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ABSTRACT

Performance of Non-negative Matrix Factorisation (NMF)
can be diminished when the underlying factors consist of
elements that overlap in the matrix to be factorised. The use
of `0 sparsity may improve NMF, however such approaches
are generally limited to Euclidean distance. We have previ-
ously proposed a stepwise `0 method for Hellinger distance,
leading to improved sparse NMF. We extend sparse Hellinger
NMF by proposing an alternative Iterative Hard Thresholding
sparse approximation method. Experimental validation of the
proposed approach is given, with a large improvement over
NMF methods when learning is performed on a large dataset.

Index Terms— Non-negative matrix factoriation, spar-
sity, Hellinger distance

1. INTRODUCTION

Given a matrix with non-negative elements, S ∈ RM×N ,
Non-negative Matrix Factorisation (NMF) [1] seeks to find
a dictionary matrix A ∈ RM×K and an activation matrix
X ∈ RK×N such that

S ≈ AX (1)

where A and X also consist completely of non-negative en-
tries. NMF is a popular tool, particularly in audio processing,
where it is used to factorise spectrograms. Many different al-
gorithms have been proposed for NMF, including the popular
multiplicative updates [1] [2] [3], coordinate descent [4], al-
ternating non-negative least squares [5] and ADMM [6]. Typ-
ically, these algorithms alternately update one factor matrix
while keeping the other fixed. A range of cost functions have
been considered for NMF [1] [2], including generalised cost
functions, such as the β-divergence [7] and α-divergence [3].

NMF is considered to derive a “parts-based” representa-
tion [1]. However the parts learnt may not be meaningful. A
major obstacle in performing NMF is the issue of separabil-
ity [8], which basically requires that the generating factors of
the matrix S be independent in order to be recovered. Fur-
thermore, in order to guarantee separation it is required that
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all combinations of the generating elements, or dictionary are
present in the mixture matrix, S [8]. In a non-negative frame-
work such requirements reduce to non-overlapping elements,
i.e. [A]m,k > 0 =⇒ [A]m,j = 0 ∀j 6= k.

It is considered that sparsity may be beneficial for NMF
[9]. In particular, we consider that sparsity may reduce the
negative effects of overlap, and counter the tendency of NMF
to learn a cone that spans datapoints [8], rather than mean-
ingful atoms, as illustrated in Fig.1. Sparsity considers an
`0 penalisation, where ‖x‖0 = |x 6= 0|. However, esti-
mation of `0 sparse problems is difficult, and is generally
approximated through convex `1 relaxation [10] or greedy
methods [11]. Such approaches come with guaranteed per-
formance, in incoherent settings, which can be mostly dis-
missed in the non-negative framework [12]. Sparse NMF
approaches have tended to consider the `1 penalty [13] [14].
Non-negative sparse dictionary learning methods such as NN-
K-SVD [15] and NMF-`0 [16] use non-negative sparse coders
such as NNLS and NN-OMP [12] to perform `0 approxima-
tion, but only consider sparse penalised Euclidean distance,
which may not be optimal in many cases [17]. However, few
methods have considered `0 sparsity for NMF with cost func-
tions other than Euclidean distance. We previously proposed
a greedy Hellinger Sparse Coding (HSC) algorithm, similar to
OMP [11], using a nearest neighbour selection approach [18],
which we found to be effective for several tasks when incor-
porated into NMF [19]. However, this greedy approach se-
lects a predefined number of atoms in each activation vector,
and stepwise approaches may not be suitable with correlated
dictionaries [12].

In this paper we propose an alternative `0 approach
based on an iterative hard thresholding approach. Again,
the Hellinger distance is used as we find that it is amenable to
such an approach, unlike other popular NMF cost functions.
In the next section, we introduce the Hellinger distance,
and iterative thresholding algorithms, before describing the
proposed approach, which employs a Newton co-ordinate
descent algorithm, and thresholding based on an auxiliary
function. Experimental results demonstrate the proposed
approach improves over a range of NMF algorithms. In par-
ticular, when a larger dataset is used, the proposed approach
is seen to perform as well as a supervised approach, while
standard NMF fails to improve.
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Fig. 1. Synthetic low dimensional dictionary recovery prob-
lem. Dots represent datapoints. The dark lines represent the
atoms learnt by NMF, which can estimate all datapoints cor-
rectly. The brighter lines represent atoms learnt with 1-sparse
NMF with each datapoint assigned to one atom only.

