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ABSTRACT

We propose a new framework for manifold denoising using the Spec-
tral Graph Wavelet transform, which enables non-iterative denoising
directly in the graph frequency domain, an approach inspired by con-
ventional wavelet-based signal denoising methods. We theoretically
justify our approach, based on the fact that for smooth manifolds
the coordinate information tends to create energy in the low spec-
tral graph wavelet coefficients, while the noise affects all frequency
bands in a similar way. Experimental results show that our suggested
manifold frequency denoising (MFD) approach significantly outper-
forms the state of the art manifold denosing methods, and is robust
to a wide range of parameter selections, e.g., the choice of k nearest
neighbor connectivity of the graph.

Index Terms— Manifold Learning, Denoising, Graph Signal
Processing

1. INTRODUCTION

Manifold learning has been proposed to extend linear approaches
such as PCA to the more general case where data lies on a non-
linear manifold embedded in a low-dimensional space. When the
data lies strictly on the manifold, manifold learning techniques such
as Isomap [1], locally linear embedding (LLE) [2], Laplacian eigen-
maps (LE) [3], or local tangent space alignment (LTSA) [4], can
provide effective tools to analyze high dimensional data with com-
plex structure. However, in the presence of noise, i.e., when the
observed data does not lie exactly on the manifold, the performance
of these methods degrades significantly. Only a handful of methods
have been suggested to handle noisy manifolds, e.g., [5], [6], and
these tend to over-penalize either the local or the global structure of
the manifold.

In this paper, we address the manifold denoising problem
by proposing a new graph-frequency framework called Manifold
Frequency Denoising (MFD). Our approach uses Spectral Graph
Wavelets (SGW) [7], which, similar to wavelets for signals in regu-
lar domains, provide a trade-off between spectral and vertex domain
localization. This allows us to overcome the limitations of existing
manifold denoising methods by taking advantage of global smooth-
ness characteristics (energy concentrated in lower frequency SGW
bands) without over-smoothing at discontinuities (which correspond
to large magnitude coefficients in the high frequency SGW bands).
In our proposed framework we build a graph where each vertex cor-
responds to one of the noisy observations of the manifold, with edge
weights between two vertices a function of the distance between the
corresponding observations in the ambient space. Then, we apply
the SGW to coordinate graph-signals, one per dimension, where in a
coordinate graph signal each vertex is assigned the scalar coordinate
of the vertex in the corresponding dimension. Thus, our graph is
based on vector distances between observations, while denoising
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is applied to the observations (coordinates) in each dimension. In
this paper, we theoretically justify our approach by showing that for
smooth manifolds the coordinate signals also exhibit smoothness
(i.e., the maximum variation across neighboring nodes is bounded
by a term that decreases as the manifold smoothness increases).
Our experimental study demonstrates that graph signal processing
methods are effective for processing smooth manifolds, since in a
graph signal defined based on these manifolds, most of the energy
is concentrated in the low frequencies, making it easier to separate
noise from signal information. While there has been a significant
amount of recent interest in graph signal processing [8], to the best
of our knowledge MFD is the first attempt to use these tools for
manifold denoising. Our work is different from image denoising
based on graph signal processing [9] in that our smoothness prior
explicitly assumes that the original data lies on a smooth manifold.
Another crucial aspect in manifold denoising is the efficiency and
robustness of the process. Most of the current manifold denoising
algorithms consist of iterative, global or semi global operations,
which may also be sensitive to the parameter selection. In contrast,
our denoising approach provides a fast and non-iterative process,
with low computational complexity that scales linearly in the num-
ber of points for sparse data, is robust for a large range of parameter
selections, and in particular, selection of k, the number of nearest
neighbors used to construct the graph. In addition, our approach
does not require knowledge of the intrinsic dimensionality of the
manifold. Experimental results demonstrate that our framework sig-
nificantly outperforms the state of the art, making it possible to use
denoising as a pre-processing step before applying current manifold
learning approaches. The paper is organized as follows: in Section
2 we summarize the related work. In Section 3 we introduce the
notation and provide an overview of spectral graph wavelets. Sec-
tion 4 presents our theoretical justification, and Section describes
our proposed approach. The experimental results are provided in
Section 6, and in Section 7 we conclude our work and suggest future
work.

