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ABSTRACT

The paper quantifies and compares the exact asymptotic per-
formance of multiple measurement vector (MMV) and dis-
tributed sensing (DS) models. Both models assume multiple
measurement instances yk = Akxk + wk, k = 1, 2, ...,K.
The difference is that MMV involves identical measurement
matrices whereas DS allows different matrices for different
measurement instances. It has been recognized that DS works
better than MMV empirically. However, the quantification of
the performance difference is not available in the literature.
Our contribution is to quantify the asymptotic performance of
MMV and DS in the asymptotic regime that the dimensions
of the measurement matrices approach infinity proportionally
but the number of measurement instances K remains a con-
stant. The case study and numerical results justify the ac-
curacy of the performance quantification. The analysis tech-
nique is based on the state evolution for approximate message
passing.

Index Terms— Distributed sensing, message passing,
multiple measurement vector (MMV), sparse recovery.

1. INTRODUCTION

Compressed sensing (CS) has achieved tremendous success
in the recent decade due to its wide applications in sensing
and learning. Its core is to solve a linear inverse problem
where the solution is supposed to be sparse, i.e., the num-
ber of nonzeros in the solution is much smaller than the sig-
nal dimension. In the standard setting only one measurement
instance is involved, that is, one linear system is concerned.
Nevertheless in many application scenarios, multiple linear
systems are involved and the solutions of these linear systems
are supposed to be somewhat dependent [1, 2]. Refer to this
setting as multiple measurement instances. The applications
can be found in distributed sensor networks [3], direction of
arrival (DOA) estimation [4] and parallel magnetic resonance
imaging (pMRI) [5], to name a few.

The focus of this paper is to quantify and compare the
performance of multiple measurement vector (MMV) and
distributed sensing (DS). Consider the following model for
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multiple measurement instances: yk = Akxk + wk, k =
1, 2, ...,K. MMV assumes that all the measurement matrices
Ak’s are identical whereas DS allows different matrices for
different measurement instances. When the signals xk’s are
sparse, we assume that they share the same supports, i.e., the
locations of the nonzero components. This signal model is
often referred to as common sparse supports (or JSM-2 model
in [1]). In this paper, both sparse and non-sparse signals are
analyzed.

Various methods and analysis are reported in the lit-
erature. Examples include MMV focal under-determined
system solution (M-FOCUSS) [6], DCS-tailored Simulta-
neous Orthogonal Matching Pursuit (DCS-SOMP) [1], sub-
space augmented multiple signal classifier (SA-MUSIC) [7],
side-information based OMP (SiOMP) [8], distributed and
collaborative OMP (DC-OMP) [9, 10], approximate message
passing MMV (AMP-MMV) [11], and distributed subspace
pursuit (DiSP) [2]. Empirical results have shown that gener-
ally speaking DS outperforms MMV. However, exact under-
standing of the performance improvement is not available in
the literature.

The main contribution of this paper is to exactly quantify
the asymptotic performance of MMV and DS in the asymp-
totic regime that the dimensions of the measurement matri-
ces approach infinity proportionally but the number of mea-
surement instances remains a constant. It is assumed that the
measurement matrices are drawn from the standard Gaussian
random matrix ensemble and the signals obey a Bernoulli-
Gaussian model. In DS, we further assume that the measure-
ment matrices are independent. Our analysis reveals that the
benefits of DS come from the independent views of correlated
signals (the more correlated the signals, the larger perfor-
mance gain DS achieves). A case study of non-sparse Gaus-
sian signals is given where performance quantification can be
obtained via random matrix theory and matches our analysis.
Both case study and numerical results verify the accuracy of
the asymptotic quantification. The analysis tool used is the
state evolution technique for the approximate message pass-
ing (AMP) [12, 13]. It is noteworthy that similar analysis ap-
peared in [14, 15] where [14] focuses on MMV while [15]
concentrates on DS. However, these two works don’t charac-
terize the exact evolution of the estimation error for the MMV
model, nor the performance gap between MMV and DS.
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2. PRELIMINARIES

