NON-STATIONARY BLIND SUPER-RESOLUTION

Dehui Yang, Gongguo Tang and Michael B. Wakin

Dept. of Electrical Engineering and Computer Science
Colorado School of Mines

ABSTRACT

In this paper, we propose a new framework for parameter esti-
mation of complex exponentials from their modulations with
unknown waveforms via convex programming. Our model
generalizes the recently developed blind sparse spike decon-
volution framework by Y. Chi [1] to the non-stationary sce-
nario and encompasses a wide spectrum of applications. Un-
der the assumption that the unknown waveforms live in a
common random subspace, we recast the problem into an
atomic norm minimization framework by a lifting trick, and
this problem can be solved using computationally efficient
semidefinite programming. We show that the number of mea-
surements for exact recovery is proportional to the number of
degrees of freedom in the problem, up to polylogarithmic fac-
tors. Numerical experiments support our theoretical findings.

Index Terms— Atomic norm, super-resolution, semidef-
inite programming, blind deconvolution

1. INTRODUCTION

1.1. Motivation

Many real-world problems involve the recovery of unknown
complex exponentials from their modulations with unknown

waveforms. Mathematically, we consider the following
model:
J
y(n) _ che—ZQTFTLTjgj (’I’L), (1)
j=1

where {y(n)} are samples of a continuous-time output,
{¢;} € Cand {r;} C [0,1) are unknown parameters of
the complex exponentials that we aim to recover, and g;(n)
are samples of the unknown waveforms, whose forms may
vary with the index j. This model arises in a variety of ap-
plications, ranging from single-molecule imaging in biology
[2, 3], to radar signal processing [4, 5], to nuclear magnetic
resonance spectroscopy [6]. Here we list three stylized ap-
plications, where the problems can be modeled using our
general mathematical framework (1).
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Super-resolution with unknown point spread functions: In
applications like single-molecule imaging, we are interested
in resolving the unknown locations of point sources from their
convolutions with unknown point spread functions, whose
forms may depend on the locations of the point sources. This
is the case in three-dimensional single-molecule imaging [3],
where the point spread function depends on the depth (z-axis)
of the target. Other applications include non-stationary de-
convolution of seismic data [7], computational photography
[8], astronomy [9], etc. Mathematically speaking, we hope
to determine the unknown delays {7;} and amplitudes {c;}
from

Ot —1j) = gr, (t). 2)

||M\

with g, being the unknown point spread functions. By taking
the Fourier transform of both sides of (2), we have

J

I =Y ee G, (f). (3)

j=1

It is easy to see that (1) is a sampled version of (3). With
the samples y(n), we hope to simultaneously recover {c;, 7, }
and samples of the point spread functions g, (f).
Parameter estimation in radar imaging: In radar imaging,
given the input probing signal x(¢) transmitted by the radar,
the output y(t) can be characterized by the following relation-
ship [4]

je T (t = ), @)

IIM&

where (u;, v;) are delay-Doppler pairs, which capture the dis-
tances and velocities of the J point targets relative to the radar.
It is easy to see that (1) can also be obtained by sampling (4).
Frequency estimation with damping: In applications such
as nuclear magnetic resonance spectroscopy [6], the signal is
the superposition of complex exponentials with unknown fre-
quencies and unknown damping factors. More precisely, the
signal has the form:

J
y(t) = Y cjetrhitest 5)

Jj=1
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with parameters { f;,&;}. In this situation, resolving the f;’s
becomes difficult since the energy of the signal y(t) atten-
uates as time moves forward. By sampling the continuous
variable ¢, one again obtains an instance of (1).

1.2. Contributions and related work

In this work, we study the recovery of the unknown parame-
ters ({¢; } and {7;}) associated with the complex exponentials
and the recovery of the samples of the unknown waveforms,
ie., {g;}, from y by assuming that {g;} lie in a known sub-
space with dimension K. Under randomness and incoherence
assumptions on the subspace and minimum separation condi-
tions of 7;’s, we show that O(JK') measurements suffice to
retrieve {7; } exactly and recover {c;} and {g;} up to a mul-
tiplicative factor via a computationally efficient convex pro-
gram. Note that our sample complexity matches the number
of degrees of freedom in the problem and, thus, cannot be
further improved.

Much of the recent work on super-resolution has involved
convex optimization since the foundational work [10, 11].
Our proposed model (1) is a natural generalization of that by
Y. Chi [1], where the author considers the super-resolution
of point sources with an unknown point spread function that
lives in a known low-dimensional subspace. Our model al-
lows for non-stationary blind super-resolution, where g; may
change over the index of j within the subspace. We show
that non-stationary blind super-resolution is possible when
the number of measurements exceeds O(JK). Furthermore,
as a special case of our model, we improve the bound in [1]
to O(JK') when the unknown point spread function does not
vary with j.

The rest of the paper is organized as follows. Section 2
introduces our problem setup, its connection to the atomic
norm minimization framework via a lifting trick, and an exact
semidefinite programming (SDP) reformulation of the atomic
norm minimization [11]. Section 3 presents the main theorem
and discusses its implications. Section 4 performs numerical
experiments to support our theoretical findings. Conclusion
is given in Section 5.

