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ABSTRACT

Embedding the ℓ1 norm in gradient-based adaptive filtering is

a popular solution for sparse plant estimation. Even though

the foundations are well understood, the selection of the spar-

sity hyper-parameter still remains today matter of study. Sup-

ported on the modal analysis of the adaptive algorithm near

steady state, this paper shows that the optimal sparsity trade-

off depends on filter length, plant sparsity and signal-to-noise

ratio. In a practical implementation, these terms are obtained

with an unsupervised mechanism tracking the filter weights.

Simulation results prove the robustness and superiority of the

novel adaptive-tradeoff sparsity-aware method.

Index Terms— Sparsity, NLMS, ℓ1 norm, modal analy-

sis, Gaussian mixture models, expectation-maximization.

1. INTRODUCTION

A system is considered sparse when only a small fraction

of its coefficients are relevant, while the rest are negligible.

Few examples of sparse systems are multi-path wireless com-

munication channels [1–3] and electrical and acoustic echo

plants [4, 5]. In recent years, there has been a resurgent inter-

est in their identification [6–10], largely motivated by the least

absolute shrinkage and selection operator (LASSO) [11] and

compressive sensing [12]. As a result, the ℓ1-norm-constraint

least-mean-square (LMS) and NLMS (for normalized) algo-

rithms [6] have been proven to estimate a sparse system with

higher accuracy and in less time than the original NLMS,

while exhibiting robustness against additive noise [13–16].

Consider the estimation of a linear sparse plant h, such

that the output delivered by this system is corrupted by noise,

that is, the observed system output is in reality

dn = hTxn + vn (1)

where n is discrete time, vn is the additive white Gaussian

noise of power σ2
v , and xn = [xn, · · · , xn−N+1]

T denotes

the N -length vector with the white Gaussian input of power

σ2
x. A linear filter of coefficients wn = [w0,n, · · · , wN−1,n]

T

is used to model the plant, such that the difference between

the observed system output and the filter output

en = dn −wT
nxn (2)

is a measure of the estimation error. The minimization of

the square error (2) corresponds to the traditional maximum-

likelihood solution for estimating the linear plant.

However, in order to take advantage of the system inher-

ent sparsity, the classical cost function is extended by the ℓ1-

norm penalty of the filter weights

Jn(γ) =
1

2
(en)

2 + γ‖wn‖1 (3)

where ‖w‖p = (
∑N−1

i=0
|wi|p)1/p, and γ > 0 is the regular-

ization hyper-parameter to tradeoff between estimation error

and sparseness of the solution. The gradient-descent method

over the ℓ1-constraint cost function (3) results in the popular

zero-attracting (ZA) NLMS algorithm [6]

wn+1 = wn + µ
enxn

xT
nxn+ǫ

− µγ sgn
(

wn) (4)

where sgn(x) = x/|x|, ǫ & 0, and µ is the step size. The

second term in (4) attracts the weights to zero, which yields

faster convergence and lower misalignment when the majority

of channel taps are negligible. Because the cost (3) is convex,

the ZA-NLMS algorithm convergence is guaranteed under the

suitable selection of the step size µ and tradeoff γ [7, 9].

All the mentioned ZA-NLMS benefits can be unleashed

through the proper choice of the tradeoff γ. However, the

optimal (or even an adequate) value that matches a given sce-

nario still remains matter for study, as its selection is currently

carried out without a formal methodology [17] or by means

of cross-validation [18]. In [19] we found heuristically that

such an optimal value must be somewhat related to the filter

length N , plant sparsity, and noise power. As these terms are

in principle not available, choosing blindly an (inadequately

large) tradeoff value is likely to be counterproductive, and the

ZA-NLMS may not be a better option than the plain NLMS.

This paper reveals the optimal tradeoff through the modal

analysis of the ZA-NLMS near steady state, a study con-

ducted in Sec. 2; as proposed in Sec. 3, the formula of the op-

timal adaptive tradeoff is obtained by equalizing the main two

convergence modes; Sec. 3 contains also the practical imple-

mentation based on unsupervised tracking the filter weights;

the numerical validation is brought in Sec. 4; finally, the con-

clusions and suggestions to extend the proposed methodology

to other sparsity-aware NLMS algorithms close the paper.
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2. ZA-NLMS MODAL ANALYSIS

Let gn be the misalignment vector

gn = h−wn (5)

composed of independent zero-mean Gaussian variables of

variance σ2
i,n, that is, its ith component gi,n ∼ N (0, σ2

i,n).
Note that gi,n (its variance) depends on time n. For conve-

nience, we write the update (4) in a sequential fashion as

w̃n = wn − γn sgn
(

wn) (6a)

wn+1 = w̃n +
enxn

xT
nxn+ǫ

(6b)

where the step size has been set to a fast speed, µ = 1, and

the tradeoff γn is allowed to change over time.

