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ABSTRACT 
 
Sparse representations over redundant learned dictionaries 
have shown to produce high quality results in various image 
processing tasks. An important characteristic of a learned 
dictionary is the mutual coherence of dictionary that affects 
its generalization performance and the optimality of sparse 
codes generated from it. In this paper, we present a 
dictionary learning model equipped with coherence 
regularization. For this model, two novel dictionary 
optimization algorithms based on group-wise minimization 
of inter- and intra-coherence penalties are proposed. 
Experimental results demonstrate that the proposed 
algorithms improve the generalization properties and sparse 
approximation performance of the trained dictionary 
compared to several incoherent dictionary learning methods. 
 

Index Terms— Dictionary learning, mutual coherence, 
sparse representation, optimization, sparse coding. 
 

1. INTRODUCTION 
 
Sparse representation has proven to be an extremely 
powerful tool for analyzing a large class of signals. This is 
mainly due to the fact that important classes of signals have 
naturally sparse representations with respect to some 
dictionaries of basis elements referred to as dictionary atoms 
[1]. The dictionary plays a critical role in a successful sparse 
representation modeling and learned overcomplete 
dictionaries have become popular in recent years. 

Dictionary learning for sparse representation has 
motivated a large amount of work over the past 20 years. 
This has led to state-of-the-art results in many signal and 
image processing tasks [2]. Learning methods mostly 
involve dictionary optimization in terms of the task to be 
performed. Data fitting and sparsity are two main objectives 
of optimization in many dictionary learning methods 
especially in reconstruction tasks. Moreover, imposing 
additional constraints or regularizations on certain intrinsic 
properties of dictionary can improve its performance [3]. 

One such important dictionary property is the mutual 
coherence, (۲)ߤ, of dictionary ۲ ∈ ℝ௡×௄ which measures 

the maximal correlation of any two distinct atoms in the 
dictionary and is defined as: (۲)ߤ ≝ max௜ஷ௝ ห〈܌௜, ௝〉ห܌ = max௜ஷ௝ ห܌௜் ௝ห (1)܌

where ܌௜ is the i-th atom (column) of ۲, and 〈. , . 〉 denotes 
the inner product operator. According to theoretical results 
on sparse coding, mutual coherence of dictionary has direct 
impact on stability and performance of coding algorithms 
[4], [5]. A lower coherence permits better sparse recovery. 
Furthermore, reducing the coherence of dictionary atoms 
can increase its generalization performance by reduction of 
over-fitting to the training data and avoiding atom 
degeneracy [6]. 

In this paper, we present a dictionary learning model 
equipped with a correlation penalty which induces low 
coherence dictionaries. To solve the dictionary optimization 
problem, we develop two new algorithms based on group-
wise inter-group and intra-group coherence minimization. 
The experimental evaluations show the improved sparse 
reconstruction performance of trained dictionaries by our 
algorithms compared to other competing ones. 

The rest of the paper is organized as follows. Section 2 
briefly reviews related work on incoherent dictionary 
learning. In Section 3, we elaborate on the details of the 
proposed dictionary learning algorithms. Experimental 
results are presented in Section 4. Finally, we conclude the 
paper in Section 5. 
 

2. RELATED WORK 
 
There are some recent works on learning incoherent 
dictionaries for sparse representation [3], [6]-[9]. According 
to coherence reduction strategy, these approaches can be 
categorized into two groups. In the first group, incoherent 
dictionary learning is carried out by including a 
decorrelation step to an existing dictionary learning method. 
Methods presented in [7] and [8] are of this group both of 
which are based on K-SVD algorithm [10]. In [7], the 
coherence reduction is done via decorrelating pairs of atoms 
in a greedy way until the target coherence level is reached. 
However, data approximation error is not considered in the 
decorrelation step which can result in low coherence 
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dictionaries with low sparse approximation performance. To 
cope with this problem, method of [8] applies decorrelation 
along with a rotation step to improve the approximation 
performance of the decorrelated dictionary. But, as shown in 
[8], this method does not work well for above-moderate 
coherence levels. In addition, the extra steps of decorrelation 
and rotation increase the total computation cost. 