2. PROBLEM SETUP AND LIFTING

2.1. Problem formulation via atomic norm minimization

Consider the model

J
n) _ Z Cje—i27rnrjgj (’I’L
j=1

where y(n) are samples and {c;, 7;} and {g;(n)} are un-
knowns. Without loss of generality, we assume that 7; €
[0,1), j = 1,---,J. Note that this problem is severely ill-
posed without additional constraints on g; since the number

) n=-2M,--- ,2M, (6)

of samples in (6) is N := 4M + 1, while the number of un-
knowns in (6) is J N + 2.J. To make the problem well-posed,
we assume that each g; lives in a common low-dimensional
subspace spanned by the columns of a known N x K ma-
trix B = [b,QM b_ 2M+1 borr—1 bgh[} H where
each b, € CX*!. In other words, g g; = Bh;, where each
hj € CKx1 g unknown. Thus, we can rewrite (6) equiva-
lently as
n) = Z cje 2 TipHp
J
which only involves JK + 2.J unknowns.

Denoting
a(T) [ 2w (—2M) 1 e2'271'(2M)’r] T ,
we have
= Z cjbfhja(rj)Hen

J

=Tr chb hja(r He

=Tr enbf Zthja(Tj)H
J
where e,,, —2M < n < 2M, is the (n + 2M + 1)th col-
umn of the identity matrix I, and Tr(-) and (-)* denote the

trace and Hermitian operations, respectively. Then, using the
lifting trick [12, 13], we obtain

<Zc]h a(r;)" be H> (7)

where we have defined (X,Y) = Tr(Y” X). Note that
(7) leads to a parameterized rank-J matrix sensing problem,
which we write as y = B(X,), X, = >, ¢;hja(r;)", with
the linear operator B : CE*N — C¥ defined as [B(X,)], =
(X,,bnell).

Define the atomic norm [14] associated with the following
set of atoms

A= {ha(r) €[0,1),|h]2 =1,h e CK*1}

as

|X||l4a=inf{t>0:X € tconv(A)}

{Z|Ck| : X = chhka(Tk)H} .
k k

To enforce the sparsity of the atomic representation, we solve

= inf
CkyThs|[hk |l2=1

minimize || X| 4
(X,b,ely n=—2M, ... 2M.
()

subject to y(n) =

4728



Standard Lagrangian analysis shows that the dual of (8) is
given by

maximize (A, y)r subjectto |[B*(A)|4 <1 (9)

where B* denotes the adjoint operator of 5 and || - [|* is the
dual norm of the atomic norm.

2.2. SDP characterization and optimality condition

Since the convex hull of the set of atoms A can be character-
ized by semidefinite programming, || X|| 4 admits an equiva-
lent SDP representation.

Lemma 2.1 [15] For any X € CK*N,

X4 = ing {2}“ (Toep(u)) + L Tx(T) :

e %]

where Toep(u) denotes the Hermitian Toeplitz matrix whose
first column is u.

Hence, (8) can be solved efficiently using available off-the-
shelf solvers such as [16]. The following proposition charac-
terizes the optimality condition of (8).

Proposition 2.2 Suppose that the atomic set A is composed
of atoms of the form hja(;)™ with ||hj|ls = 1,7; € [0,1).
Define the set D = {1;,1 < j < J}. Let X be the optimal

solution to (8). Then X = X, is the unique optimal solution
if the following two conditions are satisfied:
1) There exists a dual polynomial

q(r) = B*(Aa(r)

2M
_ Z )\(n)eiZﬂ'n‘rbn
n=—2M
such that
q(t;) =sign(cj)h;, V1; €D (10)
la(r)ll2 <1, V7 ¢&D. an

Here X is a dual optimal solution and sign(c;) = %
~J

2)< |a(rj)Pe b | ,j=1,--,J } is a linearly indepen-

dent set.

Note that the vector polynomial g(7) serves as a dual cer-
tificate to certify the optimality of X, in the primal problem
(8). We omit the proof of Proposition 2.2 here due to limited
space.

3. MAIN THEOREM AND DISCUSSIONS

Before showing the main results of our work, we discuss the
assumptions that are used in the main theorem. The assump-
tions can be grouped into three parts: (a) randomness and in-
coherence of the subspace spanned by the columns of B, (b)
minimum separation of {7}, and (c) uniform distribution of
h; on the complex unit sphere csHL.

We assume that the rows of the matrix B, namely,
b,,—2M < n < 2M, are independently sampled from a
population F with the following properties [1, 17]:

* Isotropy property: We assume that the distribution F
obeys the isotropy property in that

Ebb? = Iy, b~ F.

* Incoherence property: We assume that F satisfies the
incoherence property with coherence p(F) in that

2
<
max lb(p)|” < u(F), beF,

where b(p) is the pth element of b.

Furthermore, we require the following conditions on the pa-
rameters of the complex exponentials.

