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ABSTRACT
The recent low rank + sparse matrix decomposition [1, 2]

enables us to decompose a matrix into sparse and globally
low rank components. In this paper, we present a natural gen-
eralization and consider the decomposition of matrices into
low rank components of multiple scales. The proposed multi-
scale low rank decomposition is well motivated in practice,
since natural data often exhibit multi-scale structure instead
of globally or sparsely. Concretely, we propose a multi-scale
low rank modeling to represent a data matrix as a sum of
block-wise low rank matrices with increasing scales of block
sizes. We then consider the inverse problem of decompos-
ing the data matrix into its multi-scale low rank components,
and approach the problem via a convex formulation. Theoret-
ically, we show that under a deterministic incoherence condi-
tion, the convex program recovers the multi-scale low rank
components exactly. Empirically, we show that the multi-
scale low rank decomposition provides a more intuitive de-
composition than existing low rank methods, and demonstrate
its effectiveness in four applications, including illumination
normalization for face images, motion separation for surveil-
lance videos, multi-scale modeling of the dynamic contrast
enhanced magnetic resonance imaging and collaborative fil-
tering with age information.

Index Terms— Multi-scale Modeling, Low Rank Matrix,
Convex Relaxation, Structured Matrix, Signal Decomposition

1. INTRODUCTION

Signals and systems often exhibit different structures at
different scales. Such multi-scale structure has inspired
many multi-scale signal transforms, such as wavelets [3] and
curvelets [4], that can represent natural signals compactly. By
now, multi-scale modeling is associated with many success
stories in sparse signal processing applications, including sig-
nal compression, denoising, compressed sensing [5, 6], and
signal decomposition [7].

On the other hand, low rank methods are commonly used
instead to exploit the data correlation and obtain a compact
representation at the same time. Recent convex relaxation
techniques [8] have further enabled low rank model to be
easily adaptable to practical applications, including matrix
completion [9], and system identification [10], making it ever
more attractive.

In this paper, we present a multi-scale low rank matrix de-
composition method that incorporates both multi-scale struc-
ture and low rank method. We argue that in practice data
matrices are often correlated at different scales, so low rank
methods should also exploit the multi-scale structure to ob-
tain a more compact signal representation. Concretely, we
propose a multi-scale modeling of matrices as a sum of block-
wise low rank matrices with increasing scales of block sizes
(more detail in Section 2), and consider the inverse problem
of decomposing the matrix into its multi-scale components.
Figure 1 illustrates the power of the proposed multi-scale low
rank decomposition on a synthetic example.
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Fig. 1: An example of the proposed multi-scale low rank decompo-
sition compared with other low rank methods. Each blob in the input
matrix is a rank-1 outer product of hanning windows. Low rank +
sparse fails to capture the blob locality fully. Only the multi-scale
low rank decomposition exactly separates the blobs to their corre-
sponding scales, thus representing them as compactly as possible.

Leveraging recent convex relaxation techniques, we pro-
pose a convex formulation to perform the multi-scale low rank
matrix decomposition. We provide a theoretical analysis in
Section 4 that extends the rank-sparsity incoherence results in
Chandrasekaran et al. [1] and show that the proposed convex
program can decompose the data matrix into its multi-scale
components exactly under a deterministic incoherence condi-
tion. In addition, in Section 6, we applied the multi-scale low
rank decomposition on real-world datasets and show that the
proposed multi-scale low rank decomposition provides intu-
itive multi-scale decomposition and compact signal represen-
tation for a wide range of applications.
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Our proposed multi-scale low rank matrix decomposition
draws many inspirations from recent developments in rank
minimization [8–14]. In particular, the multi-scale low rank
matrix decomposition is a generalization of the low rank +
sparse decomposition proposed by Chandrasekaran et al. [1]
and Candès et al. [2]. Our multi-scale low rank convex for-
mulation also fits into the convex demixing framework pro-
posed by McCoy et al. [15, 16] and can be viewed as a con-
crete and practical example of the convex demixing frame-
work. Bakshi et al. [17] proposed a multi-scale principal com-
ponent analysis by applying principal component analysis on
wavelet transformed signals, but such method implicitly con-
strains the signal to lie on a predefined wavelet subspace. Var-
ious multi-resolution matrix factorization techniques [18, 19]
were proposed to greedily peel off components of each scale
by recursively applying matrix factorization, but these factor-
ization methods are not straightforward to incorporate with
other reconstruction problems as models.

