
A DIVIDE-AND-CONQUER DICTIONARY LEARNING ALGORITHM AND ITS
PERFORMANCE ANALYSIS

Subhadip Mukherjee and Chandra Sekhar Seelamantula

Department of Electrical Engineering, Indian Institute of Science, Bangalore 560012, India
Emails: subhadip@ee.iisc.ernet.in, chandra.sekhar@ieee.org

ABSTRACT

We address the problem of learning a sparsifying synthesis dictio-
nary over large datasets that occur in numerous signal and image pro-
cessing applications, such as inpainting, super-resolution, etc. We
develop a dictionary learning algorithm that exploits the similarity of
the training examples to reduce the training time. Training datasets
containing correlated examples typically occur in image processing
applications, as the datasets contain the patches extracted from nat-
ural images as training vectors. Our algorithm employs a divide-
and-conquer approach, where one leverages the correlation within
the training examples to segment the dataset into clusters containing
similar examples, and learn local dictionaries for each of them. This
constitutes the divide step of the algorithm. In the conquer step, a
global dictionary is trained using the atoms of the local dictionar-
ies as the training examples. We analyze the run-time complexity
and the representation error of the proposed divide-and-conquer dic-
tionary learning algorithm, and compare the performance with the
batch and online dictionary learning algorithms, both on synthesized
dataset and natural images. The analysis reveals that the proposed
algorithm has an asymptotic complexity that is linear and logarith-
mic in the number of training examples, corresponding to sequential
and parallel implementations, respectively.

Index Terms— Dictionary learning, sparsity, big-data, divide-
and-conquer.

1. INTRODUCTION

The problem of learning a sparsifying data-adaptive synthesis dic-
tionary has gained attention in recent years [1–6]. Other than the
synthesis model, learning analysis dictionaries [7, 8] and trans-
forms [9–11] for promoting sparsity has also been studied. Algo-
rithms based on dictionary learning find applications in areas such as
image super-resolution [12], blind source separation [13], document
detection [14, 15], face recognition [16], image classification [17]
and restoration [18], etc. The basic idea behind the approach is to
learn a dictionary on a set of signals that are likely to occur in a par-
ticular application. Dictionaries for data representation are expected
to meet two desirable, yet competing criteria: namely, adaptability
and fast implementation. Data-independent dictionaries, such as dis-
crete cosine transform, discrete Fourier transform, wavelet etc., offer
efficient implementation due to the dyadic structure, but since they
are not optimized for a given data, they are limited in their ability
to sparsify. On the contrary, learned dictionaries are data-adaptive,
but, unlike their data-independent counterparts, a structure has to be
imposed to facilitate fast implementation. To bridge the two seem-
ingly contradictory aspects, Rubinstein et al. [19] proposed the idea

of a sparse dictionary, where the dictionary atoms are themselves
sparse over another dictionary. Therefore, the dictionary D can be
written as D = ΦA, where the columns of A are s1-sparse. The
training examples can be written as Y = DX = ΦAX , where X
has s2-sparse columns. This model is also referred to as the double
sparsity model [20]. It can be observed that, under this model, Y
admits a s-sparse representation in Φ, where s ≤ s1s2.

In many image processing applications, the dataset over which
the dictionary is trained is large, thus rendering batch processing
impracticable due to time and storage constraints. One approach to
tackle the problem is to use a sequential update of the dictionary,
where only one training example is revealed to the algorithm at
a time. Mairal et al. developed a stochastic-approximation-based
online dictionary learning algorithm [21, 22], which is scalable to
large datasets. However, it is not possible to exploit the hidden
structure in the dataset using a sequential algorithm, as it processes
the examples in the same order in which they are presented. A
scalable online algorithm for dictionary learning was developed by
Cherian et al. [23] in the context of sparse noise removal. Mackey
et al. [24] proposed a divide-and-conquer approach for noisy matrix
factorization. Recently, the problem of distributed dictionary learn-
ing over sensor networks has been addressed in [25, 26]. The idea
of codeword clustering and hierarchical sparse coding to expedite
dictionary learning was proposed in [27]. This technique involves
clustering of dictionary atoms, but, unlike ours, does not exploit the
correlation of the examples in the dataset to achieve fast learning.
Our Contribution: Often the training examples tend to be clus-
tered, which can be modeled by imposing a Gaussian mixture
model (GMM) distribution on them, that is, by assuming that
the examples are i.i.d., and follow the distribution pY (y) =
L∑
t=1