2. RELATED WORK

Current unsupervised state of the art manifold denoising methods
include manifold denoising (MD) [5] and LLD [6]. Also related
are statistical modeling approaches for manifold learning such as
Probabilistic non-linear PCA with Gaussian process latent variable
models (GP-LVM) [10] and its variants for manifold denoising [11].
The method most related to our work is MD, which develops an
algorithm that applies a diffusion process on the graph Laplacian,
using an iterative procedure that solves differential equations on the
graph. It can be shown that each iteration in the diffusion process in
MD is equivalent to the solution of the regularization problem on the
graph [5] (the regularization problem on the graph solved by MD is
also known as Tikhonov regularization).

ICASSP 2016



The main limitation of MD is over-smoothing of the data and the
sensitivity to the choice of k nearest neighbor construction graph (as
mentioned in [5]) especially at high noise levels. In contrast, our sug-
gested framework for denoising can be viewed as a multi-resolution
approach which exploit Spectral Wavelets to find a trade-off between
localization in the frequency and vertex domains. Our work is in-
spired by a classical approach for denoising [12], and its many ex-
tensions to image denoising [13]. However, while denoising signals
that lie on regular meshes using wavelets is a well studied problem,
the more general case of irregular domains is much less understood.
Some recent work [9] has explored graph-based techniques for im-
age denoising, while here we focus on the manifold denoising case.
Spectral Graph Wavelets (SGW) [7] (see Section 3) provide us with
an efficient tool to select spectral- and vertex-domain localization
and are key component of our method.

3. PRELIMINARIES

Consider a set of points x = {x;},i =1,..N ,x; € RP which are
sampled from an unknown manifold M. An undirected, weighted
graph G = (V, E) , constructed over x, where V' corresponds to the
nodes and E to the set of edges on the graph. The adjacency matrix
W = (w;;) consists of the weights w; ; between node 7 and node
j. In this work, the weights are chosen using the Gaussian kernel
function

W — {eXp(HXi = xl13)/208  if [[xi — x;[3 < &
ij = 0

otherwise M
where (|| ||) denotes the L2 distance between the points x;,x;. In
order to characterize the global smoothness of a function f € RN,
we define its Graph Laplacian quadratic form with respect to the
graph as:

17 £I]* = D wis[f (i) = f()]* = £7LE, )
o)

where ¢ ~ 7, if 7 and j are connected on the graph by an edge, and L
denotes the combinatorial graph Laplacian, definedas L = D — W,
with D the diagonal degree matrix with entries d;; = d(¢). The
degree d(i) of vertex ¢ is defined as the sum of weights of edges
that are connected to ¢. The eigenvalues and eigenvectors of L are
A, ..., Ay and @1, ..., ¢, respectively. The Graph Fourier Trans-
form (GFT) f is defined as the expansion of f in terms of the eigen-
vectors ¢ of the Graph Laplacian f(\;) = >, f(@)di(@). Spectral
graph Wavelets (SGWSs)[7] define a scaling operator in the Graph
Fourier domain, based on the eigenvectors of the graph Laplacian
L, which can be thought as an analog of the Fourier transform for
functions on weighted graphs. SGWs are constructed using a ker-
nel function operator T, = g(L) which acts on a graph signal f by
modulating each graph Fourier mode:

— —~

Ty f(1) = g(A) F (D). ©)

Scaling is defined in the spectral domain by the operator 7, =
g(sL), and the wavelets are calculated by applying T to a single
vertex operator: ¢y = T . Given a function f , the wavelet coeffi-

cients take the form ¥ (s, n) = (T, f(n)) = Z;\Ll g(s/\l)f(l)cm(n).

SGWs can be computed with a fast algorithm based on approximat-
ing the scaled generating kernels by low order polynomials. The
wavelet coefficients at each scale can then be computed as a poly-
nomial of L applied to the input data. When the graph is sparse,
which is typically the case under the manifold learning model, the

computational complexity scales linearly with the number of points,
leading to a computational complexity of O(N).

4. THEORETICAL JUSTIFICATION

We first introduce some notation and recall the definition of the con-
dition number 1/7 [14] which provides an efficient measure to cap-
ture both the local and global geometric properties of a manifold,
and the geodesic covering regularity on the manifold [15].