2.1. System model

Consider K measurement instances, at each of which a linear
measurement operator is acting on an unknown signal:

yk = Akxk +wk, k ∈ [K] , (1)

where yk ∈ Rm is the measurement vector, Ak ∈ Rm×n
stands for the measurement matrix, xk ∈ Rn represents the
unknown signal vector, wk ∈ Rm denotes the measurement
noise and [K] := {1, 2, ...,K}. The MMV model assumes
that all the measurement matrices are identical, i.e. Ak = A`

for all k, ` ∈ [K] [11,16], whereas in DS model the measure-
ment matrices are allowed to be different [1]. In this paper
for the convenience of analysis, we assume that the measure-
ment matrices are generated from the Gaussian random ma-
trix ensemble for both MMV and DS cases. In the MMV
model, let all the entries of A1 be independently drawn from
the Gaussian distribution N

(
0, 1

m

)
and then Ak = A1 for

all 1 < k ≤ K. In the DS case, all the entries of Ak’s are in-
dependently drawn from the same distributionN

(
0, 1

m

)
. For

compositional convenience, sometimes we write the overall
system in the equivalent form

y = Ax+w, (2)

where y =
[
yT1 ,y

T
2 , ...,y

T
K

]T
, w =

[
wT

1 ,w
T
2 , ...,w

T
K

]T
,

x =
[
xT1 ,x

T
2 , ...,x

T
K

]T
andA = diag (A1,A2, ...,AK).

For MMV and distributed compressed sensing cases, the
common sparse supports model has been widely adopted to
model the unknown signals xk’s [1, 11]. Let supp (x) =
{i : xi 6= 0} be the support set of the signal vector x. Com-
mon sparse supports means that supp (xk) = supp (x`) for
all k 6= ` ∈ [K]. It is typically assumed that the nonzero sig-
nal components are independent. A more delicate model is
that though the nonzero components in xk are independent,
those across different measurement instances can be corre-
lated. In particular, let xk,j be the i-th component of the sig-
nal xk at the k-th measurement instance. Define

x:,i := [x1,i, x2,i, · · · , xK,i]T , for i ∈ [n] , (3)

which contains the i-th components of all K signals. We as-
sume a commonly used Bernoulli-Gaussian model: x:,i ∈
RK , i ∈ [n], are independently drawn from the distribution

pX:,i
(x) = (1− ε) δx=0 + εpG (x; 0, Σx) , (4)

where ε ∈ (0, 1] defines the nonzero probability (sparsity
level), δx=0 is the Dirac delta function, pG (x; 0, Σx) is the
multivariate Gaussian probability density, Σx ∈ RK×K is
the covariance matrix, and we assume the diagonal elements
of Σx are all identical, denoted by σ2

x. It is clear that if all
nonzero components across different measurement instances
are independent then Σx is diagonal, otherwise Σx is not di-
agonal. It is also noteworthy that the analysis presented in this
paper can be generalized to the non-sparse case where ε = 1.

2.2. AMP and state evolution

The AMP algorithm was originally developed in [12] and then
rigorously analyzed in [13]. It is designed to solve the linear
inverse problem (2) when A is generated from the Gaussian
random matrix ensemble. It is an iterative algorithm and at
the t-th iteration it executes the following two operations:

xt+1 = η
(
ATrt + xt

)
, (5)

rt = y −Axt +
1

δ
rt−1

〈
η′
(
ATrt−1 + xt−1

)〉
, (6)

where xt+1 is the new estimated signal, η (·) is a component-
wise estimator, AT is the transpose of A, rt is the residual
vector, δ = m

n is a constant, 〈v〉 = 1
n

∑n
i=1 vi computes the

average of the vector v, and η′ (·) denotes the derivative of
the function η (·).

Two advantages of AMP include its low complexity and
the exact quantification of its asymptotic performance when
(m,n)→∞ simultaneously with m

n → δ ∈ R+. The perfor-
mance quantification is based on the following observation.
Let x0 be the ground truth signal that generates y in (2). Let
x̃t denotes the input of η (·) in (5). Based on the heuristic
analysis for iterative approaches in [12], write x̃t in the form

x̃t = ATrt + xt = AT
(
y −Axt

)
+ xt

= x0 +
(
ATA− I

) (
x0 − xt

)
+ATw

= x0 +wt
x +ATw = x0 +wt

e, (7)

where wt
e denotes the equivalent noise at the t-th iteration.