The second strategy to learn the incoherent dictionary is 
augmenting the dictionary learning objective with a 
coherence penalty. The methods presented in [3], [6], and 
[9] are based on this strategy. The coherence penalty term in 
all of these methods is the same but they use different 
approaches for minimization. In [3], an additional quadratic 
regularization term on atom’s norm is added to learning 
model and the dictionary updates is performed by method of 
optimal coherence-constrained direction (MOCOD). In [6], 
several iterations of the limited-memory BFGS algorithm 
[11] are run for dictionary optimization. The same 
optimization problem is solved using gradient projection 
method in [9]. 
 
3. PROPOSED DICTIONARY LEARNING METHOD 

 
In order to reduce the coherence of a trained dictionary, we 
present a coherence regularized (CORE) dictionary learning 
model which explicitly imposes a regularizer on the 
coherence among dictionary atoms. Consider a training set 
of signals ܇ = ,ଵܡ] … , [ேܡ ∈ ℝ௡×ே from which we want to 
learn a dictionary ۲ = ,ଵ܌] … , [௄܌ ∈ ℝ௡×௄. The proposed 
CORE learning model is given as follows: 

min۲∈ࣞ, ܆ ܇‖	 − ிଶ‖܆۲ + ௜‖଴ேܠ‖෍ߣ
௜ୀଵ + ෍ߟ ෍ ൫܌௜் ௝൯ଶ௄܌

௝ୀ௜ାଵ
௄ିଵ
௜ୀଵ (2)

where ‖⋅‖ி is the Frobenius norm, ܆ = …,ଵܠ] , [ேܠ ∈ ℝ௄×ே 
the sparse representation matrix and ࣞ is defined as the set 
of all dictionaries with unit ℓଶ-norm atoms. Also, ‖⋅‖଴ 
denotes ℓ଴-pseudo-norm that counts the number of non-zero 

entries. Here, the coherence penalty ∑ ∑ ൫܌௜் ௝൯ଶ௄௝ୀ௜ାଵ௄ିଵ௜ୀଵ܌  
has been added to the reconstruction objective to promote 
the incoherence of dictionary atoms, where ߟ ≥ 0 is trade-
off parameter. A classical alternate minimization scheme is 
used to deal with the problem in (2) by alternating between 
the sparse-coding and dictionary-update steps. In the sparse 
coding step, we adopt orthogonal matching pursuit (OMP) 
[12] because of its simplicity and efficiency. Our focus is on 
the dictionary update step in which we have to solve: min۲∈ࣞ ܇‖	 − ிଶ‖܆۲ + ෍ߟ ෍ ൫܌௜் ௝൯ଶ௄܌

௝ୀ௜ାଵ
௄ିଵ
௜ୀଵ  (3)

We perform the dictionary update in a block coordinate 
fashion where one block of dictionary elements is optimized 
at a time while keeping the other ones fixed. Specifically, let ۲ஐ = ௜∈ஐ denote a subset of atoms indexed by Ω[௜܌] ⊂ℐ = {݅}௜ୀଵ௄  that we want to update. Also, the rest of 

dictionary atoms are denoted by ۲ஐഥ = ௜∈ஐഥ[௜܌]  with Ωഥ = ℐ ∖ Ω. Then, minimizing (3) with respect to ۲ஐ, when 
keeping ۲ஐഥ  fixed, can be formulated as min۲ಈ∈ࣞ ฮ܇ − ۲ષഥ܆[ષഥ] − ۲ஐ܆[ஐ]ฮிଶ + +ฮ۲ஐഥ்۲ஐฮிଶߟ 2ߟ ‖۲ஐ்۲ஐ − ۷‖ிଶ  

(4)

where ܆[ஐ] indicates the sub-matrix of ܆ consisting of its 
rows indexed by Ω, and ۷ is the |Ω| × |Ω| identity matrix.  