Definition 1 The condition number of a manifold M is the largest

number p such that each point in M & p has a unique projection

onto M, where M & p = UMTILM N Bp(x,p), TEM is the
x€

normal space of a point x € M, and Bp(x, p) is an open ball in
RP centered at x with radius p.

Definition 2 Given T' > 0, the covering number G(T') of a compact
manifold M is defined as the smallest number G(T') = |A|, where
|A| = CN denotes the number of points of the set A on M, such
that for all x € M: Z}’lelﬁ dmv(x,a) <T.

In the following lemma we establish a connection between
the smoothness of the manifold and the smoothness of the co-
ordinate signal f.(n). We define the coordinate graph signals
fr, m = 1,...,D, one per dimension of the ambient space, so
that for vertex ¢, corresponding to data point x;, we have that:
fr(i) = x,(4), i.e., the coordinate of x; along the r-th dimension.
This lemma motivates our choice of denoising each of the coor-
dinate signals in the graph domain. By using a sufficiently high
sampling rate that depends on the smoothness properties of the man-
ifold and its condition number 1/7, we obtain that the points that
are connected on the graph belong to the local neighborhood on the
manifold, and the corresponding coordinate signals vary smoothly.

Lemma 1 Consider a manifold M, with a condition number 1/,
which is sampled at a resolution of a geodesic covering number
G(T) = CN. Let dpr (Xm, Xn) denote the geodesic distance on the
manifold M. Then, for all m,n € G such that dy (Xm,Xn) < 6,
we have that:

o) = fulm) < == 2\J1- &, @
where C'is a constant, C > max {%, 27—2 }
Proof First note that for each r we have
[fr(n) = fr(m)] < {Ixm = Xal| < dar(Xm; xn) ®)

By Proposition 6.3 in [14], we have that

dar (K, Xn) <~ — L /T 2m —xll7 ()
T T
for X, X, which obey |[xy —xn|| < 7/2. Taking § = 52, where

C obeys C' > max { 3=, 25} we have that since |[xp, — Xn|| <

4, then dM(xm,Xn) < % — %
obtained. O

Lemma 1 shows that for a manifold which is sampled with a suf-
ficient density, the manifold coordinate signals f, change smoothly,
i.e., their local variation is bounded. Note that the bound is such

that A(2,T) = 1/7 — 1/74/1 =L < 1 and decreases as 1/7

\/1— % and thus the inequality is
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decreases. In the next lemma we bound the total variation of coordi-
nate signals with respect to the graph as a function the smoothness
properties of the manifold (the condition number and the geodesic
cover regularity.) This lemma shows that smoother manifolds will
lead to coordinate signals with lower variation and thus lower graph
frequencies.

Lemma 2 Given a manifold M with a condition number 1/, sam-
pled at a resolution of a geodesic covering number G(T'), with
the conditions of Lemma 1 satisfied. Then the following inequality

holds:

1 A
17 &I < AT 5 (M)

IS

where A(£,T) =1/7—1/7y/1 = L, and Cy, = F-2is the square
of the mean of the graph signal f,.

Proof Using the definition of the graph Laplacian we have
17 EI* = £ Lfr = Y Jwis[fr(0) — £(5)]°
invg
next using normalization we obtain

i, Wi [fr (1) = fr (7)) < Dinj wij(frgi) - fr(5)? ®
rals Nf.’

where in the second inequality we used the Cauchy-Schwartz in-
equality. By applying Lemma 1 with 7', C' that obey its conditions,
we can bound the coordinate signal difference terms in (8) for all
vertices that are 1-hop neighborhoods on the graph:

ZiNj wig[fr(i) — fr(J)]2 < A(l/7,T) Zimj Wiy
Nf? - NF>

where we used A(1/7,T) = 1/7 — 1/74/1 — L. Next summing
over all vertices we get > d; < > dmas , Where dmaz is the max-
imum degree and since dmaee < An [16], the Lemma is obtained.
]

Essentially, the lemma states that if we had two manifolds
with samples leading to the same Laplacian L, the graph with the
smoothest characteristics (1/7,T) would lead to coordinate signals
with less variation || ¥/ f,||? and thus more energy concentrated in
the lower frequencies. This will be reflected in the SGW domain as
well. Furthermore, for a given Laplacian L, a noise signal would
have a relatively flat energy distribution across bands in the SGW
domain. Thus, if we think of the observed points x as the original
manifold points to which noise has been added, Lemma 1 provides
some justification for our approach based on setting to zero the
higher frequencies of the SGW representation of coordinate signals.