2. BACKGROUND

2.1. Iterative Thresholding Algorithms

Iterative thresholding algorithms are sparsity inducing meth-
ods that consider two separate steps; a gradient step in which
a signal estimate is formed; and a thresholding step in which a
hard or soft threshold is applied to the coefficient vector. Iter-
ative Soft Thresholding (IST) methods [20], a particular case
of proximal gradient descent, typically consider an `1 penalty
generally applied to Euclidean distance and have been shown
to be fast, accurate algorithms for `1 approximation.

Iterative Hard Thresholding (IHT) algorithms [21] [22]
consider `0 approximation in the case where the number of
active atoms is known. In this case thresholding is employed
to select an active set, of length equal either to the required
sparsity[21] or a multiple thereof [22]. A recent variant of
IHT, called MIST-`0 [23] performs hard thresholding, derived
on a majorisation-minimisation algorithm. MIST-`0 differs
from other IHT methods as the active set is not required to be
of a fixed size, and can vary relative to the signal and sparsity
parameter.

2.2. Hellinger distance

The (squared) Hellinger distance,

CH(s|z) = (
√
s−
√
z)2 (2)

is a member of the family of α-divergences

Cα(s|z) =
1

α(α− 1)

∑
m

αsm(1− α)zm − sαmz1−αm (3)

which includes the popular Kullback-Leibler divergence
(KL). We observed that KL and and Hellinger perform sim-
ilarly [18], and both cost share similar properties such as
linear scaling. Unlike KL, Hellinger distance is symmetric,
which led us to propose a greedy Hellinger nearest neighbour
sparse coder in [18], and is bounded, in particular by the Total
Variation or `1 distance [24].

3. PROPOSED APPROACH

An IHT method to approximate penalised Hellinger distance

CH`0
(s|z) =

∑
m

(
√
sm −

√
zm)2 + λ‖x‖0. (4)

where z = Ax, is now proposed, and incorporated into a
NMF algorithm. The proposed method uses iterative hard
thresholding in a similar manner to the MIST-`0 approach,
whereby the number of atoms need not be predetermined, and
thresholding is performed based on an auxiliary function.

Similar to other iterative shrinkage algorithms, separate
gradient step and thresholding steps are employed. For the
gradient step, it is considered that inactive atoms may re-
enter the active set, precluding multiplicative update (MU)
approaches. A co-ordinate descent algorithm for KL [4] that
employs univariate Newton steps to update the factor matrices
is adapted. For the Hellinger distance this step is given by

[X]k,n ← [X]k,n − 2
aTk 1− aTk (

s[0.5]n

z
[0.5]
n

)

aTk diag(
s
[0.5]
n

z
[1.5]
n

)ak
(5)

where Z = AX, sn denotes the nth column of S, s[a] denotes
elementwise exponentiation of s to the power of a; the numer-
ator is the Hellinger gradient and the denominator is the Hes-
sian, which can be quickly calculated as a[2]k

T [s
[0.5]
n � z

[1.5]
n ],

where � denotes elementwise division. Non-negativity is en-
forced by taking a reduced stepsize, η = [X]k,n, when neces-
sary.

3.1. Hard Thresholding

For the thresholding step, a majorisation-minimisation (MM)
approach is considered. MM approaches consider use of an
auxiliary function, G(x, x̂) where x̂ is referred to as an aux-
iliary variable, that is typically expressed by the current es-
timate. The auxiliary function, by definition, upper bounds
the cost function, C(x) = C(s|Dx) ≤ G(x, x̂) with equal-
ity when x = x̂. Optimisation of the auxiliary function then
results in optimisation of the cost function as

C(x) ≤ G(x, x̂) ≤ G(x̂, x̂) = C(x̂) (6)

4738



A variable-wise auxiliary function considers that [25]

G(x, x̂) =
∑
k

G(xk, x̂) + cst. (7)

an example of which is given for the penalised Hellinger (4)

G(xk, x̂) = xka
T
k 1− 2aTk

[√
s√
ẑ

]
√
xk
√
x̂k + λI(xk 6= 0)

(8)
where I is a binary indicator function and Ẑ = AX̂. At the
current estimate, x̂ 6= 0, (8) is given by

G(x̂k, x̂) = aTk 1x̂k − x̂k2aTk
[√

s√
ẑ

]
+ λ (9)

while after a hard threshold (xk = 0) (8) is expressed

G(0k, x̂) = 0 (10)

from which the difference in auxiliary function

η(τ) = G(x̂k, x̂)−G(0k, x̂) = x̂ka
T
k

[
1− 2

√
s√
ẑ

]
+ λ (11)

leading to the thresholding operator

H(xk) =

{
xk if λ < xka

T
k

[
2
√
s√
ẑ
− 1
]

0 otherwise
(12)

When the threshold operator (12) is activated, the `0 approx-
imated Hellinger distance (4) is optimised. As an auxiliary
function is used, some elements for which thresholding may
lead to further optimisation of (4), may not be thresholded.
However, even in this case the auxiliary and cost functions are
not increased. As the thresholding operator is performed rel-
ative to the variablewise separable auxiliary function, thresh-
olding can be performed in parallel for all variables.