Let ۳ஐ = ܇ − ۲ஐഥ܆[ஐഥ] be error matrix for all the ܰ 
samples when the atoms indexed by Ω are removed from the 
dictionary. According to support of ܠ[௜], the i-th row of ܆, 
we define the set ߩ௜ = {݆ ∶ 1 ≤ ݆ ≤ ܰ, (݆)[௜]ܠ ≠ 0} 
containing the indices of samples {ܡ௝} that use the atom ܌௜. 
Accordingly, we define ߩஐ = ⋃ ௜௜∈ஐߩ  as the set of indices 
pointing to samples in ܇ that use at least one atoms of ۲ஐ in 
their representation. Since ۲ஐ has no impact on the 
representation error of samples {ܡ௝}௝∉ఘಈ, we can replace ܇ 
and ܆ in (4) by their column-reduced version ܇ሖ =  ௝∈ఘಈ[௝ܡ]
and ܆ሖ =  ௝∈ఘಈ respectively. Thus the objective function[௝ܠ]
in (4) can be written as follows where the column-reduced 
error matrix is denoted by ۳ሖ ஐ. min۲ಈ ฮ۳ሖ ஐ − ۲ஐ܆ሖ [ஐ]ฮிଶ + ฮ۲ஐഥ்۲ஐฮிଶߟ 	+ 2ߟ ‖۲ஐ்۲ஐ − ۷‖ிଶ (5)

This dictionary update model has two coherence 

penalization terms. The term ฮ۲ஐഥ்۲ஐฮிଶ  is inter-coherence 

penalty that promotes incoherence between atoms of ۲ஐ and 
the rest of the dictionary atoms. The other coherence penalty 
term suppresses the intra-coherence of atoms in ۲ஐ. 
 
3.1. CORE-I learning model 
 
We first consider the dictionary update model in (5) 
regardless of intra-coherence penalty and instead encourage 
low intra-coherence by random selection of atom subsets at 
each dictionary update step. We refer to the resulting update 
model with inter-coherence regularization as CORE-I. 
Taking the derivative of the related objective function with 
respect to ۲ஐ and setting it equal to zero results in: ۲ߟஐഥ۲ஐഥ்۲ஐ + ۲ஐ܆ሖ [ஐ]܆ሖ [ஐ]் = ۳ሖ ஐ܆ሖ [ஐ]்  (6)

Let us define matrices ۯ = ۲ஐഥ۲ஐഥ்ߟ , ۰ = ሖ܆ [ஐ]܆ሖ [ஐ]் , and ۱ = ۳ሖ ஐ܆ሖ [ஐ]் . Using these definitions, (6) is reduced to the 
following matrix equation. ۲ۯஐ + ۲ஐ۰ = ۱ 	 (7)

The above matrix equation is known as the Sylvester 
equation. This matrix equation and Lyapunov matrix 
equation as a special case (۰ =  are very important (்ۯ
equations in theory and applications and arise in many 
diverse engineering and mathematics problems [13], [14]. 

The most widely used standard method for numerical 
solution of the Sylvester equation is the well-known Bartels-
Stewart method [15]. The main idea of the Bartels-Stewart 
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method is to transform matrices ۯ and ۰ into triangular 
form by orthogonal similarity transformation and then 
solving the resulting transformed system by back-
substitution. We make use of this method in our dictionary 
update problem to calculate the solution of (7) and thus to 
update ۲ஐ. This update procedure is followed by 
normalizing the columns of ۲ஐ to have unit ℓଶ-norm. 