αte
− 1

2
(y−µt)T Σ−1

t (y−µt)

√
2π |Σt|

1
2

, where
∑L
t=1 αt = 1. In such sce-

narios, we propose to learn a global dictionary Φ in two stages:
(i) learn local dictionaries, each for one cluster and (ii) com-
bine them into a global one. Assume that the local dictionary
for the tth cluster Ct is Dt, whose columns admit a sparse repre-
sentation in a global dictionary Φ. Consequently, it follows that
Yt = DtXt = ΦAtXt = ΦBt, where Bt = AtXt, and the
columns of Yt are in Ct. Since the examples in a particular cluster
have a high degree of correlation, it is possible to represent them us-
ing a dictionary sparsely. Then, we leverage the assumption that the
atoms of the local dictionaries are sparse over the global dictionary
Φ, to learn Φ using the columns of Dts. The resulting divide-and
conquer dictionary learning (DCDL) algorithm to learn a sparsify-
ing global synthesis dictionary Φ is presented in Algorithm 1, where

4712978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

one employs only one level of decomposition of the dataset. The
complexity and error bound for DCDL are also analyzed.

2. PROBLEM STATEMENT AND THE ALGORITHM

Let us assume that the training dataset T contains n examples given
by T = {yi}ni=1 ∈ Rm. Our objective is to design a scalable algo-
rithm to learn a dictionary D ∈ Rm×k, m < k, such that D repre-
sents each yi with an s-sparse coefficient vector xi, that is, there exist
a small constant ε > 0 and an integer s such that ‖yi −Dxi‖2 ≤ ε,
with xi satisfying ‖xi‖0 ≤ s for all i. Let Y ∈ Rm×n denote the
matrix formed by stacking the training vectors yi on the columns.
We assume that the dataset T possesses a special structure, in par-
ticular, that the training examples exhibit high correlation and form
clusters in the m-dimensional Euclidean space Rm.

We propose a divide-and-conquer algorithm to solve the prob-
lem. First, we segment the training dataset T into L clusters, each
containing similar vectors, and train a local dictionary on each of
them. The choice of L affects the reduction in training time. Our
analysis in Section 2.3 reveals the optimum choice of L as a func-
tion of the data-size n. Corresponding to two extreme values of L,
namely L = 1 and L = n, the training time is observed to be the
same as that of the standard K-SVD-based batch dictionary learning.
Clustering of data is performed using the standard K-means algo-
rithm, where `1 distance metric is used as the measure of similarity,
in order to achieve robustness to outliers. Let the dictionary trained
on the tth cluster, 1 ≤ t ≤ L, be denoted by D(t) ∈ Rm×kt , where
the number of atoms in the local dictionaries satisfies kt ≤ k. In
order to obtain a global dictionary D from the local dictionaries, we
form a new dataset by stacking the dictionariesD(t) on the columns,
and training a dictionary over the datasetD thus constructed. It turns
out that the global dictionary Φ represents the entire dataset with the
desired sparsity level, provided that the sparsity is chosen appropri-
ately for the subproblems. The procedure is summarized in Algo-
rithm 1. The parameters s1 and s2 in Steps 2 and 3 of the algorithm
are chosen such that s = s1s2, where s is the overall sparsity level.

Note that in Algorithm 1, the given dataset T is first clustered,
and the local dictionaries are trained directly on the clusters using
K-SVD. However, the process can be repeated recursively, where
the local dictionaries are trained using the DCDL algorithm, by fur-
ther segmenting the clusters. In fact, one can continue applying the
DCDL algorithm recursively, until one arrives at a dataset containing
only two examples. At that stage, a direct technique could be used
for training. However, reasonably good savings in time and stor-
age could be obtained by applying a hierarchical clustering on the
dataset up to some finite level. Note that the asymptotic complexity
expressions hold for the case where the DCDL algorithm is applied
until one ends up with a dataset containing only two examples.