5. PROPOSED APPROACH

We now describe our approach for manifold denoising. We assume
that the noiseless points lie on a smooth or piecewise smooth man-
ifold M € RP. Denoising is performed independently for each
fr(). In the noisy case, we assume that we are given a set of noisy
points f,(n) = fr(n) + €.(n), contaminated with Gaussian noise
er(n) ~ N(0,0?) with zero mean and variance 0. We assume the
noise to be i.i.d. at each position and for each dimension r. Follow-
ing this noise model, the goal is to provide an estimate fr (2) of the

original coordinates f. (i) given f,.(i) for each r and for all i. The re-
constructed manifold points can be found by constructing X;, which
is based on fr (7). In what follows, we will describe the process-
ing done for each of these signals and unless required for clarity we
drop the subscript 7 and use f to denote the graph signal. Our pro-
posed algorithm is motivated by the following properties of smooth
manifold:

(1) The energy of the manifold coordinate signals is concentrated in
the low frequency spectral wavelets.

(ii) The noise power is spread out equally across all wavelets bands.

Property (i) is illustrated in Figure 1. As can be seen (Figure
1(b)) most of the energy is concentrated in the GFT coefficients that
correspond to the smallest eigenvalues, and similarly (Figure 1(c))
the energy in each of the wavelet frequency bands for a 6 scale spec-
tral wavelet decomposition can be seen to be concentrated in the low
frequency wavelet bands. It is also important to note the difference
between our denosing strategy and shrinkage based methods com-
monly used in classical wavelet denosing algorithms. In the case of
wavelet image denoising, the signals lie on regular grids that are in-
dependent of the signal, while in our case, the graph and the noise
free signal are closely related by our graph construction. In wavelet
denoising for regular signals we mainly deal with piecewise smooth
signals, which lead to a predominantly low frequency signal with lo-
calized high frequency coefficients that correspond to discontinuities
in the piecewise smooth signal. In contrast, in our graph construction
both the domain and the observations depend on the smoothness of
the manifold. This has significant implications. For example, if the
sampling rate along the manifold varies with the degree of smooth-
ness, we may expect locally smooth behavior of coordinate signals
even in areas where the geometry is not as smooth. Thus we do
not see SGW domain characteristics similar to what is observed in
wavelet domain representation of piecewise smooth regular domain
signals (isolated high frequency coefficients).

Based on these properties, denoising is performed directly in the
spectral graph domain, by retaining all wavelet coefficients that cor-
respond to the low frequency wavelets bands s < s’, and discarding
all wavelet coefficients in high frequency bands above s > s’.

(a) (b) (c)

Fig. 1. Plot of the energy of a Swiss roll with a hole (a) in the graph
Fourier transform (b) and in the spectral wavelet domain (c)

We summarize the proposed denoising algorithm for smooth
manifolds as follows:
1. Construct an undirected affinity graph W, using Gaussian
weights as in (1), and construct the Laplacian L from W. For
each dimension, assign the corresponding coordinates values of
each point to its corresponding vertex on the graph, and apply Steps
2, 3 and 4 to each of the dimensions independently.
2. Transform the noisy coordinate signal using SGW defined on L.
3. Retain all scaling coefficients and all wavelet coefficients bellow
a low pass frequency s < &', for which the total accumulated energy
is above threshold Epresn. Discard all wavelet coefficients above
scales > s'.
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4. Take the inverse spectral wavelet transform of the processed
wavelet coefficients from Step 3.

This approach has several attractive features, in particular, it is
(1) non-iterative, i.e., denoising is performed directly in the spec-
tral graph wavelet domain in one step, (2) robust against a wide
range of k values chosen for nearest neighbor assignment on the
graph, (3) computationally efficient, as the computational complex-
ity is O(N D).

