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ABSTRACT

The problem of sparse phase retrieval is considered where the
goal is to recover a sparse complex valued vector (with s non
zero elements) from the magnitudes of its linear measure-
ments. Using a modified and partially randomized version
of a newly proposed structured sampler, namely the Partial
Nested Fourier Sampler (PNFS), it is shown to be possible to
recover the unknown signal (up to a global phase ambiguity)
from Ops logNq phaseless measurements where N is the di-
mension of the vector. The reconstruction is based on a novel
idea of “decoupling” certain quadratic terms in the phaseless
measurements acquired by the PNFS, leading to a simple l1-
minimization-based recovery algorithm, without the need for
“lifting” the unknown variable to a higher dimensional space.
The proposed algorithm is also proved to be stable in presence
of bounded noise.

Index Terms— Sparse Phase Retrieval, Nested Sampling,
l1 minimization, Decoupling, Random Partial Fourier Mea-
surements.

1. INTRODUCTION

The problem of reconstructing an unknown signal (up to a
global phase) from its phaseless measurements has been stud-
ied for decades owing to its wide applications in many areas
of imaging science such as X-ray crystallography, diffraction
imaging and molecular imaging, and so forth [1, 2, 3]. The
problem can be studied under various settings by considering
a real or complex signal model, with or without sparsity con-
straints. A comprehensive review of existing measurement
strategies and reconstruction algorithms for phase retrieval is
provided in [4].

A central goal in phase retrieval problems is to develop
an effective measurement strategy and a recovery algorithm
which can provably recover the unknown signal with mini-
mal number of measurements. Recent approaches based on
the elegant idea of “lifting” can provably recover (non-sparse)
signals of dimensionN usingOpNq orOpN logNqmeasure-
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ments [3, 5, 6, 7], by solving an appropriate convex problem
in the “lifted” variable.

Recovering a sparse signal from its phaseless measure-
ments with near optimal number of measurements (which is
Opsq up to a logarithmic factor) is a challenging problem that
has received much attention in recent times [8, 9, 10, 11]. In
fact, it becomes necessary to impose a sparse prior on the
unknown signal to ensure its unique recovery, when Fourier
measurements are used. An l1-minimization-based approach
for sparse phase retrieval is proposed in [11], which requires
Ops2qmeasurements along with an additional Collision-Free-
Condition [12] on the autocorrelation of the unknown sig-
nal. In [8, 9, 10], the authors use a graph-decoding based
approach which requires the sparsity to be at most Op

?
Nq.

Recent iterative approaches using alternating minimization
also require the number of measurements to grow quadrati-
cally in s [13]. In [14, 15, 16], the problem of sparse phase
retrieval is cast as a joint low-rank+sparse matrix recovery
problem which minimizes the weighted linear combination
of the nuclear norm and l1 norm of an appropriate lifted vari-
able. However, as pointed out in [17], convex optimization
based techniques for such simultaneously structured models
(low rank+sparse) will necessarily require the number of mea-
surements to be at least quadratic in s. Very recently, con-
current with our own work on Partial Nested Fourier Sampler
(PNFS), a promising approach to overcome this limitation has
been suggested in [18], where by using constrained measure-
ment vectors and a two-step recovery algorithm, the authors
can guarantee unique solution to the sparse phase retrieval
problem using only Ops logpN{sqq measurements.

We recently introduced a new family of structured Fourier-
like samplers, namely the Partial Nested Fourier Sampler,
which can provably recover a non-sparse signal of length N
from its phaseless measurements using only 4N´5 measure-
ments [19]. In this paper, we further develop the theory of
PNFS for sparse phase retrieval by proposing a randomized
version of the basic PNFS, namely the R-PNFS. By using a
certain “decoupling” property of the R-PNFS, along with a
new “cancellation” based algorithm (that effectively cancels
out certain unwanted quadratic terms in the autocorrelation
of the signal), we are able to demonstrate that Ops logNq
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measurements are sufficient to recover the sparse signal with
probability 1. We also prove that the proposed algorithm is
stable in presence of bounded noise, and present numerical
simulations to validate the theoretical claims.

2. PROBLEM SETTING AND REVIEW OF PARTIAL
NESTED FOURIER SAMPLERS

2.1. Problem Setting

Let x P CN be a complex valued vector which may be sparse.
GivenM measurement vectors fi P CN , i “ 1, 2, ¨ ¨ ¨ ,M , we
obtain M noisy magnitude measurements as [5, 20, 15]

yi “ |xx, fiy|
2
` ni (1)

where ni denotes the additive noise. The fundamental objec-
tive of phase retrieval problem is to recover x from yi, i “
1, 2, ¨ ¨ ¨ ,M . It is well known that for complex x, we can
only recover x up to a global phase ambiguity [1]. We can
equivalently express the measurements as

yi “
´

fi
T
b fi

H
¯

Vec
`

xxH
˘

` ni (2)

where b denotes the Kronecker product and Vecp¨q is the
column-wise vectorized form of a matrix.