2.1. Sequential and Parallel Implementation of DCDL

We consider two possible implementations of the proposed DCDL
algorithm, namely, parallel and sequential, depending on how the
local dictionaries are learned. Since there is no data-dependency in
learning the local dictionaries, they can be trained in parallel, in the
case where computational time constraint is tighter than the storage
constraint. On the other hand, one might choose to train the local dic-
tionaries sequentially, resulting in more training time and less stor-
age requirement compared with the parallel implementation. We de-
rive the worst-case asymptotic time complexities for either cases in

Algorithm 1 DCDL algorithm to learn a dictionary Φ ∈ Rm×k
from a database Y ∈ Rm×n, such that Φ represents each column of
the data matrix Y using an s-sparse coefficient vector.

1. Cluster the training dataset: Decompose Y into L non-
overlapping clusters {Yt}Lt=1 of size m× nt.
2. Train a dictionary on each dataset: Learn a dictionary Dt ∈
Rm×kt , kt ≤ k, to represent the columns of Yt as Yt = DtXt,
with a sparsity level of s1 < s.
3. Merge the dictionaries: Construct a new data-matrix D =

[D1, D2, · · · , DL] ∈ Rm×
∑L

t=1 kt . Learn a dictionary Φ ∈
Rm×k, which represents the columns ofD with sparsity s2 = s

s1
.

Section 2.3. For sequential implementation, the worst-case run-time
of the DCDL algorithm scales linearly with respect to the data-size
n. On the contrary, parallel implementation of the DCDL technique
results in asymptotically logarithmic run-time in n.

2.2. Bound on Representation Error
Before moving on to the complexity analysis of DCDL, we quantify
the loss in performance in terms of the data representation error as
a result of the two step approach. In the following development,
we use P to indicate a matrix formed by concatenating submatrices
{Pt}Lt=1. The overall squared error e on the dataset T is given by

e (T) =

L∑
t=1

‖Yt − ΦBt‖2F =

L∑
t=1

‖DtXt − ΦAtXt + Yt −DtXt‖2F

≤ 2

L∑
t=1

‖Dt − ΦAt‖2F ‖Xt‖2F + 2

L∑
t=1

‖Yt −DtXt‖2F ,

where the inequality follows from the fact that ‖P +Q‖2F ≤
2
(
‖P‖2F + ‖Q‖2F

)
, for two matrices P and Q, and the sub-

multiplicative property of the Frobenius norm. Further simplifi-

cation yields e (T) ≤ 2M ‖D − ΦA‖2F + 2

L∑
t=1

‖Yt −DtXt‖2F ,

where M = sup
1≤t≤L

‖Xt‖F is a constant. Now, let us assume

that the mean-squared errors (MSEs) during the divide and con-
quer steps are bounded, that is, L

n
‖Yt −DtXt‖2F ≤ ε1 for

all t, and 1
L
‖D − ΦA‖2F ≤ ε2. This, in turn, implies that

e (T) = ‖Y − ΦB‖2F ≤ 2MLε2 + 2ε1n. Consequently, if the
number of components in the GMM satisfies L = o (n), we have
lim
n→∞

1
n
e (T) = lim

n→∞
1
n
‖Y − ΦB‖2F = 2ε1. Therefore, if the

number of segments L grows strictly slower that n, the overall MSE
in two-stage sparse coding asymptotically remains bounded from
above, as long as the MSE over each cluster and the MSE during the
conquer step are bounded.

2.3. Asymptotic Complexity Analysis

The computational complexity of the DCDL algorithm for the se-
quential and parallel implementations is derived and compared with
that of the batch and online learning schemes. The definitions of the
asymptotic notations O, Θ, Ω, and o can be found in [28].

2.3.1. Complexity of batch learning

Sparse coding: For a dataset of size n, the sparse coding step using
orthogonal matching pursuit (OMP) [29] requires Θ (smkn) com-
putations, where s is the sparsity and m is the signal dimension.

4713

Dictionary update using K-SVD: For a dictionary of size m × k,
one computes the SVD of an m× n matrix k times, which requires
Θ
(
km2n+ kn3

)
operations. Therefore, the total computation time

required for each iteration of the K-SVD is given by

T = cnk
(
sm+m2 + n2) , (1)

for some constant c > 0. We assume that m, s, and k are constants
and do not scale with n. Moreover, we assume that the iterations
are repeated a fixed number of times, say I1. Consequently, we have
that the complexity of K-SVD is given by TK−SVD = Θ

(
n3
)
. As

the complexity scales as n3, it is not suitable for large datasets.