Then the rigorous analysis in [13] shows thatwt
e can be mod-

eled as white Gaussian noise and will be independent of the
equivalent noise at previous iterations wt′

e where 1 ≤ t′ < t.
The mean of this equivalent noise is zero and the variance can
be computed via the so called state evolution. By tracking the
variance of the equivalent noise across iterations, the asymp-
totic performance of AMP can be exactly quantified.

3. PERFORMANCE QUANTIFICATION VIA STATE
EVOLUTION

This section derives the state evolution for both MMV and DS
cases. In the analysis, it is assumed that (m,n) → ∞ with
m
n → δ ∈ R+ but K is fixed.

For the performance analysis, the covariance matrix of
x:,i, i ∈ [n], needs to be tracked across iterations. Towards
this end, consider the following model

x̃ = x+we, (8)

where x ∈ RK obeys the distribution in (4) and we ∈ RK
is the additive Gaussian noise with zero mean and variance
Σe. The minimum mean squared error (MMSE) estimator is
given by

x̂ = E [x|x̃] =: η (x̃) . (9)
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Algorithm 1 AMP based Joint Reconstruction
Imput: y,A, Σx and σ2

w.
Initialization:r0 = y, x0 = 0, Σ0

η,:,i = Σx

Iteration: In each iteration t, do following until meet the
stop criteria.
1.For the system model, x̃t = xt +ATrt.
2.For i ∈ [n], calculate Σt

e,:,i = Σt
wx,:,i

+ σ2
wI where

Σt
wx,:,i

=

{
1
δΣ

t
η,:,i for MMV case,

1
δD

(
Σt
η,:,i

)
for DS case,

3.For i ∈ [n], update xt+1
:,i = η

(
x̃t:,i
)
.

4.For i ∈ [n], update Σt+1
η,:,i = Ψ

(
Σt
e,:,i

)
.

5.For the system model. rt = y − Axt +
1
δr

t−1 〈η′ (ATrt−1 + xt−1
)〉

For later use, we also define η′ (x̃) ∈ RK of which the i-th
component is given by

η′i (x̃) =
dx̂i
dx̃i

. (10)

The covariance matrix of the MMSE estimate error is given
by

Ση = Ψ (Σe) := E
[
xxT |x̃

]
− η (x̃)ηT (x̃) . (11)

The specific formulas to compute η, η′, and Ψ can be derived
using Bayes’ rule. See, e.g., [15]. With these definitions, the
AMP algorithms for MMV and DS have the same form in (5)
and (6) except that η and η′ are specifically defined in (9) and
(10) and they are acting on the subvector of the input vector,
e.g.,

(
ATrt + xt

)
:,i

, i ∈ [n].
We now focus on the input of η (·). Similar to (7), we ob-

tain x̃t = x0+wt
x+ATw wherewt

x=
(
ATA−I

)
(x0−xt).

Following the same analysis as in [13], wt
x is approximately

Gaussian andATw are Gaussian conditional onw both with
zero mean. The covariance matrix of ATw can be easily
computed which is σ2

wI . The nontrivial part is to compute
the covariance matrix of wt

x. Note that different from (7)
where the matrix ATA − I is dense, the matrix ATA − I
for MMV and DS is block diagonal and its k-th block is
given by AT

kAk − I , k ∈ [K]. The entries of a given block
AT
kAk − I can be viewed as independent Gaussian random

variables with distribution N
(
0, 1

m

)
. However, it is clear

that in MMV the entries of AT
kAk − I for different k’s are

identical whereas in DS they are independent across k. For
convenience, define Ã := ATA − I , let Ãk be the k-th
block of Ã, and Ãk (i, j) be the (i, j)-th component of Ãk,
i, j ∈ [n]. Then wtx,k,i =

∑
j Ãk (i, j)