* Minimum separation: We assume that

1

A; =min|m, — 75| > —

T kj | k Jl =M

where the distance |73, — 7;| is understood as the wrap-
around distance on [0, 1).

* Random sign: We assume that the coefficient vectors
h; are drawn i.i.d. from the uniform distribution on the
complex unit sphere CS* 1.

Theorem 3.1 Assume that the minimum separation condition
A > ﬁ is satisfied and that M > 64. Also, assume that
g; = Bhj with the columns of BY, namely, b,,, being i.i.d.
samples from a distribution F that satisfies the isotropy and
incoherence properties with coherence parameter ji(F). Ad-
ditionally, assume that h; are drawn i.i.d. from the uniform
distribution on the complex unit sphere CS®* ™. Then, there

exists a numerical constant C such that

MJK MK
M > Cu(F)JK log (g) log? <5)

is sufficient to guarantee that we can recover X, and localize
the 7;’s via solving (8) with probability at least 1 — 6.

Remarks:

* According to (10), {7;} can be localized by checking
the ¢, norm of the dual polynomial g(7). Once 7;’s are
identified, one can find h;’s by solving a least squares
problem, up to phase ambiguities.
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* Our bound on M suggests that when u(F) is a con-
stant (e.g., when the rows of B are drawn from a sub-
Gaussian distribution, (F) can be bounded by a con-
stant times log K with high probability [17]), M =
O(JK) is sufficient for exact recovery and this matches
the number of degrees of freedom in the problem, up to
polylogarithmic factors. Thus, our sample complexity
bound is tight and there is little room for further im-
provement. Furthermore, when the dimension of the
subspace is bounded by a constant, M = O(J) (uptoa
polylogarithmic factor) is sufficient for exact recovery.
This bound matches the one in the deterministic super-
resolution framework [10], where N = O(J) suffices
to exactly localize the unknown spikes under the same
minimum separation condition used here.

* Our bound improves the one derived by Y. Chi [1] even
when g; = Bh, i.e., when g; has no dependence on j.
We note that the number of degrees of freedom in their
problem is O(J + K). It would be interesting to see if
further improvement upon our bound is possible in this
scenario.

The proof of our main theorem involves the construction of
a dual polynomial g(7) that satisfies conditions (10) and (11)
in Proposition 2.2. The form of g(7) motivates us to use the
the random Fejér kernel

1 2M )
Ky(r) = Y Z Im (n)b”bgel%n'r
n=—2M

as a building block. Specifically, we explicitly construct
J J
q(r)=> Ku(r—1)o;+ > Ky (r—7,)8;. (12)
j=1 j=1

First of all, we aim to find a; and 3; such that g(7) satisfies
condition (10) in Proposition 2.2. This can be done by solving
the following 2J K x 2J K linear system of equations

DO %Dl (04 . h
_%Dl —%DQ O'ﬁ o 0

D
H
where o = [aff -+ off]7, B = [5{fH B
h= [(sign(cl)hl)H (sign(cJ)hJ)H] ,0 =
\/@, and [Dy)s; = K¥,(7s — 7;), where ¢ denotes

the (th derivative of the entries of K /(-). The rest of the
proof is omitted for space, but outlined as follows:

}H

b}

* Showing that the matrix D is invertible with high prob-
ability under the minimum separation condition and the
properties of b,,.

* Showing that [|q(7)]|2 < 1, V7 ¢ D.

We refer the interested readers to [18] for the detailed proof
of Theorem 3.1.

4. NUMERICAL SIMULATIONS

In this part, we provide synthetic numerical simulations to
support our theoretical findings. We characterize the phase
transition of atomic norm minimization (8) for non-stationary
blind super-resolution. We solve the atomic norm minimiza-
tion problem (8) using CVX [16]. We fix N = 64 and vary
the values of J and K. We generate {7;} uniformly at ran-
dom between 0 and 1 under the minimum separation condi-
tion A, = %, which is slightly smaller than ﬁ required by
our theorem. {c;} are generated with dynamic range of 10.
Entries of B are generated randomly from the standard Gaus-
sian distribution. Each h; is also generated using i.i.d. real
Gaussian random variables. We run 40 trials for each pair of
J and K. For each trial we declare success if the relative re-
construction Frobenius norm error of X, is less than 10~
Figure 1 shows the phase transition of our proposed method.

Number of samples N = 64

16 !
14
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J: Number of complex exponentials
- [+>] o

]

Fig. 1. The phase transition of non-stationary blind super-
resolution using atomic norm minimization. This figure
shows the empirical success rate of (8) for various numbers
of complex exponentials J and different dimensions of sub-
space K when the number of samples N = 64 over 40 trials.

5. CONCLUSION

We developed a new model for non-stationary blind super-
resolution. Using the lifting trick, we were able to formulate
the problem as a convex program under the subspace assump-
tion of the unknown waveforms. A sample complexity bound
that is proportional to the number of degrees of freedom in
the problem has been derived for exact recovery under the
minimum separation condition. Numerical simulations were
provided to validate our proposed approach.
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