Moreover, along with updating the atoms of ۲ஐ, we 
also update the nonzero coefficients in their associated row 
vectors in ܆. This can accelerate convergence, since more 
relevant coefficients will be used in the subsequent atom 
updates. Let ߱௜ = {݆ ∶ 1 ≤ ݆ ≤ ,ܭ (݆)௜ܠ ≠ 0} be the index 
set of nonzero entries in ܠ௜, the i-th column of ܆. Updating 
the nonzero sparse coefficients associated to ۲ஐ involves 
solving a least squares problem for each column of ܆ሖ [ஐ] as: minܠ೔(ஐ∩ఠ೔) 	ฮ܍ஐ,௜ − ۲ஐ∩ఠ೔ܠ௜(Ω ∩ ߱௜)ฮଶଶ 	 			 , ∀݅ ∈ ஐ (8)ߩ

where ܍ஐ,௜ is the i-th column of the error matrix ۳ஐ. This 
problem admits a closed-form solution thereby the 
coefficients update rule is given by ܠ௜(Ω ∩ ߱௜) ← ൫۲ஐ∩ఠ೔் ۲ஐ∩ఠ೔൯ିଵ۲ஐ∩ఠ೔் ஐ,௜܍ 	 			 , ∀݅ ∈ ஐߩ (9)

Once the updating of all subsets of dictionary atoms and 
their corresponding nonzero coefficients is done, next 
iteration of dictionary learning algorithm is started by sparse 
coding step. Algorithm 1 presents the overall procedure of 
the proposed CORE-I dictionary update. By Sylv(۲ஐ; ,ۯ ۰, ۱) we mean the solving of matrix Sylvester 
equation in (7) using the Bartels-Stewart algorithm. 
 
3.2. CORE-II learning model 
 
We return to our dictionary optimization problem defined in 
(5) again but this time we consider both inter- and intra-
incoherence inducing terms. To obtain the updated 
dictionary, the derivative of optimization function with 
respect to ۲ஐ is set to zero and then is rearranged as: ۲ߟஐഥ۲ஐഥ்۲ஐ + ۲ஐ൫܆ሖ [ஐ]܆ሖ [ஐ]் + ۲ஐ்۲ஐߟ − ۷௠൯ߟ = ۳ሖ ஐ܆ሖ [ஐ]் (10)

Defining the matrices ۯ = ۲ஐഥ۲ஐഥ்ߟ , ۰ = ሖ܆ [ஐ]܆ሖ [ஐ]் ۲ஐ்۲ஐߟ+ − ۷௠, and ۱ߟ = ۳ሖ ஐ܆ሖ [ஐ]் , we again achieve a matrix 
equation of the form (7). In this case, however, the 
coefficient matrix ۰ depends on ۲ஐ. Therefore, we apply an 
iterative approach for updating ۲ஐ as ۲ஐ(௧ାଵ) ← Sylv൫۲ஐ(௧); ,ۯ ۰(௧), ۱(௧)൯ 	 (11)

which is followed by updating the corresponding nonzero 
coefficients using (9). The updated ۲ஐ and nonzero 
coefficients at each iteration are used to recalculate the 
matrices ۰ and ۱. In practice, we found that a few (e.g. 4) 
iteration is sufficient to give the appropriate updates. This 
dictionary update method referred to as CORE-II is 
summarized in Algorithm 2. 

Algorithm 1 CORE-I Dictionary Update 

Require: Training set ܇ = ௝ୀଵே[௝ܡ]  in ℝ௡×ே, dictionary ۲ ∈ ࣞ, sparse coefficients ܆ ∈ ℝ௄×ே, regularization 
parameter ߟ, number of atoms in each subset ݉ 
1: Initialization: Ω଴ = {1,2, … ,  .{ܭ
2:    while Ω଴ ≠ ∅ do 
3:        Ω ← Pick ݉ index from Ω଴ randomly. 
4:        Ωഥ ← {1 ≤ ݆ ≤ ܭ ∶ ݆ ∉ Ω}. 
5:        Ω଴ ← Ω଴ ∖ Ω. 
ஐߩ        :6 = ⋃ {݆ ∶ 1 ≤ ݆ ≤ ܰ, (݆)[௜]ܠ ≠ 0}௜∈ஐ . 
ሖ܇        :7 = ሖ܆ , ௝∈ఘಈ[௝ܡ] =  .௝∈ఘಈ[௝ܠ]
8:        ۳ሖ ஐ = ሖ܇ − ۲ஐഥ܆ሖ [ஐഥ].  
ۯ        :9 = ۲ஐഥ۲ஐഥ்ߟ , ۰ = ሖ܆ [ஐ]܆ሖ [ஐ]் , ۱ = ۳ሖ ஐ܆ሖ [ஐ]் . 
10:        ۲ஐ ← Πࣞ(Sylv(۲ஐ; ,ۯ ۰, ۱)). 
11:        Update nonzero coefficients in ܆ሖ [ஐ] via (9). 
12:    end while 
13: return ۲ (updated dictionary) 
 