2.2. Limitations of Fourier Sampling based phase re-
trieval

Sparse phase retrieval problem was first studied in the con-
text of Fourier measurement vectors [21, 8, 11, 22]. In the
Fourier based phase retrieval problem, we collect measure-
ments yi, 1 ď i ď M using an (oversampled) Fourier sam-
pling vector [4, 3, 21, 8, 23, 22, 24]

fi “ α
“

1, zi, z
2
i ¨ ¨ ¨ , z

N´1
i

‰T

Here zi “ ej2πi{M where M ě N is the oversampling factor.
It is readily seen that the Fourier based phase retrieval

problem is equivalent to recovering a zero padded (if M ą

N ) x from its autocorrelation sequence. This problem has
an inherent ambiguity since two distinct finite length signals
x1rns and x2rns (with same length N ) can exhibit identi-
cal autocorrelation. This can be seen from the fact that the
polynomialX1pzqX̄1p1{z̄q (denoting the z´ transform of the
autocorrelation of x1rns and ¯̈ is conjugate) can be decom-
posed into two spectral factors of same length in more than
one way. To remove this ambiguity, it is necessary to impose
additional priors on the signal x.

Sparsity as a prior: A popular prior knowledge used in re-
cent literature is that x P CN is sparse with s ă N non
zero elements. However, even with sparse priors, it is non
trivial to ensure unique recovery of x from its autocorrela-
tion, since the autocorrelation may not be sparse. To remedy

this, a “Collision-Free Condition” (CFC) is further imposed
in literature[11, 12]. Under this condition, for s ‰ 6, x can
be uniquely recovered from M Fourier measurements where
M ě s2 ´ s` 1, and M is a prime integer [11, 4].

Drawbacks: A major drawback of CFC is that it imposes an
upper bound on the sparsity of x that we can only recover
sufficiently sparse vectors whose sparsity can be at most s “
Op
?
Nq. In practice, the no-collision property may only hold

for even smaller values of s as experimentally validated in
[19]. Secondly, even with CFC, the l1-minimization-based
recovery algorithm proposed in [11] requires M “ Ops2q
measurements, which is larger than the degrees of freedom in
a sparse x.

2.3. Partial Nested Fourier Sampler

To overcome the limitations of Fourier based phaseless mea-
surements, we recently proposed a new class of Fourier-like
sampler, coined as “Partial Nested Fourier Sampler (PNFS)”:

Definition 1. [19] (Partial Nested Fourier Sampler:) A
Partial Nested Fourier Sampler (PNFS) of dimensionN , con-
sists of measurement vectors given by

f
pNq
i “

1
4
?

4N ´ 5
rz1i , z

2
i , ¨ ¨ ¨ z

N´1
i , z2N´2

i sT , (3)

where zi “ ej2πni{4N´5, ni P r0, 4N ´ 6s.

In [19], we showed that M “ 4N ´ 5 PNFS measure-
ments are sufficient to uniquely recover a non-sparse x. We
also partially addressed the problem of sparse phase retrieval
under certain prior knowledge about sparse x in the noiseless
setting. We now further develop the theory of sparse phase
retrieval by removing the need for any prior knowledge and
developing stability results in presence of noise.

3. SPARSE PHASE RETRIEVAL USING
RANDOMIZED PNFS

We introduce a randomized version of the PNFS for sparse
phase retrieval as follows:

Definition 2. (Randomized PNFS) A Randomized PNFS (R-
PNFS) consists of measurement vectors

f (R-PNFS)
i “ rIN,N vs f

pN`1q
i

where v P CN is a random vector with independent entries,
and f

pN`1q
i is defined in (3) for dimension N ` 1.

Given the unknown signal x‹ P CN , the phaseless mea-
surement obtained using a R-PNFS vector can be expressed
as

yi “
ˇ

ˇ

ˇ

´

fR-PNFS
i

¯H

x‹
ˇ

ˇ

ˇ

2

` ni “
ˇ

ˇ

ˇ
f
pN`1q
i

H
„

x‹

vHx‹



ˇ

ˇ

ˇ

2

` ni (4)
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The basic idea of R-PNFS is to concatenate an extra element
xN`1 “ vHx‹ to form the vector x “ rx‹T xN`1s

T , and
then measure x using PNFS for dimension N ` 1. Since the
elements of v are independent random variables, it follows
that the last entry of x satisfies xN`1 ‰ 0 with probability
1. This enables us to devise an efficient cancellation based
algorithm for sparse phase retrieval as follows.