2. MULTI-SCALE LOW RANK MATRIX MODELING

Low rank matrix modeling are used frequently in many ap-
plications including biomedical imaging [20], face recogni-
tion [21] and collaborative filtering [22]. While low rank
modeling captures the notion of data similarity, it ignores
any locality information that may be present in the data ma-
trix. Since natural data often exhibits multi-scale structure, a
multi-scale low rank modeling is intuitively a more appropri-
ate modeling for many signal processing applications.
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Fig. 2: Illustration of a multi-scale matrix partition and its associated
multi-scale low rank modeling. Our multi-scale modeling naturally
extends to sparse matrices as 1× 1 low rank matrices.

To concretely formulate the multi-scale low rank model,
we first assume that we can partition the matrix of interest
Y into different scales. Specifically, we assume that we are
given a multi-scale partition {Pi}Li=1 of the indices of anM×
N matrix, where each block in Pi is an order magnitude larger
than the blocks in the previous scale Pi−1. To easily trans-
form between the data matrix and the block matrices, we de-
fine a block reshape operator Rb(X) to extract a block b from
the matrix X and reshapes it into an mi × ni matrix. Its ad-
joint operator R>b takes the block matrix and embeds it to its

original position in a full-size zero matrix.
Given an M × N input matrix Y and its corresponding

multi-scale partition and block reshape operators, we propose
the following multi-scale low rank modeling:

Y =

L∑
i=1

Xi, Xi =
∑
b∈Pi

R>b (UbSbV
>
b ) (1)

where Ub, Sb, and Vb are matrices with sizes mi× rb, rb× rb
and ni×rb respectively and form the rank-rb reduced singular
value decomposition (SVD) of Rb(Xi). Figure 2 illustrates
one example of the modeling with its associated partition.

3. PROBLEM FORMULATION

Given a data matrix Y that fits the multi-scale low rank model,
our goal is to recover {Xi}Li=1 from Y . While solving for the
decomposition in general seems hopeless, recent development
in convex relaxations suggests that rank and sparsity mini-
mization problems can often be relaxed to a convex program
via nuclear norm [8, 11] and l1-norm minimization [5, 6].
Hence, there is hope that, along the same line, we can perform
the multi-scale low rank decomposition exactly via a convex
formulation.

Concretely, let us define ‖ · ‖nuc to be the nuclear norm,
and ‖ · ‖msv be the maximum singular value norm. We define
the block-wise nuclear norm for the ith scale as, ‖ · ‖(i) =∑

b∈Pi
‖Rb(·)‖nuc and its associated dual norm as, ‖ · ‖∗(i) =

maxb∈Pi
‖Rb(·)‖msv. Then, we consider the following con-

vex relaxation for the multi-scale low rank decomposition:

minimize
X1,...,XL

L∑
i=1

λi‖Xi‖(i)

subject to Y =

L∑
i=1

Xi

(2)

where {λi}Li=1 are the regularization parameters and their se-
lection will be described in detail in section 5. The convex
formulation can be solved by many convex algorithms effi-
ciently. In particular, first-order update steps can be obtained
using ADMM [23], and block-wise SVD’s. For more detail
about the algorithm, please see our extended arXiv paper [24].