(
x0,k,i − xtk,i

)
. Let

wt
x,:,i =

[
wt
x,1,i, · · · ,wt

x,K,i

]T
and Σt

η,:,i be the covariance
matrix of (x0 − xt):,i. Then the covariance matrix of wt

x,:,i

is given by

Σt
wx,:,i =

{
1
δΣ

t
η,:,i for MMV case,

1
δD

(
Σt
η,:,i

)
for DS case,

(12)

Algorithm 2 The State Evolution of Joint Reconstruction
Imput: Σx and σ2

w.
Initialization: Σ0

η,:,i = Σx, ∀i ∈ [n] .
Iteration: In each iteration t, do following until meet the
stop criteria.
1. Calculate Σt

e,:,i = Σt
wx,:,i

+ σ2
wI where

Σt
wx,:,i

=

{
1
δΣ

t
η,:,i for MMV case,

1
δD

(
Σt
η,:,i

)
for DS case,

3.Compute Σt+1
η,:,i based on Ψ

(
Σte,:,i

)
.

where D (·) maps an K × K matrix to a diagonal K × K
matrix by retaining diagonal entries and setting off-diagonal
entries to zero. Furthermore, wt

x,:,i’s are independent across
i ∈ [n]. With this, it can be concluded that x̃t = x0 + wt

e

where wt
e,:,i ∼ N

(
0,Σt

wx,:,i
+ σ2

wI
)

and wt
e,:,i’s are inde-

pendent.
By now, we can apply the model in (8) and track the co-

variance matrix Σt
η across iterations by using (11). The per-

formance of MMV and DS can be obtained by finding the
covariance matrix at steady state, i.e., Σ∞η .

It is noteworthy that the performance difference between
MMV and DS comes from (12). It is straightforward to ver-
ify that the performance of MMV and DS will be the same
when Σx in (4) is diagonal; performance difference only ap-
pears when Σx is not diagonal. See the whole algorithm in
Algorithm 1 and state evolution in Algorithm 2.

4. CASE STUDY

This section quantifies the asymptotic performance when x
is drawn from the Bernoulli-Gaussian model (4). Simulation
results are provided to demonstrate that the asymptotic per-
formance quantification is accurate for finite dimensional sys-
tems. Furthermore, when ε = 1, simple closed-form formulas
are derived for performance quantification for some special
cases. These formulas coincide with those obtained from ran-
dom matrix theory, which once again verifies the correctness
of the analysis in this paper.

With given prior distribution (4), the MMSE estimator
η (·) in (9) is given by

E [x|x̃] =

ˆ
xp (x|x̃) dx

=
Rx̃

Cexp
(
− 1

2 x̃
TΣ−1e Rx̃

)
+ 1

, (13)

R =
(
Σ−1x + Σ−1e

)−1
Σ−1e , (14)

C =
(1− ε)
ε

∣∣Σx

(
Σ−1x + Σ−1e

)∣∣ 12 . (15)

The covariance matrix defined in (12) can be computed via

Ση (p, q) = εΣx (p, q)−Σz (p, q) , (16)
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Fig. 1. Compare DS and MMV performances

where Σz (p, q) = Ex̃ [Ex [xp|x̃] Ex [xq|x̃]], and

Σz (p, q) =

ˆ
[Rx̃]p [Rx̃]q εpG (x̃; 0, Σx + Σe)

Cexp
(
− 1

2
x̃TΣ−1

e Rx̃
)
+ 1

dx̃, (17)

where [Rx̃]p represents the single element of vector Rx̃ at
position p. The Ψ (Σe) function calculate the matrix element
value separately.

Fig. 1 compares the theoretical performance quantifica-
tion and the empirical performance. We assume K = 2
measurement instances. We set ε = 0.2 for the Bernoulli-
Gaussian case and ε = 1 for the Gaussian case. The covari-
ance matrix Σx ∈ R2×2 has unit diagonal entries and its off-
diagonal entries have the same value ρ ∈ [0, 1]. For empirical
study, the dimension of the signal xk is set by n = 1000. The
numerical results are obtained from the average of 100 trials.
The results in Fig. 1 clearly demonstrate the accuracy of the
asymptotic analysis.