6. EXPERIMENTAL RESULTS

() Noisy fish bowel (b) MD(k=20) (c) LLD(k=20) ;d) MFD(k=20)

(e) Noisy helix - : :
isy heli ) M:(k 40) (g) LLD(k=40) (h) MFD(k=40)

(i) MD(k=20)

(i)Noisy Sinus embedded in D=200

() LLD(k=20)

(1) MFD(k=20)

Fig. 2. Experimental results on a fish bowl, helix, and a sinus em-
bedded in dimension D=200. Ground truth is shown in blue color,
denoised in red. In each row, from left to right: noisy points, results
with MD, LLD, and MFD.
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Fig. 3. RMSE reconstruction error of the noisy manifolds using dif-
ferent selection of k nearest neighbor

We present experimental results with a variety of manifolds, in-
cluding ones with complex geometric structure such as fish bowl a
Swiss roll with a hole and a sinus function that was embedded in high
dimensional space of D = 200. All manifolds were sampled using
a uniform distribution with N = 1000 samples, which were con-
taminated with isotropic Gaussian noise in all dimensions. In the re-
sults shown, the sinus and fish-bowl were contaminated with noise of
variance of 0.2, and the circle, helix and Swiss roll with a hole with

| Data/Method | MD | LLD [ MFD |
[ CMU MoCap [ 1184 [ 735 [ 342 |
Frey face datasets 109.1 62.2 51.2

Table 1. RMSE average error results on MoCap and Frey datasets

variance 0.1. We used s = 5 wavelet decomposition levels, and re-
tained all wavelet coefficients which correspond to the lowest s < s’
scales above total accumulated energy threshold Epresh(var=0.1)
for noise variance equal to 0.1, and the lowest scales s < s’ above
total accumulated energy threshold Eipresh(var=0.2) With variance
0.2. The order of the Chebyshev polynomial approximation used
was k /2 for a k nearest neighbor graph in order to process the man-
ifold locally, via the approximation of the spectral wavelet coeffi-
cients. For comparison and evaluation with the state of the art in
manifold denoising, we compared our approach to MD[5] and LLD
[6]. The denoising results are shown in Figure 2. In all of these
cases, our method significantly outperforms the state of the art, and
produced a smooth reconstruction that is faithful to the true topo-
logical structure of the manifold. We also performed quantitative
analysis and compared the reconstruction error in terms of the root
mean square error (RMSE) of the denoised manifolds in compari-
son to the ground truth. The comparison results in Figure 3 shows
that our method is robust against a wide range of k nearest neighbor
graph selections, outperforming the competing methods by orders of
magnitudes for a wide range of k nearest neighbors selection. For
experiments with real data-sets, we tested our method on the CMU
Motion capture data-set and the Frey faces data-set [17], [2]. For
the Motion capture we test 10 sequences of subject 86, where each
sequence has a dimension D=62. The Frey face dataset consists of
low resolution faces with dimension D=560. For the Motion capture
data-set, in order to perform evaluation in a strictly unsupervised
framework, we remove the temporal information from the data. The
data is contaminated using Gaussian noise of variance 0.1 in all di-
mensions. The experimental results evaluation in terms of the aver-
age RMSE error are shown in Table 1, where MFD shows significant
improvement over LLD and MD.

7. CONCLUSIONS AND FUTURE WORK

We have presented a new framework for manifold denoising which
simultaneously operates in the vertex and frequency graph domains
by using spectral graph wavelets. The advantage of such an approach
is that it allows us to denoise the manifold locally, while taking into
account the fine-grain regularity properties of the manifold. Our ap-
proach is based on the property that the energy of a smooth manifold
is concentrated in the low frequencies of the graph, while the noise
effects all frequency bands in a similar way.

The suggested MFD framework also possesses additional ap-
pealing properties: it is non-iterative, has low computational com-
plexity, and it does not require the knowledge of the intrinsic di-
mensionality of the manifold. Experimental results on manifolds
with complex geometric structure show that our approach signifi-
cantly outperforms the state of the art, and is robust to a wide range
of parameter selection of k nearest neighbors on the graph. Future
work includes addressing the case of non-Gaussian noise, and fur-
ther investigation of how the underlying graph construction affects
the spectral transform properties.
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