2.3.2. Complexity of the online learning algorithm [21]

After a new training example is revealed, one needs to solve a sparse
coding problem, requiring Θ (smk) computations. This step is fol-
lowed by updating the dictionary, where one needs to repeat an iter-
ative process certain number of times, each pass of which involves
the multiplication of an m× k matrix by a k-length vector, entailing
Θ (mk) operations. Thus, for n examples, the overall computation
needed is given by Θ (n), if one assumes that m, k, and s are much
smaller compared to n.

2.3.3. Complexity of sequential and parallel versions of DCDL

Using the expression in (1), the complexities of the clustering, split-
ting, and the merging steps are given below:

Tcluster = c0LJmn,where the iteration countJ is a constant,

Tsplit =

L∑
t=1

[
c2ntk1

(
s1m+m2 + n2

t

)]
,

= c1c2nk1

[
s1m+m2 + c21

n2

L2

]
, ifnt = c1

n

L
, and

Tmerge = c3 (k1L) k
(
s2m+m2 + k2

1L
2) .

Therefore, the overall complexity of the divide-and-conquer algo-
rithm is given by

TDC = Tcluster + Tsplit + Tmerge

= c0 (LJmn) + c1c2nk1

[
s1m+m2 + c21

n2

L2

]
+ c3 (k1L) k

(
s2m+m2 + k2

1L
2) .

Let L = Θ (nα), where 0 < α < 1. It is easy to observe that
the resulting complexity of the algorithm is TDC = Θ (nτ), where
τ = max {3α, 3− 2α, 1 + α}. Clearly, τ attains a minimum when
α = 0.6. Again, in principle, each local dictionary and the global
one during merging can be trained using a divide-and-conquer algo-
rithm. Therefore, if the local dictionaries are trained sequentially,
the overall complexity expression can be written as

T (n) = n0.6T
(
n0.4)+ T

(
n0.6) , forn ≥ 2. (2)

The solution to the recurrence in (2) is given by T (n) = Θ(n), as
proved in Proposition 1.

Proposition 1 For 0 < α < 1, the solution to the recurrence

T (n) = n1−αT (nα) + T
(
n1−α) , n = 2, 3, · · · (3)

is given by T (n) = Θ(n).
Proof : We prove the proposition by solving the recurrence directly
using the substitution method. Let us assume that there exist con-
stants a, b > 0 such that T (n) ≤ an− b, for n ≥ 2. Substituting in

(3), we get T (n) ≤ n1−α (anα − b) +
(
an1−α − b

) (i)

≤ an − b,
where the inequality (i) holds for all n if the constants a and b
are chosen such that b > a. To handle the base case, we assume
that n ≥ 2, since it makes little sense to train a dictionary where
the dataset contains only one example. Consequently, we have to
choose two constants a and b such that they satisfy 0 < a < b
and T (2) ≤ 2a − b, for the induction hypothesis to work for all
n ≥ 2. To that end, we set b = 1.5a, and choose a satisfying
a ≥ 2T (2). Hence, T (n) = O(n) solves (2), indicating that the
asymptotic complexity can be brought down to a level where it scales
at most linearly with the data-size. From (3), it is also easy to verify
that T (n) = Ω(n), because, assuming T (n) ≥ cn for c > 0 yields

T (n) ≥ n1−α (cnα) + cn1−α ≥ cn, for alln.

Combining T (n) = O(n) and T (n) = Ω(n), we get T (n) =
Θ(n). Thus, the worst-case asymptotic run-time complexity of the
DCDL algorithm is linear in datasize n.

Alternatively, if one chooses to train the local dictionaries in par-
allel, the asymptotic complexity is given by the recurrence

T (n) = T
(
n0.4)+ T

(
n0.6) , n ≥ 2, (4)

having a solution T (n) = Θ(logn), as shown in Proposition 2.

Proposition 2 For 0 < α < 1, the solution to the recurrence

T (n) = T (nα) + T
(
n1−α) , n = 2, 3, · · · (5)

is given by T (n) = Θ(logn).
Proof : To establish the upper-bound on T (n), it suffices to show that
there exists a constant a such that T (n) ≤ a logn. As in Proposition
1, the proof goes by substitution. Assuming T (n) ≤ a logn, we get

T (n) ≤ aα logn+ a(1− α) logn = a logn.