3.1. A Cancellation Based Algorithm for R-PNFS

We measure a sparse x‹ (with s non zero elements) using two
sets of PNFS samplers, and perform sparse recovery on the
difference between the two measurements. This enables us
to “cancel” out certain non-zero terms in the autocorrelation
of x‹ and retain only “decoupled terms” (singletons) which
have a maximum sparsity of 2s` 1. We begin by introducing
a second sampling vector f̃

pN`1q
i P CN`1 as

f̃
pN`1q
i “ rIN,N 0s f

pN`1q
i

This sampler can be thought of as a masked version of the
PNFS sampler defined in (3). Following are the main steps of
the algorithm:

1. Collect two sets of (noisy) phaseless measurements
yp1q,yp2q P CM̃ as

y
p1q
i “

ˇ

ˇ

ˇ

´

fR-PNFS
i

¯H

x‹
ˇ

ˇ

ˇ

2

` n
p1q
i

y
p2q
i “

ˇ

ˇ

ˇ

´

f̃
pN`1q
i

¯H

x‹
ˇ

ˇ

ˇ

2

` n
p2q
i (5)

We assume the noise is bounded, i.e. |npkqi | ď η, k “

1, 2. Notice that we collect a total of M “ 2M̃ mea-
surements.

2. Compute the difference measurement ∆y “ yp1q ´
yp2q. The key step is to notice that

∆y “ Zx̂`∆n (6)

where the unknown vector x̂ P C4N´1 consists only
of “decoupled” quadratic terms (singletons of the form
x̄N`1xi, i “ 1, 2, ¨ ¨ ¨ , N ) given by

rx̂sm “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

|xN`1|
2 m “ 0

0 m “ 1, 2, ¨ ¨ ¨ , N ´ 1

x2N´mx̄N`1 m “ N, ¨ ¨ ¨ , 2N ´ 1

rx̂s´m m ă 0

Since xN`1 “ vHx‹ where v is a random vector with
independent entries, it holds that xN`1 ‰ 0 with prob-
ability 1. Hence x̂ has exactly 2s ` 1 non zero el-
ements. We also have ∆n “ np1q ´ np2q, and the
matrix Z P CM̃,4N´1 is a partial DFT matrix with
rZsi,k “

1?
4N´1

ej2π
nik

4N´1 .

3. Obtain an estimate of x̂ as the solution to the following
l1-minimization problem:

min
θ
}θ}1 subject to }∆y ´ Zθ}2 ď η

a

M̃ pP1q

4. Given the solution x̂# to (P1), the estimate for each
entry of x‹ is given by x#q “ rx̂

#s2N´q{
a

rx̂#s0 for
1 ď q ď N and x#N`1 “

a

rx̂#s0.

3.2. Stability of Noisy Phase Retrieval with R-PNFS

To analyze the performance of the proposed algorithm, we
use the following lemma from [25] which is tailored for the
form (P1):

Lemma 1. [25] Consider a sparse x̂ P C4N´1 with 2s ` 1

non zero elements and Z P CM̃,4N´1 be the DFT matrix with
M rows whose indices are chosen uniformly at random from
r0, 4N ´ 2s. If M̃ ě c0p2s` 1q logp4N ´ 1q logpε´1q, then
with probability at least 1´ε, the solution x̂# of (P1) satisfies

}x̂´ x̂#}2 ď c1
?

2s` 1η (7)

where c0, c1 are universal constants.

Theorem 1. Given a sparse x‹ P CN (with s non zeros), and
the measurement vector v P CN , consider the measurement
model (5) where the indices ni of f

pN`1q
i , i “ 1, 2 ¨ ¨ ¨ ,M are

chosen uniformly at random from r0, 4N´2s. If M̃ ě c0p2s`
1q logp4N ´ 1q logpε´1q and |xN`1|

2 ą c1
?

2s` 1η, with
probability at least 1´ ε, the estimates x#q of x‹q, 1 ď q ď N ,
satisfy

N
ÿ

q“1

|x‹q ´ e
jφ0x#q | ď

c1
a

p2s` 1qp4N ´ 1q
a

|xN`1|
2 ´ c1

?
2s` 1η

η `

`}x‹}1

¨

˝

1
b

1´ c1
?
2s`1η
|xN`1|2

´ 1

˛

‚ (8)

where xN`1 “ vHx‹, φ0 “ argφPr0,2πqxN`1{|xN`1|, and
c0, c1 are universal constants given in Lemma 1.