Algorithm 2 CORE-II Dictionary Update 

Require: Training set ܇ = ௝ୀଵே[௝ܡ]  in ℝ௡×ே, dictionary ۲ ∈ ࣞ, sparse coefficients ܆ ∈ ℝ௄×ே, regularization 
parameter ߟ, number of atoms in each subset ݉ 
1: Initialization: Ω଴ = {1,2, … ,  .{ܭ
2:    while Ω଴ ≠ ∅ do 
3:        Ω ← Pick ݉ index from Ω଴ randomly. 
4:        Ωഥ ← {1 ≤ ݆ ≤ ܭ ∶ ݆ ∉ Ω}. 
5:        Ω଴ ← Ω଴ ∖ Ω. 
ஐߩ        :6 = ⋃ {݆ ∶ 1 ≤ ݆ ≤ ܰ, (݆)[௜]ܠ ≠ 0}௜∈ஐ . 
ሖ܇        :7 = ሖ܆ , ௝∈ఘಈ[௝ܡ] =  .௝∈ఘಈ[௝ܠ]

8:        ۳ሖ ஐ = ሖ܇ − ۲ஐഥ܆ሖ [ஐഥ].  
ۯ        :9 = ۲ஐഥ۲ஐഥ்ߟ . 
10:        for ݐ = 1,… , ܶ do 
11:             ۰ = ሖ܆ [ஐ]܆ሖ [ஐ]் + ۲ஐ்۲ஐߟ − ۷௠, ۱ߟ = ۳ሖ ஐ܆ሖ [ஐ]் . 
12:             ۲ஐ ← Πࣞ(Sylv(۲ஐ;ۯ, ۰, ۱)). 
13:             Update nonzero coefficients in ܆ሖ [ஐ] via (9). 
14:        end for 
15:    end while 
16: return ۲ (updated dictionary) 
 

4. EXPERIMENTAL RESULTS 
 
In this section, the performance of the proposed coherence 
regularized dictionary learning algorithms is evaluated1. We 
compare CORE methods (CORE-I and CORE-II) with 
several recently proposed incoherent dictionary learning 
algorithms. These algorithms are incoherent K-SVD (INK-
SVD) [7], K-SVD decorrelation with iterative projections 
and rotations (IPR) [8], incoherent dictionary learning based 
on BFGS algorithm (IDL-BFGS) [6], and method of optimal 
coherence-constrained directions (MOCOD) [3]. Results of 

                                                 
1 The code is available at: http://mansournejati.ece.iut.ac.ir/content/core-dl 
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these methods are obtained using the source codes provided 
by their authors and all experiments are performed using 
MATLAB R2012b on a PC with 3.4 GHz Intel Core-i7 CPU 
and 8 GB RAM. 

We take a collection of 100 images from the Berkeley 
segmentation dataset2 to form the training set consisting of 
80000 randomly chosen 8	×	8 patches. A set of 80000 test 
image patches are also extracted from the remaining images 
of this dataset. The dictionary size is set to be ܭ =	512 
atoms and we run all dictionary learning algorithms for 50 
iterations. Also, in order to have a fair comparison among 
different incoherent dictionary updates, OMP [12] is used in 
the sparse coding step of all competing algorithms. 