Similarly, one can argue that there exists a constant b such that
T (n) ≥ b logn, thus proving that T (n) = Θ(logn).

However, if one chooses to segment the dataset only once, and
learn the local dictionaries directly using K-SVD without further de-
composition of the clusters, the complexity of both sequential and
parallel implementations is given by T (n) = O

(
n1.8

)
. The sav-

ings in computation over the batch K-SVD increase as one employs
deeper decomposition of the dataset, albeit at the cost of sacrificing
the performance in terms of representation accuracy. As the number
of levels in the decomposition increases, the run-time of the sequen-
tial DCDL algorithm approaches that of the online technique.

Performance Batch Online DCDL DCDL
metrics K-SVD dictionary Sequential Parallel

learning
MSE (dB) −16.57 −14.71 −15.20 −15.20

Time (×104s) 1.79 0.095 1.35 0.203

Table 1. Performance comparison of the DCDL algorithm with
batch K-SVD and the online dictionary learning technique on syn-
thesized signals drawn from a GMM distribution.

4714

Images Batch K-SVD Online dictionary DCDL
learning parallel

41.33 40.65 41.67(
4.82× 103

) (
1.61× 103

) (
2.70× 102

)
40.78 39.43 39.61(

4.37× 103
) (

1.63× 103
) (

2.36× 102
)

39.73 36.97 39.54(
4.88× 103

) (
1.80× 103

) (
2.33× 102

)
Table 2. Recovery PSNR (in dB) obtained using different algo-
rithms for three images. The time taken for training the dictionaries
(in seconds) is indicated within parentheses. The PSNR values ob-
tained using a sparsity level of s = 9 in the overcomplete DCT
dictionary are given by 37.65, 38.95, and 37.60 dB, respectively.

3. EXPERIMENTAL VALIDATION

The experiments are performed using MATLAB 2011, running on a
system with a 3.2 GHz core i5 processor and 8 GB internal memory.

3.1. Synthesized Dataset

To validate the performance of the DCDL algorithm and compare
the run-time with that of the batch K-SVD and the online dictio-
nary learning (ODL) algorithms [21], we conduct experiments on a
synthesized dataset with n = 105 examples. The training exam-
ples are drawn from a GMM distribution, with L = n0.6 = 103, and
αt = 1

L
, for all t. The training vectors are of dimensionm = 30 and

the size of the global dictionary is chosen to bem×k, where k = 80.
The size of the local dictionaries learnt by the DCDL algorithm in
the divide stage is taken as m × kt, where kt = k1 = 50 for all t.
The value of sparsity during the divide and conquer stages are set at
s1 = 4 and s2 = 3, respectively, so that the overall sparsity of the
training examples is given by s ≤ 12. One level of decomposition
is employed in the DCDL algorithm, where the dataset is first seg-
mented intoL clusters, and the local dictionaries over the clusters are
trained directly using the K-SVD algorithm, without further decom-
position. In the merging stage, we accumulate the atoms of the local
dictionaries, and train a global dictionary using them, by employ-
ing the K-SVD algorithm. The MSE obtained using the algorithms,
and the corresponding run-times are reported in Table 1. We observe
that the DCDL algorithm outperforms the online learning technique
in terms of MSE on the training dataset by approximately 0.5 dB.
However, the DCDL algorithm falls short of the batch K-SVD algo-
rithm by nearly 1.4 dB. In terms of run-time, the sequential version
of the DCDL algorithm is better compared with the competing batch
technique, although it uses lesser storage as it involves processing of
datasets having smaller size. On the contrary, the parallel implemen-
tation of the DCDL algorithm results in a remarkable improvement
in run-time, almost by a factor of 10, in comparison with the batch
K-SVD. The training time taken in the parallel implementation is al-
most 2.14 times than that required in the online algorithm. Further
reduction in training time could be achieved by employing more lev-
els of decomposition, as argued in Section 2.3.