2.1. Zero-Attracting Modes

The nature of the attractive force exerted by the ℓ1 norm over

the filter taps in the update (6a) is proportional to γn and op-

posite to the sign of each weight tap, that is, the resulting

misalignment for the ith tap upon the sparsity update is

εi,n = hi −
(

wi,n − γn sgn(wi,n)
)

= gi,n + γn sgn(hi − gi,n) . (7)

We obviously wish the power of εi,n to be smaller than that

of the initial misalignment gi,n, which indicates convergent

behaviour. However, as we will soon see, the ZA update in-

creases the misalignment (of significant taps). For the sake

of simplicity in the notation, we omit subindex n, but we will

get it back whenever strictly needed. In the subsequent anal-

ysis we will need the second moment of a (truncated) normal

distribution N (µ, σ2) within the interval [a, b].1

1. Significant plant taps, |hj | ≫ 0. Assuming |hj | > |gj|,
hence sgn(wj) = sgn(hj), we can write

εj = gj + γ sgn(hj) (9)

that is, the (9) is a normal variable centred on either γ
or −γ. Fig. 1 illustrates its probability density function

(PDF). As both cases yield the same second moment,

we can claim that the misalignment upon update (9)

corresponds to a N (γ, σ2
j ). Based on (8), such that a =

−∞, b = ∞, and µ = γ

E{ε2j} = σ2
j + γ2 (10)

which reveals a divergent behaviour, E{ε2j} > E{g2j},

that is, the misalignment in the significant taps grows.

1The second moment m2 is given by the closed formula

m2 = µ2 + σ2
− σ

(µ+ b)φ( b−µ

σ
)− (µ + a)φ(a−µ

σ
)

Φ( b−µ

σ
)− Φ(a−µ

σ
)

(8)

where φ(x) is the standard probability density function (PDF) and Φ(x) its

cumulative density function (CDF).

-γ 0 γ

-γ 0 γ

Fig. 1. PDF of misalignment upon sparsity update (7) for

negative- (solid) and postive-valued (dashed) filter taps in

case of actual significant (top) and zero plant taps (bottom).

2. Negligible plant taps, hk = 0, such that we can thus

simplify (7) as follows

εk = gk − γ sgn(gk). (11)

Fig. 1 illustrates also its PDF. For symmetry, we can

state that the effective misalignment (11) is equivalent

to a (truncated) normal variable N (γ, σ2
k) defined in

[−∞, γ]. Based on (8), and given that here a = −∞,

b = γ, and µ = γ, it is simple to deduce that

E{ε2k} = σ2
k + γ2 − 4σkγ/

√
2π (12)

is a convergent mode E{ε2j} < E{g2k}.2

Supported visually on Fig. 1, the ZA update reduces the mis-

alignment power in zero-valued taps, but increases it on the

significant ones. Note that we will be using subindexes j and

k to denote the significant and zero taps respectively.

2.2. NLMS Modes

The previous results (10) and (12) represent the first half of

the ZA-NLMS. The plain NLMS update (6b) has a different

effect than the sparsity update. It is worth recalling that the

plain NLMS acts on the weight misalignment according to the

well-known rule [20, 21]

σ2
n+1 =

(

1− 1/N
)

σ2
n + σ2

max/N (13)

where n is time and σ2
max refers to the excess steady-state

misalignment of the NLMS, σ2
max = σ2

v/σ
2
x. During conver-

gence, σ2
max ≪ σ2

n, the speed of convergence is exponential;

in steady state, equation (13) reflects the convergent and dis-

turbing forces of the NLMS update. Unlike the sparsity up-

date, which acts on each weight individually, the NLMS acts

globally on all weights from a common error source (2).

2For 0 < γ < 4σk/
√

2π.
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3. OPTIMAL ADAPTIVE TRADEOFF

3.1. Equalizing Global Modes Near Steady State

The global modes of the ZA-NLMS algorithm near steady

state are deduced in what follows. Needless to say that we

use the common assumption that the sparsity and the NLMS

updates are statistically uncorrelated.

