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ABSTRACT

Imaging techniques involve counting of photons striking a de-
tector. Due to fluctuations in the counting process, the mea-
sured photon counts are known to be corrupted by Poisson
noise. In this paper, we propose a blind dictionary learning
framework for the reconstruction of photographic image data
from Poisson corrupted measurements acquired by a com-
pressive camera. We exploit the inherent non-negativity of the
data by modeling the dictionary as well as the sparse dictio-
nary coefficients as non-negative entities, and infer these di-
rectly from the compressed measurements in a Poisson max-
imum likelihood framework. We experimentally demonstrate
the advantage of this in situ dictionary learning over com-
monly used sparsifying bases such as DCT or wavelets, espe-
cially on color images.

Index Terms— Poisson compressed sensing, non-negative
sparse coding, dictionary learning

1. INTRODUCTION AND RELATION TO PRIOR
WORK

Compressed sensing (CS) is a widely used paradigm to ac-
quire sparse signals using a small number of incoherent ob-
servations of the signal. There exist several algorithms for
reconstruction from compressed measurements, a majority of
which operate in the noiseless regime or assume Gaussian or
bounded uniform noise, e.g., [1, 2, 3], etc. However, imaging
techniques involve counting of photons striking a detector ar-
ray and the random fluctuations in photon counts are known
to follow a Poisson distribution. These fluctuations cannot
be modeled using signal independent constant variance mod-
els such as Gaussian noise, especially in the low light or low
photon count regime, which is common in fluorescence mi-
croscopy, low dose tomography and night photography. Due
to the signal dependent and non-additive nature of Poisson
noise, compressed sensing from Poisson-corrupted measure-
ments poses significant challenges, which have been carefully
studied in [4] along with the derivation of bounds on recon-
struction errors. Assuming fixed bases such as wavelets to
provide a sparsifying transform, a reconstruction algorithm
from Poisson-corrupted measurements named SPIRAL-TAP
has been proposed in [5]. Non-monotonic maximum likeli-

hood algorithms in conjunction with maximum entropy pri-
ors on the image intensity (instead of sparsity in a basis) have
been proposed in [6] for applications such as image deblur-
ring, transmission tomography and PET reconstruction.

In compressed sensing, the sparsity of a signal of interest
in a certain pre-specified sparsifying basis, has great impor-
tance. In particular, the performance of Poisson CS recon-
struction is shown to be highly dependent upon the chosen
sparsifying basis [4, 7]. This provides us the motivation to
develop an algorithm to infer a sparsifying basis in situ from
the compressed measurements directly. This is called as blind
compressed sensing, and has been explored in the Gaussian
noise case in works such as [8, 9, 10]. There also exists a
substantial body of literature on inference of data-adaptive
dictionaries from Poisson-corrupted images, e.g., [11, 12, 13,
14, 15]. Besides incorporating a criterion to encourage signal
sparsity in the inferred dictionary, these techniques are based
on a Poisson maximum likelihood framework. They pose a
viable alternative to techniques such as [16] that (a) seek to
convert Poisson-corrupted image data to Gaussian-corrupted
data using variance-stabilizing transforms (VSTs) such as the
Anscombe transform, (b) perform inference of dictionaries
and coefficients using least-squares techniques that are suited
to Gaussian noise, and (c) then convert the processed data
back to the original domain using the inverse VSTs. The dis-
advantage of the latter group of techniques is that the Gaus-
sian approximation of the noise following the VST is inaccu-
rate at low photon counts requiring more careful implementa-
tion of the inverse VST [17].

In this paper, we propose a simple and efficient algorithm
to infer a sparsifying dictionary and the dictionary coefficients
in situ from Poisson-corrupted compressive measurements in
imaging (as opposed to Poisson-corrupted images), instead of
using standard bases such as wavelets or DCT. To the best of
our knowledge, there exists no prior literature on this so far.
We experimentally demonstrate that learning a dictionary par-
ticular to color images allows for better reconstruction than
using standard sparsifying bases.

