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ABSTRACT
This work considers the robust sparse recovery problem in
compressive sensing (CS) in the presence of impulsive mea-
surement noise. We propose a robust formulation for sparse
recovery using the generalized `p-norm with 0 < p < 2 as
the metric for the residual error under `1-norm regularization.
An alternative direction method (ADM) has been proposed to
solve this formulation efficiently. Moreover, a smoothing s-
trategy has been used to derive a convergent method for the
nonconvex case of p < 1. The convergence conditions of the
proposed algorithm for both the convex and nonconvex cas-
es have been provided . Numerical simulations demonstrated
that the new algorithm can achieve state-of-the-art robust per-
formance in highly impulsive noise.

Index Terms— Compressive sensing, robust sparse re-
covery, alternating direction method, `p-norm data-fitting

1. INTRODUCTION

Compressive sensing (CS) allows us to acquire sparse sig-
nals at a significantly lower rate than the classical Nyquist
sampling [1]. The CS theory states that if a signal x ∈ Rn
is sparse, only a small number of linear measurements y =
Ax ∈ Rm (m < n) of the signal suffice to accurately re-
construct it, A ∈ Rm×n is the sensing matrix. Taking the
inevitable measurement noise into consideration, the com-
pressed measurements can be modeled as

y = Ax+ n

where n ∈ Rm is additive measurement noise.
In the CS setting, the recovery of x from y is generally ill-

posed since m < n. However, provided that x is sparse and
A satisfies some stable embedding conditions [2], x can be
reliably recovered with an error upper bounded by the noise
strength. To reconstruct x, the BPDN and LASSO formula-
tions [3], [4] are of the most popular, e.g., LASSO

min
x

{
1

µ
‖Ax− y‖2 + ‖x‖1

}
(1)
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where µ > 0 is a regularization parameter.
As in BPDN, LASSO and many other variants, the `2-

norm data-fitting model, which is optimal for Gaussian noise
in the maximum likelihood sense, is the most widely used
one. However, in practical applications, the measurement
noise may be of different kinds or combinations. Impulsive
noise in measurements may come from missing data in the
measurement process, transmission problems [5]–[7], fault-
y memory locations [8], buffer overflow [9], and has been
raised in many image and video processing works [10]–[13].
In these cases, the `2-norm model is inefficient as it is highly
sensitive to outliers in the observations.

Recently, various robust formulations have been proposed
for CS to suppress the outliers in measurements. In [14],
the Lorentzian-norm has been employed as the metric for the
residual error. In [15], the `1-norm has been used as the data-
fitting model to obtain a robust formulation as

min
x

{
1

µ
‖Ax− y‖1 + ‖x‖1

}
. (2)

It has been shown in [15] that, when the measurements con-
tain impulsive noise, the `1-loss can result in dramatically bet-
ter performance compared with the `2-one. Subsequently, the
Huber penalty function has been used to design robust formu-
lation for sparse recovery in [16].

In this work, we use the generalized `p-norm, 0 < p <
2, as the loss function for the residual error to propose the
following robust formulation

min
x

{
1

µ
‖Ax− y‖pp + ‖x‖1

}
. (3)

When 0 < p < 1, ‖·‖pp is the `p quasi-norm defined in a simi-
lar manner as the case of p ≥ 1, i.e., ‖v‖pp =

∑m
i=1 |vi|p. The

intuition behind utilizing `p-norm loss function is that, com-
pared with the quadratic function, it is a less rapidly increas-
ing function when p < 2, and, accordingly, is less sensitive to
large outliers, especially when p is small.

Except for the special case of p = 1, the problem (3)
has still not been well addressed. When 1 < p < 2, it can
be solved by traditional convex optimization methods such as
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interior-point methods. More specifically, this problem can
be converted into

min
x
‖x‖1 subject to ‖Ax− y‖p ≤ ε (4)

where ε > 0 bounds the `p-norm of the residual error. A
semi-definite program conversion method has been proposed
in [17] to handle the problem (4). However, this approach is
generally inefficient and impractical for large-scale problem-
s. Moreover, when 1 < p < 2, the `p-norm is smooth and
convex but its gradient is not Lipschitz continuous, thus tradi-
tional proximal gradient methods cannot be directly applied.

