - » R r
S I oW = Bt -y
+ i/ﬁ(ST+1;AT) _ Eﬁ(XT7Yr+17ZT7WT+1;AT)
+ Lp(STHH AT = Ly(STTH AT
(B13)  H41, . - 1 r r
R R PR |

ﬁ T ™ T pA i T '
LT =Y - Bl - XY

+ %HAT“ AT (3.14)

Utilizing (3.11), we have
Ly(S™HL ATy — L5(ST; A7)

ﬁ+1 2 T r 1 2 r r
- (-2 -z - G- et -

2
=Xy = St - Xy @as)

Therefore ifp > 4, the augnmented Lagrangian is decreasing.

1. For Algorithm 1, ifp > 1, then the primal gap is satisfied in
the limit, i.e.,

lim || X"y — 27— 0.

T—00

(3.17)

Further, every limit point of the iterategX", V") is a KKT
point of the problen{1.1).

2. For Algorithm 2: Ifp > 4, then the primal gap is satisfied in
the limit, i.e.,

lim || X"y - 27 e 0.

T—00

(3.18)

Further, every limit point of the iterategX",Y") is a KKT
point of the original problengl.2).

Proof. We focus on analyzing the second claim. Whier 4, by
(3.15) we have

AR A |}
(Xr+1 o XT)Yr+1 N 07

XY vy >0,

W w0, (3.19)

By Lemma 3.1, we haveA™! — A™ — 0, which further implies

Xty gzt . (3.20)
Once the constraint violation is shown to go to zero, the oést
the proof simply involves in checking the KKT solution of ptem
(1.2). Due to space limitation we will not show them her&.E.D.

4. NUMERICAL RESULTS

In this section we compare the performance of Algorithmsviith
some existing methods for NMF/NMFC. Our experiments are per
formed using Matlab 2013a on a PC with 8GB memory and Intel
Core i5-4690 CPU.

4.1. Procedures for solving the subproblems

To efficiently implement Algorithm 1 and 2, we use a procedure
inspired by the recent work [12] to solve the convex subpots

Next we show the lower boundedness of the augmented L& 4a), (2.4b) and (2.6a), (2.6b). Below we outline the prhge for

grangian. We have
Ly(S™;A")

1 T T T T r T % T s T
= SIZ =W+ (2 = XY + B2 - XY

@310 1
T2
H—1 T YT 1 T T T TYNT

Pz = XY 3+ 5w - 27 + 27 - XY

p—1 T TNT 1 T TNT
=pT||z ~ XY E 4 I - XY 2 0. (3.16)
The claim is proved. We mention that similar analysis can dreed
for Algorithm 1, however in that case the range of the penpity
rameter can be made even wider£ 1 instead ofp > 4). Q.E.D.

Our final step collects all the results we have so far to shaw co

vergence. The following is our main result.
Theorem 3.1 We have the following convergence results:
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||Z7 o WTH%‘ + <Wr o ZT‘7z7‘ _ XTyT) + gnzy o X7Y7”%

solving (2.6a). Procedures for the rest of the subprobleanshbe
developed similarly.

First, we reformulate the subproblem (2.6a) for updatiyigi’’)
by introducing a new variabl¥:

: 1 T O T T T A
min |12~ WE + 2127 - XY + A"/pl%
Y, W,V

st. Y=Y, Y>0
Po (W — M) =0.

The augmented Lagrangian for the above problem is given by
4 S 2 1 T O T r T A
Ly, w.¥50) = 312" = Wik + 51127 = X7V + A"/l

+(0Y =)+ 5y -V

The ADMM steps are summarized in the following table.



—%—Algorithm 1
st AO-ADMM [12]
—+—ADM [2]

40| | —8—A0-BPP [11]
—<4—MULT [1]

Algorithm 3. ADMM for Problem (2.6a)
Input: M, Z", X" A", U,Q,«a,p
Initialize : Y°, computeP = (5(X")T X" + al)™*
Repeat

S1
S2

S3

W Z"+Pa(M—2")
1Y+ max(0,Y + U/a)
:YHPWT+N@+W—WM) J
U+ U+aly -Y) °

Time (Sec)

S4

500 600 700 800 900 1000

Problem Size

Until Convergence.
Output: Y, W, U

Fig. 1. The convergence speed of different algorithms

We note that the algorithm involves performing the invemstd a  p — @Q/10. The results are shown in Fig. 1. Theaxis displays the