2. PROBLEM FORMULATION

Consider an underlying noise-free image X ∈ ZN1×N2 . Con-
sider a division of the image into patches of size n1 × n2,
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with the ith patch represented as a vector xi ∈ Zn×1 where
n , n1n2. Consider that a compressive sensor acquiresm�
n measurements of each patch xi to produce a measurement
vector yi ∈ Zm. We assume that each such measurement
vector is corrupted by Poisson noise, giving us the following
equation:

∀i, 1 ≤ i ≤ Np,yi ∼ Poisson(Φixi) (1)

where Φi ∈ Zm×n is the forward model matrix of the mea-
suring device for the ith patch, and Np is the total number of
patches. The original vectors x , {xi}

Np

i=1 are assumed to be
sparse in some dictionary D with some K columns each of
unit norm, i.e. we have xi = Dsi where ‖si‖0 � n. The aim
here is to infer both D and s , {si}

Np

i=1 from y , {yi}
Np

i=1.
During this inference, we impose non-negativity constraints
on the elements of the dictionary D (in addition to unit norm
constraints on its columns) as well as on the sparse coeffi-
cients s. This is motivated by the fact that the underlying data
are indeed non-negative. Taking this into account, we now
have:

yi ∼ Poisson(ΦiDsi) s.t. D � 0n×K ;∀i, si � 0K×1 (2)

Assuming statistical independence between the different mea-
surement vectors, we seek to maximize the following likeli-
hood in order to infer D and s:

L(D, s) =
Np∏
i=1

p(yi|ΦiDsi)

=

Np∏
i=1

m∏
j=1

(ΦiDsi)j
yij

yij !
e−(ΦiDsi)j

(3)

where yij indicates jth compressive measurement of ith

patch. Considering the negative log likelihood function along
with a sparsity-promoting regularization term proportional to∑

i ‖si‖q where 0 < q ≤ 1 (which is the negative logarithm
of an appropriate Generalized Gaussian prior) and dropping
constant terms, yields us the following objective function to
be minimized:

J (D, s) = (4)

min
D,s

∑
i,j

(
− yij log((ΦiDsi)j) + (ΦiDsi)j

)
+ λ

Np∑
i=1

‖si‖q

subject to the constraints D � 0n×K ;∀i, si � 0K×1 where
λ is the regularization parameter. We set q = 1, though in
principle any other q in the (0, 1] range could have been used.

We use projected gradient descent with adaptive step size
to minimize J (D, s). The gradients of J (D, s) with respect

to D, s are as shown below:

∀i, 1 ≤ i ≤ Np,
∂J
∂si

= (ΦiD)T [1− (yi./ΦiDsi)] + λ

∂J
∂D

=

Np∑
i=1

[Φi
T (1− (yi./ΦiDsi)]si

T

(5)

where 1 is a m-dimensional vector of ones and ./ denotes
element-wise division. Instead of projected gradient descent
which we have used in our algorithm, one can use modified
multiplicative update to update every si [18]. Our algorithm
is summarized here below.

Algorithm 1 Algorithm for reconstruction in Poisson CS
Input: Poisson corrupted data, yi ∼ Poisson(ΦiDsi), 1 ≤
i ≤ Np

1: Set k = 0. Randomly initialize D(0) and s(0) with appro-
priate sizes and non-negative entries. Set the `2 norm of
all the columns of D to 1.

2: repeat
3: while J (D(k+1), s(k)) > J (D(k), s(k)) do
4: D̃ = D(k) − α1

∂J
∂D

∣∣
D=D(k)

5: Set all negative entries in D̃ equal to zero
6: Rescale each column of D̃ to unit norm.
7: Set D(k+1) = D̃
8: α1 ← ηα1

9: end while
10: while J (D(k+1), s(k+1)) > J (D(k+1), s(k)) do
11: s̃ = s(k) − α2

∂J
∂s

∣∣
s=s(k)

12: Set all negative entries in s̃ equal to zero
13: Set s(k+1) = s̃
14: α2 ← ηα2