We note that the proposed multi-scale low rank convex
formulation is a natural generalization of the low rank +
sparse convex formulation [1, 2]. In particular, with the two
sided matrix partition (Fig. 2), the nuclear norm applied to
the 1 × 1 blocks becomes the element-wise l1-norm and
the norm for the largest scale is the nuclear norm. In addi-
tion, in our extended paper [24] and briefly described in the
next section, we show that the core theoretical guarantees in
Chandrasekaren et al. [1] for low rank + sparse can be gener-
alized to the multi-scale setting, thereby providing theoretical
justification for the proposed convex formualtion.
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4. THEORY

In this section, we provide a brief summary of the theoreti-
cal aspect behind the proposed convex formulation. At a high
level, we show that as long as we can choose the regulariza-
tion parameters {λi}Li=1 to “balance” the coherence between
the matrix components {Xi}Li=1, then the proposed convex
formulation (2) recovers {Xi}Li=1 from Y exactly. For more
detail, please refer to our extended arXiv paper [24].

Following Chandrasekaren et al. [1], we consider a deter-
ministic measure of incoherence through the block-wise col-
umn and row spaces of {Xi}Li=1. Formally, let us first define
the block-wise column and row spaces of Xi as:

Ti = {
∑
b∈Pi

R>b (UbX
>
b + YbV

>
b ) : Xb ∈ Cni×ri , Yb ∈ Cmi×ri}

(3)
Then, intuitively, we can say the matrix component Xi is in-
coherent with the other scales if its block-wise column and
row space Ti is not “spiky” with respect to the other scale
norms. Formally, we can capture this by defining the coher-
ence parameter for the jth scale signal component Xj with
respect to the ith scale to be the following:

µij = max
N∈Tj , ‖N‖∗(j)≤1

‖N‖∗(i) (4)

With the above incoherence definition, the following theorem
states our main theoretical result:

Theorem 4.1. If we can choose regularization parameters
{λi}Li=1 such that,∑

j 6=i

µij
λj
λi

<
1

2
, for i = 1, . . . , L (5)

then the proposed convex problem (2) recovers {Xi}Li=1 from
Y as the unique optimizer.

In particular when the number of scales L = 2, the con-
dition on {µ12, µ21} reduces to a similar form as the rank-
sparsity incoherence result in Chandrasekaren et al. [1]. For
further detail, please refer to our extended arXiv paper [24].

5. REGULARIZATION PARAMETERS

While theoretically we can establish a criterion on selecting
the regularization parameters (see Section 4), such parame-
ters are not straightforward to calculate in practice. In this
section, we provide guidance on selecting the regularization
parameters {λi}Li=1.

To select the regularization parameters {λi}Li=1, we fol-
low the suggestions from Wright et al. [25] and Fogel et
al. [26], and set each regularization parameter λi to be the
Gaussian complexity of each norm ‖ · ‖(i), which can be
found as [27]:

λi ∼
√
mi +

√
ni +

√
log(MN/max{mi, ni}) (6)

This regularization parameter selection is consistent with the
ones recommended for low rank + sparse decomposition by
Candès et al. [2]. In practice, we found that the suggested reg-
ularization parameter selection allows exact multi-scale de-
composition when the signal model is matched (for example
Figure 1) and provides visually intuitive decomposition for
real-world datasets.

6. APPLICATIONS

To test for practical performance, we applied the multi-
scale low rank decomposition on four different real-world
applications that often use low rank methods. Regulariza-
tion parameters λi were chosen exactly as

√
mi +

√
ni +√

log(MN/max{mi, ni}) for multi-scale low rank and
max(mi, ni) for low rank + sparse decomposition. Partial
cycle spinning was used for multi-scale low rank decompo-
sition to reduce blocking artifacts. For more detail about
the experiments, please refer to our extended version on
arXiv [24]. In the spirit of reproducible research, we provide
a software package (in C and partially in MATLAB) to repro-
duce most of the results described in this paper: https://
github.com/frankong/multi_scale_low_rank

6.1. Multi-scale Illumination Normalization for Face
Recognition Pre-processing
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Fig. 3: Multi-scale low rank versus low rank + sparse on faces with
uneven illumination.