4.1. Gaussian prior: ε = 1

When ε = 1, the MMSE estimator and the associated covari-
ance matrix of estimation error have nice closed forms:

η (x̃) = E [x|x̃] = Rx̃, (18)

Ψ (Σe) = Ση =
(
Σ−1x + Σ−1e

)−1
. (19)

When the signal covariance matrix Σx are of special forms,
i.e., either Σx = σ2

xI or Σx = σ2
x1 where all the entries

of the matrix 1 ∈ RK×K are one, the state evolution admits
simple closed forms. Define the average recovery distortion at
the steady state by d∞ = 1

Kn ‖x− x
∞‖22. It can be verified,

via steady state analysis, that when Σx = σ2
xI (independent

signals),

d∞MMV = d∞DS =

δ

2

(1− δ

δ
σ2
x − σ2

w

)
+

√(
1− δ

δ
σ2
x + σ2

w

)2

+ 4σ2
xσ

2
w

 , (20)

and when Σx = σ2
x1 (repeated signals: x1 = · · · = xK),

d∞MMV =

δ

2

(1− δ

δ
σ2
x −

σ2
w

K

)
+

√(
1− δ

δ
σ2
x +

σ2
w

K

)2

+
4σ2

wσ
2
x

K

 , (21)

d∞DS =

δ

2

(1−Kδ
δ

σ2
x−σ2

w

)
+

√(
1−Kδ
δ

σ2
x+σ

2
w

)2

+4Kσ2
xσ

2
w

 . (22)

It is interesting to observe that the same results can be ob-
tained by solely applying random matrix theory. Specifically,
consider a linear system y = Ax + w where A ∈ Rm×n
is Gaussian random matrix with i.i.d. entries drawn from
N
(
0, 1

m

)
, x ∈ Rn is the signal drawn from N

(
0, σ2

xI
)
, and

w ∈ Rm is the noise drawn from N
(
0, σ2

wI
)
. Let (m,n)→

∞ simultaneously with m
n → δ. The empirical distribution

of the eigenvalues of ATA converges the Marchenko-Pastur
distribution weakly. Based on this fact, the average distor-
tion of MMSE estimate, i.e., 1

n ‖x− x̂MMSE‖22, can be com-
puted as [13, 17, 18]

f
(
δ, σ2

x, σ
2
w

)
=

1

n
tr
(
Σx|y

)
=

1

n
tr

((
σ−2
x I + σ−2

w ATA
)−1

)

=
δ

2

(1−δ
δ

σ2
x−σ2

w

)
+

√(
1−δ
δ

σ2
x+σ

2
w

)2

+4σ2
xσ

2
w

 , (23)

where tr (M) calculates the trace of matrix M . In the fol-
lowing, this result is used to analyze MMV and DS models.

MMV and DS models with independent signals (Σx =
σ2
xI). The covariance matrix of recovery error turns out to be

block diagonal Σx|y = diag
(
..., σ−2x I + σ−2w AT

kAk, ...
)−1

= diag
(
...,
(
σ−2x I+σ−2w AT

kAk

)−1
, ...
)

=: diag
(
...,Σxk|yk, ...

)
.

To compute the average distortion, apply (23) to each block
Σxk|yk . The final result is the same as (20).

MMV and DS models with repeated signals (Σx =
σ2
x1, i.e., x1 = · · · = xK). With repeated signals, the

system model can be written as y = Âx1 + w where
Â =

[
AT

1 ,A
T
2 , ...,A

T
K

]T
. In the MMV model, A1 = A2 =

· · · = AK . The covariance matrix of recovery error becomes

Σx1|y =
(
σ−2x I+σ−2w ÂT Â

)−1
=
(
σ−2x I+Kσ−2w AT

1A1

)−1
.

Apply (23) and replace the σ2
w term in (23) with σ2

w/K.
One obtains (21). By contrast, in the DS model, 1√

K
Â is a

standard Gaussian random matrix with dimension Km ×
n. Hence, when Equation (23) is applied to Σx1|y =(
σ−2x I+Kσ−2w

1
K Â

T Â
)−1

, σ2
w and δ in (23) are replaced

with σ2
w/K and Kδ respectively. The average distortion is

the same as (22).
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