Proof. According to the proposed algorithm, the estimate for
each entry of x‹ is given by x#q “ rx̂#s2N´q{

a

rx̂#s0 for
1 ď q ď N . Then, we have

|x‹q ´ e
jφ0x#q | “ |

xN`1

|xN`1|

˜

rx̂s2N´q
|xN`1|

´
rx̂#s2N´q

|x#N`1|

¸

|

ď β
ε2N´q
|xN`1|

` |1´ β||x‹q| (9)

where ε2N´q fi |rx̂s2N´q ´ rx̂
#s2N´q| and β “ |xN`1|

|x#
N`1|

. It

follows that
N
ÿ

q“1

|x‹q ´ e
jφ0x#q | ď β

řN
q“1 ε2N´q

|xN`1|
` |1´ β|

N
ÿ

q“1

|x‹q|

ď β
}x̂´ x̂#}1

|xN`1|
` |1´ β|}x‹}1 (10)
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Since }x̂´ x̂#}1 ď
?

4N ´ 1}x̂´ x̂#}2, Lemma 1 gives us

N
ÿ

q“1

|x‹q ´ e
jφ0x#q |

ď c1β

a

p2s` 1qp4N ´ 1qη

|xN`1|
` |1´ β|}x‹}1 (11)

Since rx̂s0 “ |xN`1|
2, it follows from Lemma 1 that |1 ´

1
β2 | ď c1

?
2s`1η
|xN`1|2

. If |xN`1|
2 ą c1

?
2s` 1η, we have

1´ c1

?
2s` 1η

|xN`1|
2
ď

1

β2
ď 1` c1

?
2s` 1η

|xN`1|
2

(12)

The proof completes by plugging (12) in (11).

Remark 1. In absence of noise, setting η “ 0 in (8) im-
plies exact recovery of x‹ with a global phase ambiguity φ0
which is explicitly given. This is achieved using a total of
M “ 2M̃ measurements, where M̃ “ Ops logNq. Hence,
our algorithm recovers x‹ with an order-wise minimal (up to
a logarithmic factor) number of measurements.

Remark 2. Unlike “lifting” based approaches [18, 3], our
method is based on l1-minimization with only OpNq vari-
ables. This implies significant computational saving and al-
lows faster implementation.

4. NUMERICAL RESULTS

We consider a complex valued signal x‹ P CN with s non
zero elements, and }x‹}2 “ 1. Both the nonzero indices and
amplitudes are generated randomly.
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Fig. 1. (Left) Phase transition for noiseless case, averaged
over 100 runs with N “ 150. White and black boxes de-
note success rates of 1 and 0 respectively. (Right) Phase
transition for noisy case averaged over 50 runs with N “

100, and entry-wise noise bounded by 0.01. Each box de-
notes 1

N

řN
q“1 |x

‹
q ´ ejφ0x#q |. The red line represents M “

3s logN for both.

The phase transition plots of the proposed method for both
noiseless and noisy signal models is depicted in Fig.1. Here
N “ 100. In the noiseless setting, for each M and s, we
declare success if maxq |x

‹
q´e

jφ0x#q | ă 10´6. For the noisy
model, we assume the entry wise noise to be upper bounded

by ε “ 0.01 and plot the reconstruction error 1
N

řN
q“1 |x

‹
q ´

ejφ0x#q |. We also superpose the line corresponding to M “

3s logN to demonstrate that the proposed approach recovers
the true x‹ with M “ Ops logNq measurements.

In Fig. 2, we show an example of sparse phase retrieval
using the proposed R-PNFS sampler and cancellation based
algorithm. Here N “ 350, s “ 6,M “ 100. It can be seen
that the proposed technique recovers the true x‹ faithfully up
to a global phase ambiguity, the value of which is easily ob-
tained from the complex plane representation.
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Fig. 2. (Top left) Amplitudes of the original data. (Top right)
The complex plane representation of the nonzero part of the
original data.(Bottom left) Amplitudes of the recovered data.
(Bottom right) The complex plane representation of the re-
covered data. Here, N=350, s=6 and M = 100.

5. CONCLUSION

We proposed a new structured sampling scheme, namely the
Randomized Partial Nested Fourier Sampler (R-PNFS), along
with a novel cancellation based algorithm which can provably
recover sparse complex valued signals from their amplitude
measurements. The proposed technique requires only M “

Ops logNqmeasurements which is near-optimal compared to
the underlying degree of freedom of the sparse signal. We
also showed that under mild conditions, the approach is stable
to bounded measurement noise.
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