Regularization parameter ߟ and cardinality of subsets of 
dictionary atoms ݉, are two important parameters of CORE 
methods needed to be tuned for optimality. Based on our 
experiments, we found that increasing ݉ to about half of the 
patch size improves the reconstruction performance. 
However, setting ݉ to the larger values either does not 
improve the performance or even degrades it. Therefore, in 
our experiments, we set ݉ to 

௡ଶ where ݊ denotes the patch 

size. The regularization parameter ߟ is tuned heuristically to 
produce the best results in terms of sparse reconstruction 
performance. The coherence related parameters of the other 
competing methods are also chosen such that the trained 
dictionaries have similar mutual coherence. 

We apply the trained dictionaries to sparse 
approximation of test image patches using OMP. The 
reconstruction performance of dictionary is evaluated using 
signal to noise ratio (SNR) of these approximations as: SNR = 10 logଵ଴ ܇‖ிଶ‖܇‖ − ிଶ‖܆۲  (12)

where ܇ and ܆ denote the test set and their sparse 
representations respectively. Figure 1 shows the SNR of the 
reconstructions associated with various dictionary learning 
algorithms as a function of average number of atoms 
required. It can be seen that the dictionaries trained by our 
algorithms have better reconstruction SNR which implies 
the improved generalization performance of the dictionaries 
trained by our algorithms. Another observation is that 
performances of both CORE methods are similar. In fact, 
CORE-II leads to slightly more reconstruction SNR for 
sparsity levels beyond 5. This can be due to the iterative 
application of (11) for each sub-dictionary which can result 
in more adapted dictionary atoms. 

Table 1 presents a detailed comparison where ߤୟ୴୥ =ଵ௄(௄ିଵ)∑ ∑ ௜்܌| ௝|௝ஷ௜௜܌  denotes the average mutual coherence 

and the reconstruction SNR is reported for average sparsity 
level of 8. It can be seen that for the same value of ߤ (all 
trained dictionary have ߤ =	0.94), CORE algorithms lead to 
the lowest ߤୟ୴୥ and the highest SNR as compared to other 
incoherent dictionary learning algorithms. The closest 

                                                 
2 www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/ 

competitor to CORE methods in SNR performance is IDL-
BFGS [6] which is more than 3 times slower. In terms of 
execution time, the CORE algorithms are much faster than 
IPR [8], IDL-BFGS [6], and INK-SVD [7]. Only MOCOD 
[3] has smaller execution time than CORE algorithms but 
this method yields the worst SNR performance among the 
others. It is also observed that CORE-II leads to lower ߤୟ୴୥ 
than CORE-I. This is because CORE-II optimizes the 
dictionary with both inter and intra coherence suppressing 
terms. However, this lower coherence is obtained at the cost 
of an increased run time. 
 

5. CONCLUSION 
 
In this paper, we presented a coherence regularized 
dictionary learning model to jointly minimize the data 
approximation error and the coherence of dictionary atoms. 
We considered the group-wise simultaneous updating of 
dictionary atoms and propose two novel algorithms for 
solving the corresponding optimization problem based inter- 
and intra-coherence minimization. The evaluations we 
carried out show that our algorithms improve the sparse 
approximation performance of trained dictionaries 
compared to previous approaches to incoherent dictionary 
learning, while requiring a lower computational time. 
 

 
Fig. 1. Generalization performance of dictionaries trained by 
CORE learning methods compared with competing algorithms.  

 
Table 1. Comparison of different dictionary learning algorithms in 
terms of average mutual coherence of trained dictionary, sparse 
reconstruction performance on test set, and learning run time.  

Algorithm ߤୟ୴୥ SNR (dB) Run Time (s)

CORE-I 0.1080 28.56 149 

CORE-II 0.0919 28.73 201 

INK-SVD [7] 0.1915 27.62 402 

IPR [8] 0.2169 27.59 731 

MOCOD [3] 0.1388 27.23 120 

IDL-BFGS [6] 0.1258 28.18 608 
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