Low rank + sparse decomposition [2] was recently pro-
posed to capture and remove uneven illumination as sparse
errors, yet most shadows are not sparse and contain structure.
Hence, we propose using multi-scale low rank decomposition
to capture the local spatial correlation of illumination changes
and recover face images as the globally low rank component.

Figure 3 shows one of the comparison results on the
Yale B face database [28]. Multi-scale low rank decompo-
sition recovered almost shadow-free faces. In particular, the
sparkles in the eyes were represented in the 1 × 1 block size
and the larger illumination changes were represented in big-
ger blocks, thus capturing most of the uneven illumination
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changes. In contrast, low rank + sparse decomposition could
only recover from small illumination changes.

6.2. Multi-scale Motion Separation for Surveillance Videos
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Fig. 4: Multi-scale low rank versus low rank + sparse decomposition
on a surveillance video.

Low rank + sparse decomposition [2] was proposed to ex-
tract foreground objects as sparse components from the low
rank surveillance video background, yet sparsity alone often
cannot capture motion compactly, as pointed out by the red ar-
row in Figure 4. Since video dynamics are correlated at multi-
ple scales in space and time, we propose using the multi-scale
low rank modeling to capture the multi-scale motion.

Figure 4 shows one of the results on a surveillance video
from Li et al. [29]. Multi-scale low rank decomposition re-
covered a mostly artifact free background video in the glob-
ally low rank component whereas low rank + sparse decom-
position exhibited ghosting artifact in certain segments of the
video. For the multi-scale low rank decomposition, body mo-
tion was mostly captured in the 16 × 16 × 16 scale while
fine-scale motion was captured in 4× 4× 4 scale.

6.3. Multi-scale Low Rank Modeling for Dynamic Con-
trast Enhanced Magnetic Resonance Imaging (DCE-
MRI)
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Fig. 5: Multi-scale low rank versus low rank + sparse decomposition
on a dynamic contrast enhanced magnetic resonance image series.

Low rank + sparse modeling [30] was proposed to model
the static background and dynamics in DCE-MRI as low rank
and sparse matrices respectively, yet dynamics in DCE-MRI
are almost never sparse. Hence, we propose using a multi-
scale low rank modeling to capture contrast dynamics over
multiple scales.

Figure 5 shows one of the results on a fully sampled dy-
namic contrast enhanced image data, acquired in a pediatric
patient. In the multi-scale low rank decomposition result,
small contrast dynamics in vessels were captured in 4 × 4
blocks while contrast dynamics in the liver were captured in
16 × 16 blocks. Hence, different types of contrast dynamics
were captured compactly in their suitable scales. In contrast,
the low rank + sparse modeling could only provide a coarse
separation of dynamics and static tissue, which resulted in
neither truly sparse nor truly low rank components.

6.4. Multi-scale Age Grouping for Collaborative Filtering
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Fig. 6: Multi-scale low rank reconstructed matrix of the 100K
MovieLens dataset.

Low rank matrix completion is commonly used in col-
laborative filtering [9, 11, 14], yet does not exploit the fact
that users with similar demographic backgrounds have simi-
lar taste. In particular, users of similar age should have similar
taste. Hence, we incorporated the proposed multi-scale low
rank modeling with matrix completion by partitioning users
according to their age and compared it with low rank matrix
completion on the 100K MovieLens dataset.

Figure 6 shows a multi-scale low rank reconstructed user
rating matrix. Using multiple scales of block-wise low rank
matrices, correlations in different age groups were captured.
For example, one of the scales shown in Figure 6 captures the
tendency that younger users rated Star Wars higher whereas
the more senior users rated Gone with the Wind higher. The
multi-scale low rank reconstructed matrix achieved a root
mean-squared-error of 0.9385 compared to 0.9552 for the
low rank reconstructed matrix.
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