15: end while
16: k = k + 1
17: until stopping criteria is met

2.1. Modeling non-negativity:

We emphasize that one of the differences in Poisson CS and
other CS paradigms is that signals considered in the for-
mer must inherently be non-negative as they emerge from
a photon-counting process. Therefore, any estimate of the
reconstructed signal needs to be non-negative. To impose the
constraint xi � 0n×1, one may use either of the following
three models: (i) xi = Dsi, s. t. D � 0n×K , si � 0K×1 as
used in this paper or in [12], (ii) xi = Dsi, s. t. Dsi � 0K×1

as used in [5], or (iii) xi = exp(Dsi) as used in [13, 11]. The
advantage of model (i) over (iii) is that in the former case, we
are representing the (raw intensity) patches from the image as
non-negative linear combinations of the dictionary columns.
Such a dictionary will always have a physical significance
and represents basis patches like edges or patterns from the
image. On the other hand, model (iii) would represent the
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element-wise logarithm of the patches as a non-negative lin-
ear combination, which is less intuitive. The advantage of
model (i) over (ii) is simpler optimization, as in the former
case, projection on the constraint sets simply involves clamp-
ing negative values from D or si to 0, whereas model (ii)
does not afford that freedom.

Choice of Φ: The entries of Φ must necessarily be non-
negative since photon counts are being modeled. Moreover,
under the model that all compressed measurements for a
patch are acquired simultaneously in an optical system, it is
known that the incident photon flux gets distributed amongst
the different measurements. This is modeled by using non-
negative Φ matrices whose columns sum up to a value less
than or equal to 1 [7]. The forward models chosen in this
paper are matrices with entries sampled independently from
Uniform(0, 1) followed by a rescaling of the columns to sum
up to some value (say) v ≤ 1. For convenience of rep-
resentation, these matrices can equivalently be considered
without rescaling of the columns, but instead scaling down
the peak value of the image by the appropriate factor to get
the maximum column sum to be v.

3. EXPERIMENTS AND RESULTS

We present reconstruction results on gray-scale and color
images under varying levels of compression and peak in-
tensities of the image. The specific compressive forward
model considered in this paper is based on computation of
random dot products, which is similar to the functioning of
the Rice Single Pixel Camera [19]. However, our measure-
ments are computed on small patches and not on the entire
image, which follows the camera architecture in [20]. The
results are demonstrated on overlapping image patches, al-
though our models are perfectly applicable for the case of
non-overlapping patches, which is more in tune with the
architecture of [20], but which would require additional pre-
processing to overcome patch seam artifacts.

We performed reconstruction experiments on two differ-
ent peak images values∈ {3, 10} to simulate low light scenar-
ios (assuming the original image intensities lie in the [0,255]
range) and three different compression levels given as

m

n
∈

{0.2, 0.5, 0.8}. In all experiments, the number of dictionary
columns K was set to 100, the patch size was set to 7 × 7
(vectorized to 49 × 1), and the value of λ was chosen from
{0.1, 1, 5, 10, 20} to be the one that produced the best result
in terms of highest PSNR (peak signal to noise ratio). The
iterative optimization was run for 100 iterations starting with
random but feasible initial conditions. The proposed algo-
rithm was compared to the well-known SPIRAL-TAP method
[5] on two grayscale images - namely Saturn and House. A
patch-based variant of SPIRAL-TAP was used for a fair com-
parison between these two algorithms. The sparsifying basis
used for SPIRAL-TAP was the 2D-DCT for 7 × 7 patches

Image Peak Compression
level (mn )

Our Al-
gorithm

SPIRAL-
TAP

3 0.2 23.73 19.70
3 0.5 24.07 20.91
3 0.8 24.11 22.41
7 0.2 23.73 19.70

House 7 0.5 24.14 20.91
7 0.8 24.15 22.42
10 0.2 24.11 19.71
10 0.5 24.12 20.91
10 0.8 24.12 22.41
3 0.2 29.48 22.41
3 0.5 29.79 24.12
3 0.8 29.82 26.54
7 0.2 30.09 22.44

Saturn 7 0.5 30.19 24.10
7 0.8 30.13 26.55
10 0.2 30.25 22.43
10 0.5 30.20 24.11
10 0.8 30.25 26.55