For comparison, we note the difficulty in employing such
an approach for KL-divergence in which case a variable-wise
auxiliary function is given by

GKL(xk, x̂) = xka
T
k 1− x̂kaTk

[ s
ẑ

]
log xk (13)

leading to a difference in auxiliary function, similar to (11)

ηKL(τ) =∞. (14)

A notable feature of the α-divergence is linear scaling
whereby Cα(as|az) = aCα(s|z). In particular for KL-
divergence this is explained in terms of dispersion parameters
of the Poisson distribution which leads to a natural selection
of λ = 1 [14]. We have empirically observed that similar
parametrisation of λ holds for other α divergences as well.
For the `0 penalised Hellinger case, the linear scaling is
considered by selecting, for each column

λn = δ ×
∑
m

[S]m,n (15)

noting that the Hellinger distance is upper bounded by the
`1norm. δ can be tuned relative to the desired sparsity level,
or empirically determined.

Algorithm 1 HIT-NMF
Input S ∈ RM×N
Initialise A ∈ RM×K ; X ∈ RK×N
Do

HIT-`0
Update Coeffcients using (5) ∀{k, n}
Threshold using (12)

Update Dictionary using (16) ∀{m, k}
Until Stopping Condition

3.2. HIT-NMF

The proposed HIT-NMF algorithm is outlined in Algorithm
1. After inputting the matrix to be factorised, the factor matri-
ces are randomly initialised. We also find it useful to perform
some iterations of multiplicative update (MU) NMF as part of
the initialisation, as this helps the algorithm to converge. The
algorithm then enters an iterative loop. First the coefficients
are updated using the univariate Newton step (5), with subse-
quent thresholding. These updates may be performed several
times; in practice we perform two iterations. The dictionary
is then updated, also using a univariate Newton step, similar
to (5)

[A]m,k ← [A]m,k − 2
1xk

T −
[
sm[0.5]

zm[0.5]

]
xk

T

xk
[
sm[0.5]

zm[1.5]

]
xkT

(16)

where xk refers to the kth row of X. Other update strategies,
such as several MU iterations, are possible. Normalisation
of the dictionary and corresponding scaling of the activations
may be performed, although this is not absolutely necessary
as the thresholding operator (12) is invariant to scale.

4. EXPERIMENTS

Experiments were run on a dataset of piano music signals,
from which it is hoped to learn templates that represent the
spectra of notes. This presents a difficult task for NMF al-
gorithms; while the spectra of piano notes have a fixed struc-
ture the problem of separability is evident as spectral overlap
is pronounced due to harmonic structure and the logarithmic
pitch scale. Indeed, in the first paper in which NMF was sug-
gested for Automatic Music Transcription (AMT) [17] the
authors consider that each note might have to be played in
isolation at least once so that an atom representative of that
note may be found. A standard dataset from the MAPS [26]
database is used. This consists of thirty segments, each 30 s
long of classical pieces that are recorded live from robotic
playback on a Disklavier piano. Each piece is sampled at
44.1 kHz and ERBT spectrograms [27], with dimensionM =
512, are produced for each signal, with 23ms time frames
used. These are logarithmic frequency scales that are seen to
be superior for AMT relative to the STFT [28].
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To analyse the NMF outputs, some post-processing is per-
formed. A pitch estimate is assigned to each output atom. The
fundamental frequency of the pth pitch on the piano scale is
expressed as fpo = 2

p−49
12 × 440, with the expected frequency

of the rth harmonic partial is given by fr = rf0. Pitch is es-
timated by weighted addition of the coefficients of harmonic
partials, and sidelobes of a note. Given fr is most closely as-
sociated with the ρth dimension of the frequency spectrum,
the strength of the pth pitch in the kth atom is

Spk =
1

Rp

Rp∑
r=1

1√
r

∑
e=ρ−1:ρ+1

[A]e,k

where Rp is the number of partials considered, which is set to
a maximum of 10. The strongest pitch is assigned to the kth
atom, as p̂k = argmaxp S

p
k . Similar to [27], a pitch salience

matrix H is calculated by gathering the activations of a col-
lection of atoms A(p) sharing the pth pitch label