1. Significant taps, |hj | ≫ 0. As the ZA update is diver-

gent (10) on significant taps, the NLMS update is still

somewhat found in convergence, hence the misalign-

ment rate can be considered to be

σ2
j,n+1 ≃ σ2

j,n(1− 1/N) + γ2. (14)

2. Negligible taps, hk = 0. Unlike the previous case, the

lower misalignment (12) on negligible taps makes them

to be in steady state, hence vulnerable to the additive

noise from the NLMS mechanism (13), resulting in

σ2
k,n+1 = σ2

k,n(1− 1/N) + γ2 − 4
√

2π
σk,nγ +

σ2
max

N
.

(15)

In this paper we follow a novel approach to optimize the

convergence of the ZA-NLMS. Rather than working with the

excess misalignment error, which results in equations very

difficult to manage [7], we use the global modes near steady

state (14) and (15). It is well known that the performance of

any adaptive system is conditioned by its slowest mode. Our

proposed methodology to obtain an optimal tradeoff γ is thus

based on equalizing the existing two modal types, that is, to

look for the value of γ that makes (14) and (15) equal, assum-

ing homogeneous misalignment σj = σk.3 This approach

yields the solution equation

σ2
k −

σ2
k

N
+ γ2 = σ2

k −
σ2
k

N
+ γ2 − 4√

2π
σkγ +

σ2
max

N
(16)

which is solved for

γ =

√
2πσ2

max

4Nσk
=

√
2πκσk

4N
. (17)

In the previous step, we posit the existence of κ > 1 such

that σ2
k = σ2

max/κ in steady state. In order to determine

the value of factor κ, we obtained numerically the minimum

excess steady-state misalignment from Monte-Carlo simula-

tions for a range of the system sparsity ρ. The result throws

an extremely accurate fitting4 with the rule κ = 1/
√
ρ, such

that the optimal tradeoff is readily given by

γ ,

√
2π σk

4
√
ρN

. (18)

3It is important to remark that we are not claiming the misalignment near

steady state on significant and negligible taps to be equal, but in the event

that they are the same, both modes are forced to converge at the same speed.
4Details on this numerical analysis are given in Sec. 4.

The numerical methodology to obtain factor κ was chosen

against the direct analysis of [7], as this last turns to be ex-

tremely challenging (work [7] does not tackle the optimal

tradeoff γ). Finally, note that the tradeoff (18) is built with

the misalignment of the zero taps σk . This unknown term

and the system sparsity ρ, also unknown, must be estimated

blindly during the execution of the ZA-NLMS algorithm.

3.2. Implementation

The optimal tradeoff parameter (18) depends on both the

zero-tap misalignment in standard deviation σk and the sys-

tem sparsity ρ. In order to unleash the features of the ℓ1-

constraint NLMS, these two parameters must be obtained

at any instant n. The signal plus noise model (5) implies

h ∼ ρG(h, 0, η2) + (1 − ρ)δ(h) and g ∼ G(g, 0, σ2
k), where

η the standard deviation of the significant taps, δ(x) is the

Dirac delta, and G(x, µ, θ) is the µ-centered θ-variance Gaus-

sian function. Hence, the filter coefficients in wn follow the

probabilistic model

wi,n ∼ ρG(w, 0, η2 + σ2
k) + (1− ρ)G(w, 0, σ2

k). (19)

The estimation of the parameters in (19) can be approached

with a Gaussian mixture model (GMM) trained by the expec-

tation maximization (EM) algorithm [22]. In the scenario of

the paper only two Gaussian units are required: the Gaussian

unit with the lowest variance corresponds to the zero-tap mis-

alignment σ2
k, while its probability equals 1− ρ.5

We bring the proposed adaptive-tradeoff ZA-NLMS algo-

rithm in what follows

{

σn, ρn, ηn
}

= EM-GMM
(

wn, σn−1, ρn−1, ηn−1

)

(20a)

γn =

√
2π σn

4
√
ρn + δ N

(20b)

wn+1 = wn + µ
enxn

xT
nxn+ε

− µ γn sgn
(

wn) (20c)

where δ & 0 is a small bias to prevent division by zero.