Table 1. PSNR comparison for House and Saturn image
under various compression levels and peak intensities

with a maximum of 100 iterations and λ chosen in the same
manner as for our method. We also experimented with Haar
wavelets on 8 × 8 patches and the results were not signifi-
cantly different. We have displayed the PSNR values in Table
1 and the reconstructed images for visual comparison of the
outputs for both these algorithms in Figures 1 and 2. While
our method produced higher PSNR, the results are not signif-
icantly different in a visual sense. We also observed that re-
constructed images from SPIRAL-TAP have a DC bias which
results in the difference in PSNR. At much lower peaks, we
have observed failure of our algorithm starting from a ran-
dom initial condition due to lack of information (for dictio-
nary and sparse code inference) available from compressed
measurements in poor lighting. However using a pre-learned
patch-based dictionary as initial condition may improve these
results.

(a) Original image (b) Our algorithm,
PSNR = 30.20

(c) SPIRAL-TAP,
PSNR = 24.11

Fig. 1. Saturn image, Peak = 10 and Compression Ratio =
0.5
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(a) Original image (b) Our algorithm,
PSNR = 24.12

(c) SPIRAL-TAP,
PSNR = 20.91

Fig. 2. House image, Peak = 10 and Compression Ratio =
0.5

3.1. Color Compressive Sensing:

We have generalized our algorithm for reconstruction of color
images as well. Compressed measurements are computed in-
dependently across R, G and B channel with different for-
ward model matrices, but the reconstruction is done jointly
by learning a single dictionary over R, G, B channels using
our algorithm. In this case, the image patches were of size
7 × 7 × 3 (vectorized to 147 × 1) and K = 150 dictionary
columns were learned. A similar experiment is performed
with patch-based SPIRAL-TAP using 3D-DCT as a sparsify-
ing basis. Figures 3, 4, 5 and 6 show reconstruction results for
parts of three well-known color images using our method and
SPIRAL-TAP. Here we observed that SPIRAL-TAP fails to
reconstruct color patterns and produces color artifacts in the
reconstructed images. This is because 3D-DCT is unable to
compactly represent color image patches that contain pixels
with significantly different R, G, B values. This motivates the
idea of dictionary learning for multidimensional signals such
as color or hyperspectral images, or videos, instead of relying
on prior knowledge of a sparsifying basis.

(a) Original image (b) Our algorithm,
PSNR = 21.73

(c) SPIRAL-TAP,
PSNR = 12.41

Fig. 3. Pepper image, Peak = 5 and Compression Ratio = 0.1

4. CONCLUSION AND FUTURE WORK

We have proposed a dictionary learning algorithm for recon-
struction from Poisson-corrupted compressive measurements,
for both gray-scale as well as color images. Our results illus-
trate the benefits of learning the dictionary in situ from the
compressed measurements. While currently, our algorithm
is able to recover global image structure and color patterns

(a) Original image (b) Our algorithm,
PSNR = 22.22

(c) SPIRAL-TAP,
PSNR = 16.09

Fig. 4. Pepper image, Peak = 5 and Compression Ratio = 0.5

(a) Original image (b) Our algorithm,
PSNR = 21.02

(c) SPIRAL-TAP,
PSNR = 19.39

Fig. 5. Lena image, Peak = 5 and Compression Ratio = 0.5

(a) Original image (b) Our algorithm,
PSNR = 25.63

(c) SPIRAL-TAP,
PSNR = 20.72

Fig. 6. Cap image, Peak = 5 and Compression Ratio = 0.5

well, it tends to blur out finer textures. This effect has also
been observed by us in denoising experiments on Poisson-
corrupted images using state of the art algorithms such as non-
local PCA [13] or non-negative sparse coding [12]. Further-
more, currently the choice of the λ parameter is unclear, and
given the non-additive and signal-dependent nature of Pois-
son noise, cannot be tied to the noise variance in the same
manner as Gaussian noise. In fact, for inappropriate values
of λ, we have observed total failure of reconstruction using
our dictionary learning method as well as SPIRAL-TAP. This
issues requires further investigation. Exploring the applica-
tion of this method for color image demosaicing, video and
hyperspectral image reconstruction, and tomographic recon-
struction are also interesting avenues for future research.
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