3.2. Image Sparsification

Patches of size 8 × 8 are extracted from images, with a shift of two
pixels in either directions. Subsequently, the patches are vectorized
and the mean is subtracted before using them for training. The num-

(a) DCT dictionary (b) Batch K-SVD (c) DCDL (d) Online method

Fig. 1. Dictionaries trained on the Barbara image.

ber of patches thus extracted from an image of size 512 × 512 is
given by 2592 ≈ 6.4 × 104. The database of image patches is di-
vided into L = 50 segments. The size of the global dictionary to
be learnt is 64 × 128, whereas the local dictionaries learnt by the
DCDL algorithm are of size 64 × 96. The sparsity levels during
the divide and conquer steps are taken as s1 = 3 and s2 = 3, re-
spectively, to achieve an overall sparse representation of every patch
in the global dictionary with sparsity s = 9. Following dictionary
training, the image is formed by computing the average of overlap-
ping patches reconstructed with a sparsity level of s = 9 in the
trained dictionaries. The performance of the algorithms is assessed
in terms of the recovery peak signal-to-noise ratio (PSNR), defined

as PSNR = 20 log10

(
255
√
P

‖I−Î‖
F

)
dB, where I and Î denote the ac-

tual and the reconstructed images, respectively, and P is the number
of pixels in the image.

The recovery PSNR and the training time required by the algo-
rithms for three different images are shown in Table 2. We observe
that the reconstruction PSNR of the DCDL algorithm is on par with
the batch K-SVD technique, although the training time required is
remarkably smaller. To facilitate visual comparison, the dictionary
atoms trained on the Barbara image using the algorithms are shown
in Fig. 1, where the atoms are shown using blocks of size 8× 8. We
observe that the DCDL algorithm learns similar atoms as the batch
algorithm for representing the image patches, although in signifi-
cantly less (reduction by a factor of 7, approximately) time. Similar-
ity of the dictionaries trained using the batch K-SVD and the DCDL
algorithm is also reflected in the recovery PSNR values.

4. CONCLUSIONS

We have developed an algorithm for dictionary learning based on
the divide-and-conquer approach, that exploits the similarity of the
training examples to achieve reduction in training time. The global
dictionary is learned by using the local dictionaries trained on clus-
ters of similar examples. We have established that, for one level of
decomposition of the dataset, the MSE obtained using the DCDL
algorithm is bounded, as the number of training examples grow to
infinity. The asymptotic run-time of the sequential and the parallel
implementations of the DCDL algorithm is shown to be linear and
logarithmic, respectively, in the size of the training set. Experimen-
tally, we have demonstrated that the proposed DCDL algorithm re-
quires significantly lesser training time in comparison with the batch
learning technique, without incurring significant loss (approximately
0.5− 1 dB) in performance measured in terms of MSE.

4715

5. REFERENCES

[1] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries
for sparse representation modeling,” Proceedings of the IEEE,
vol. 98, no. 6, pp. 1045–1057, Jun. 2010.

[2] I. Tosić and P. Frossard, “Dictionary learning,” IEEE Signal
Process. Mag., vol. 28, no. 2, pp. 27–38, Mar. 2011.

[3] M. Elad and M. Aharon, “Image denoising via sparse and
redundant representations over learned dictionaries,” IEEE
Trans. Image Process., vol. 15, no. 12, pp. 3736–3745, Dec.
2006.

[4] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algo-
rithm for designing overcomplete dictionaries for sparse rep-
resentation,” IEEE Trans. Signal Process., vol. 54, no. 11, pp.
4311–4322, Nov. 2006.

[5] S. Arora, R. Ge, and A. Moitra, “New algorithms
for learning incoherent and overcomplete dictionaries,”
arXiv:1308.6273v5, May 2014.

[6] W. Dai, T. Xu, and W. Wang, “Simultaneous codeword op-
timization (SimCO) for dictionary update and learning,” IEEE
Trans. on Signal Process., vol. 60, no. 12, pp. 6340–6353, Dec.
2012.

[7] R. Rubinstein, T. Peleg, and M. Elad, “Analysis K-SVD: A
dictionary-learning algorithm for the analysis sparse model,”
IEEE Trans. Signal Process., vol. 61, no. 3, pp. 661–677, Feb.
2013.

[8] J. Dong, W. Wang, and W. Dai, “Analysis SimCO: A new al-
gorithm for analysis dictionary learning,” in Proc. IEEE Intl.
Conf. on Accoust., Speech, and Signal Process., pp. 7193–
7197, May 2014.