K x K matrixp(X")" X" + oI once, an operation thatis relatively size of the problem X, Q), andy-axis displays running time. The

easy because in most practical NMF/NMFC problems we éve&  results are averaged over 50 independent trials.

min{Q, N}. From Figure 1 it can be seen that Algorithm 1 converges faster
A similar procedure can be developed for solving the subprobcompared with other algorithms, especially for the larige-grob-

lem (2.6b), by introducing a variabl& to handle the constraint |ems. Also note that the behavior of the objective valuesftérént

X > 0. The associated augmented Lagrangian is given by algorithms are similar as in the previous case (omitted dispace

R limitation).
L(Z,X,X;V) = l||Z —WHYE + £||Z — XY™ AT/ Next we demonstrate the performance of various algor_ithms o
2 2 the ORL face data set [20]. In this case the data matfixs a

10304 x 400 matrix, each column of which is a picture with2 x 92
pixels. We apply different algorithms on this data set toagebn-
negative basis matriX' and a nonnegative coefficient mattixsuch
that M ~ XY. The results are given in Table 2. We observe that
Algorithm 1 enjoys a slight advantage over the rest of thehods.

0, X - %)+ Dx - X
We omit the details due to space limitation.

4.2. The Performance of Algorithm 1
Table 2. The performance of Algorithm 1 on ORL face data set

In this subsection we compare the performance of Algorithmitth Method Y —WH| RunTime(s) Iterations
the following algorithms for solving (1.1)1) the multiplicative up- Algorithm 1 90 185 109
dating rule (MULT) [1]; 2) the AO-ADMM proposed recently by x5 Apmm [12] 91 202 46
Huanget al[12]; 3) The AO-BPP proposed by Kirt al[11]; 4) the ADM [2] 646 301 500
ADM method proposed by Xat al [2]. AO_BPP [11] 94 202 23

We choose = 1.1, which satisfies the condition given in Theo- 111 11 104 246 500

rem (3.1). Furthermore, we choose= |W||r, andg = 1, for
the subproblems. The stopping criteria for Algorithm 1 igegi

by: Lo(S™H AT — Ly (875 A7) < 1074, Wil <107,

4.3. The Performance of Algorithm 2

First we randomly generat®/ which satisfiesM = WH + N,
whereWW € RY*" ‘andH ¢ RF*? are random matrices with i-
id entries generated frotdniform(0,1); N € RV*? is a random
matrix with iid entries generated from’(0, 0.012). Different algo-
rithms are compared in terms of the quality of solutions ab as
their convergence speed. In this experiment we set the grobize
N = @ = 5000, R = 1000, and K" = 200. The results which g = 300 and the comparison results are reported on Table 3. From
are averaged over 50 independent trials are summarizecbia Ta
As we can observe, Algorithm 1 outperforms other algorittors

In this subsection we compare the performance of Algorithmit&

the algorithm in [2], both of which deal with problems withsgsing
values in the observation. The data matrices we use areajeder

similarly as in the previous section, except that the estie\/ are
sampled uniformly according to different sample ratesdpetages
of known entries). Specifically we sé&f = @ = 3000, R = 1000,

mance than the ADM proposed in [2].

Table 3 we can see that Algorithm 2 has significantly betteiope

this specific test problem in terms of both absolute erroheffinal

solution as well as the run time. We further demonstrate tineer- Table 3. The performance of Algorithm 2 on synthetic data sets

) . Algorithm Algorithm 2 ADM [2]
Table 1. The performance of Algorithm 1 on synthetic data sets Sample Rate 5505 50% 759 25% 5096  75%
Method Y -~ WH]lr_RunTime(s) lterations  —apsofute Error 2875 3679 4827 2922 3712 4881
Algorithm 1 10176 80 22 RunTime(S) 110 88 54 |139 92 131
AOADMM[12] 10187 129 39 Iteration 310 75 40 | 406 230 249
ADM [2] 10191 500 242
AO_BPP [11] 10179 134 23 AcknowledgementThe authors would like to thank Stephen
MULT [1] 19311 497 500 Boyd from Stanford and Kejun Huang from University of Minoes

for helpful comments and discussions.
gence speed of different algorithms by testing on probleiaffer- P

ent sizes. We seV = @ € {100, 200, - -- , 1000}, K = Q/2, and
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