The EM-GMM step involves a number of iterations of the

expectation and maximization algorithm. The EM is known

to converge rapidly to the solution when sufficiently close to

it [23]. Hence, given that NLMS-type algorithms are slow,

one EM iteration per sample, or even less than that, turns out

to be sufficient. The suggested partial update is a beneficial

aspect for the computational complexity. Finally, an obliged

question regards the convergence properties of the proposed

algorithm (20). A thorough study thereto is beyond the length

of this paper, but worth undertaking. In the next section, we

present simulation results that support the excellent conver-

gence properties of the algorithm.

5Non-Gaussian plant tap distributions can be also approached as a GMM

driven by the EM algorithm, for instance by including additional Gaussian

units that may be non-zero centred. In any configuration, the fundamental

condition of the EM-GMM step is that the zero-mean Gaussian unit of lowest

variance always corresponds to the misalignment of the zero taps.
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4. SIMULATION RESULTS

In this section, the performance evaluation of the proposed

adaptive sparsity-tradeoff NLMS is conducted. The scenario

chosen corresponds to a noisy sparse plant whose sparsity and

SNR change abruptly. For a given sparsity, the location of

the significant taps are selected randomly and their magni-

tude is generated from a Gaussian distribution. The input sig-

nal and the noise are white. Three methods are selected in

the comparison, namely, the regular NLMS, the original ZA-

NLMS with constant tradeoff, and the proposed adaptive-γ
ZA-NLMS (20). In all methods µ = 1 and ǫ = 0.01. In the

second method, the constant tradeoff is selected with cross-

validation to perform best during the first phase. The perfor-

mance assessment is carried out with the mean square devia-

tion MSD = ‖h−wn‖22 over 100 Monte Carlo simulations.

Fig. 2 shows the results of this experiment. Note that the

simulation scenario consider different combinations of spar-

sity, SNR, and two different plant lengths N . It is worth re-

calling that the MSD performance of the NLMS is not af-

fected by the plant sparsity, and it is bounded by the cur-

rent noise floor σ2
max = σ2

v/σ
2
x in steady state [20]. As the

constant-γ ZA-NLMS is tailored to the first phase (of high

sparsity and noise), it shows the typical improvement of ℓ1-

constraint NLMS algorithms. However, with different scenar-

0 1 2 3 4 5
10-2

10-1

100

101

×1000

ρ 3 % 20% 10%

σ2
v 0.5 0.1 0.03 0.5

0 1 2 3 4 5
10-2

10-1

100

101

×1000

Fig. 2. Performance of NLMS (dotted), constant-γ (dashed)

and adaptive-γ ZA-NLMS (solid) for a filter length N = 100
(top) and N = 200 (bottom). Every 1000 samples n abrupt

change to either the sparsity and/or the noise power.

logγ 
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Fig. 3. ZA-NLMS empirical misalignment log σk in steady

state with respect to sparsity ρ and tradeoff γ.

ios (lower sparsity and/or noise) the performance deteriorates,

often below the NLMS. On the contrary, the adaptive-γ algo-

rithm delivers outstanding performance at any situation. The

tracking capabilities of the EM-GMM step and its impact on

the tradeoff γ to sudden scenario changes reveal the proposed

method as a good candidate in real scenarios.

The numerical analysis used to deduce (18) from (17) is

addressed at last. The ZA-NLMS with constant γ was ex-

ecuted with 1000 Monte Carlo runs to evaluate empirically

the steady-state misalignment in the zero taps for a plant with

sparsity ρ. The resulting isolevel map is shown in Fig. 3: the

dashed line corresponds to κ = 1/
√
ρ, which marks the locus

of minimum misalignment according to rule (17). The sce-

nario under analysis corresponds to a filter length N = 100
and SNR equal to 10 dB. In case of other values, as (18) ac-

counts for N and σ2
k, the results follow the same trend. It

is worth recalling that the weight deviation σ2
k is an outcome

of the EM-GMM mechanism and proportional to the noise

power level.

5. CONCLUSIONS

Modal analysis near steady state has allowed us to offer an

answer to the optimal sparsity tradeoff for ℓ1-norm-constraint

NLMS algorithms, unlike previous analytical works dealing

with the final steady-state excess misalignment. As the plant

sparsity and the noise level are part of the equation, in order

to be able to unleash performance and robustness, a sparsity-

aware NLMS algorithm must be consciously aware of both

terms at any time. In this paper, we use an unsupervised

learning methodology to obtain the relevant terms and build

the optimal tradeoff. Simulation results have emphatically

proven the validity of our approach. The extension of this

methodology to ℓ0-like and ℓp norms embedded in the NLMS

mechanism is in our current research agenda.
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