[9] S. Ravishankar and Y. Bresler, “Learning sparsifying trans-
forms,” IEEE Trans. on Signal Process., vol. 61, no. 5, pp.
1072–1086, Mar. 2013.

[10] S. Ravishankar, B. Wen, and Y. Bresler, “Online sparsifying
transform learning–Part I: Algorithms,” IEEE J. Selected Top-
ics in Signal Process., vol. 9, no. 4, pp. 625–636, Jun. 2015.

[11] E. M. Eksioglu and O. Bayir, “K-SVD meets transform learn-
ing: Transform K-SVD,” IEEE Signal Process. Lett., vol. 21,
no. 3, pp. 347–351, Mar. 2014.

[12] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-
resolution via sparse representation,” IEEE Trans. on Image
Process., vol. 19, no. 11, pp. 2861–2873, Nov. 2010.

[13] V. Abolghasemi, S. Ferdowsi, and S. Sanei, “Blind separa-
tion of image sources via adaptive dictionary learning,” IEEE
Trans. on Image Process., vol. 21, no. 6, pp. 2921–2930, Jun.
2012.

[14] S. P. Kasiviswanathan, H. Wang, A. Banerjee, and P. Melville,
“Online `1-dictionary learning with application to novel docu-
ment detection,” in Proc. Advances in Neural Info. Proc. Sys-
tems, vol. 3, pp. 2258–2266, 2012.

[15] S. P. Kasiviswanathan, “Fast online `1 dictionary learning al-
gorithm for novel document detection,” in Proc. IEEE Intl.
Conf. on Accoust., Speech, and Signal Process., pp. 8585–
8589, 2013.

[16] Q. Zhang and B. Li, “Discriminative K-SVD for dictionary
learning in face recognition,” in Proc. IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pp. 2691–2698,
2010.

[17] L. Li, S. Li, and Y. Fu, “Learning low-rank and discriminative
dictionary for image classification,” Elsevier Signal Process.,
vol. 32, no. 10, pp. 814–823, Oct. 2014.

[18] C. Bao, J. Cai, and H. Ji, “Fast sparsity-based orthogonal dic-
tionary learning for image restoration,” in Proc. IEEE Intl.
Conf. on Computer Vision, pp. 3384–3391, 2013.

[19] R. Rubinstein, M. Zibulevsky, and M. Elad, “Double sparsity:
Learning sparse dictionaries for sparse signal approximation,”
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1553–1564,
Mar. 2010.

[20] N. Ai, J. Peng, X. Zhu, and X. Feng, “SISR via trained double
sparsity dictionaries,” Multimedia Tools and Applications, vol.
74, issue 6, pp. 1997–2007, Mar. 2015.

[21] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary
learning for sparse coding,” in Proc. 26th Annual Intl. Conf. on
Machine Learning, pp. 689–696, 2009.

[22] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for
matrix factorization and sparse coding,” Journal of Machine
Learning Research, vol. 11, pp. 19–60, 2010.

[23] A. Cherian, S. Sra, and N. Papanikolopoulos, “Denoising
sparse noise via online dictionary learning,” in Proc. IEEE
Intl. Conf. on Accoust., Speech, and Signal Process., pp. 2060–
2063, May 2011.

[24] L. Mackey, A. Talwalkar, and M. I. Jordan, “Distributed ma-
trix completion and robust factorization,” Journal of Machine
Learning Research, vol. 16, pp. 913–960, 2015.

[25] P. Chainais and C. Richard, “Distributed dictionary learning
over a sensor network,” arXiv:1304.3568v1, Apr. 2013.

[26] J. Liang, M. Zhang, X. Zeng, and G. Yu, “Distributed dic-
tionary learning for sparse representation is sensor networks,”
IEEE Trans. on Image Process., vol. 23, no. 6, pp. 2528–2541,
Jun. 2014.

[27] T. Xu, W. Dai, and W. Wang, “Fast dictionary learning algo-
rithm via codeword clustering and hierarchical sparse coding,”
in Proc. 9th IMA Intl. Conf. on Math. in Signal Process., Dec.
2012.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, In-
troduction to Algorithms 3rd edition, The MIT Press, 2005.

[29] J. A. Tropp and A. C. Gilbert, “Signal recovery from random
measurements via orthogonal matching pursuit,” IEEE Trans.
on Info. Theory, vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

4716