[H]p,n = ‖A(p)xn(p)‖2. (17)

Thresholding is applied to H [27] with a thresholding param-
eter, γ applied to the maximum pitch salience in order to de-
termine the threshold ζ = γ×maxp,n[H]p,n with all elements
of H with values less than ζ set to zero. Analysis of AMT is
then performed by denoting the true positives, tp, false posi-
tives, fp, and false negatives fn, from which the F-measure

F =
2|tp|

2|tp|+ |fp|+ |fn|
× 100%.

is determined for the optimal value of γ.
Several NMF algorithms were compared, including MU

methods for KL, Itakuro-Saito(IS), and Hellinger NMF (H-
NMF). Sparse NMF algorithms include NMF-`0 [16], a Eu-
clidean distance algorithm with NN-OMP [12] used for `0
approximation, and the Hellinger distance based approaches,
HSC-NMF [18] and HIT-NMF, proposed here. For HIT-NMF
a value of δ = 0.02 (15) was used, and 25 iterations were
performed. Further comparison is made with semi-supervised
Harmonic-NMF, (SS-β-NMF) [27] considered state-of-the-
art for NMF-based AMT, and supervised β-NMF, (S-β-NMF)
using a fixed dictionary, learnt offline from isolated notes
recorded in the same environment as the dataset. A value of
β = 0.5, reported to be optimal [27], is used.

Two experimental setups were employed; in the first case
NMF was performed on each of the 30 pieces individually,
using a dictionary of 88 atoms, randomly initialised, noting
that 88 is the number of keys on a grand piano. In the sec-
ond case all pieces were factorised simultaneously, with S ∈
R512×38760, with dictionary size varied in multiples of 88. A
final regression with supervised β-NMF with β = 0.5 is per-
formed with all learnt dictionaries before estimation of (17) to
enable a fair comparison of dictionary learning capabilities..

Results are given in Table. 1. Performance of all the mul-
tiplicative update NMF algorithms is seen to be similar, with

Dictionary Size
88 176 264 S

H-NMF 58.5 55.6 53.2 60.2
KL-NMF 58.8 53.7 53.3 60.0
IS-NMF 59.4 57.8 54.8 61.7

NMF-`0 [16] 61.4 66.1 67.4 65.2
HSC-NMF[18] 70.2 72.5 73.3 66.4

HIT-NMF 71.4 74.2 74.7 67.5

SS-β-NMF[27] 65.8 67.7
S-β-NMF 74.4

Table 1. AMT results in F-measure for NMF and sparse
NMF methods when learning is performed on a large dataset
with the dictionary size given on top, and when learning is
performed separately on each piece, denoted on top by S . Re-
sults for supervised β-NMF with fixed optimal dictionary and
for semi-supervised harmonic NMF [27] also given.

IS-NMF performing slightly better than the others. In terms
of the presented data, the NMF methods perform worse when
presented with the full dataset, and deteriorate when the dic-
tionary size is increased. Coordinate descent approaches for
KL [4] and Hellinger cost functions resulted in similar results.
The sparse NMF methods perform better than standard NMF
approaches in all cases. NMF-`0 performs well on the sepa-
rated dataset, but doesn’t improve much when presented with
the full dataset, deteriorating in one case. The Hellinger based
methods perform better in all cases, improving significantly
when presented with the full dataset, with further improve-
ment with the larger dictionaries. HIT-NMF improves relative
to HSC-NMF[18] in all cases, performing similar to harmon-
ically constrained SS-β-NMF when learning on the separate
pieces. When learning is performed on the full dataset, HIT-
NMF improves by 7% relative to SS-β-NMF, and performs
similar to the supervised β-NMF.

5. CONCLUSIONS

A sparse NMF method was proposed for Hellinger distance
employing an iterative thresholding approach, and was seen
to improve upon other unsupervised NMF and sparse NMF
methods. In particular, when presented with a larger dataset
for learning the standard NMF methods failed to improve,
indicating an unsuitability for such problems. On the con-
trary, HIT-NMF and HSC-NMF improved with more data,
and were seen to perform similar to the supervised algo-
rithm, thereby justifying the `0-penalised Hellinger distance
approach. However, some alterations in the algorithmic ap-
proach may be considered. The Newton coordinate descent
approach was slow relative to the multiplicative updates, and
parallel updates may be preferable, while further steps will be
explored to ensure monotonicity of the combined coefficient
update and threshold step.
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