When 0 < p < 1, the problem (3) is more difficult to
solve since in addition to the nonconvexity of the loss term,
both the loss and regularization terms are nonsmooth. This
case has still not been reported in the open literatures. The
main contributions of this work are as follows.

First, we show that, with an appropriate choice of p, the
proposed formulation can stably recover the desired signal
with a finite recovery error even when the noise is highly im-
pulsive with infinite variance. Second, we propose an effi-
cient alternating direction method (ADM), termed Lp-ADM,
for the optimization problem (3). Furthermore, for the non-
convex case of p < 1, a smoothing strategy has been em-
ployed to derive a convergent algorithm. Third, the conver-
gence conditions of the new algorithm have been analyzed
for both the convex and nonconvex cases. Finally, experimen-
tal results demonstrated that, with an appropriate choice of p,
e.g., p < 1, the new algorithm has the capability to achieve the
state-of-the-art robust performance in highly impulsive noise.

2. PRELIMINARIES

2.1. Analysis on `p-norm Data-Fitting Model

For each integer s = 1, 2, · · · , let δs denote the s-
restricted isometry constant of A. It has been shown in
[18] that if ‖n‖ ≤ ε2 and δ2s <

√
2 − 1, the solution to the

BPDN problem, denoted by x̂, obeys

‖x̂− x‖ ≤ Cε2 (5)

where C is a constant depends on δ2s. For the proposed for-
mulation (3), we have the following result (the proof will be
presented in a later work).

Theorem 1. Suppose that A satisfies the restricted isom-
etry property (RIP) of order 2s with δ2s <

√
2− 1. Then for

any signal x supported on T0 with |T0| ≤ s, and any mea-
surement noise n with ‖n‖p ≤ εp, 0 < p < 2, the solution to
(4), denoted by x̂, obeys

‖x̂− x‖ ≤ Csεp (6)

where Cs is a constant depends on δ2s.
In Theorem 1, the condition of the noise is relaxed to

‖n‖p ≤ εp, 0 < p < 2, while that of BPDN is ‖n‖2 ≤ ε2.

This result implies that, when the noise is highly impulsive
with infinite variance, the proposed formulation and (4) has
the capability to stably (in statistics) recover x while BPDN
(also LASSO) cannot.

2.2. Proximity Operator for `p-Norm Functions

This subsection introduces the proximity operator which
will be used in the proposed algorithm. Recall the proximity
operator of a function g(x) : x ∈ Rm with penalty η

proxg,η(t) = argmin
x

{
g(x) +

η

2
‖x− t‖2

}
. (7)

For g(x) = a‖x‖pp with p > 0 and a > 0, the computation of
proxg,η reduces to solving m univariate problems.

Case 1: 0 < p < 1. The proximity operator in this case
can be computed as [19]

proxg,η(t)i =


0, |ti| < τ

{0, sign(ti)β}, |ti| = τ

sign(ti)zi, |ti| > τ

(8)

for i = 1, · · · ,m, where β = [2a(1− p)/η]
1

2−p , τ = β +
apβp−1/η, zi is the solution of h1(z) = apzp−1+ηz−η|ti| =
0 over the region (β, |ti|). Since h1(z) is convex, when |ti| >
τ , zi can be efficiently solved, e.g., by a Newton’s method.

Case 2: p = 1. In this case, the proximity operator re-
duces to the well-known soft-thresholding operator

proxg,η(t)i = Sa/η(t)i = sign(ti)max{|ti| − a/η, 0}.

Case 3: 1 < p < 2. In this case, g(x) is convex and
smooth, and the proximity operator satisfies

proxg,η(t)i = sign(ti)zi (9)

where zi is the solution of the equality

h2(z) = pazp−1 + ηz − η|ti| = 0, z ≥ 0. (10)

Note that, h2(z) is an increasing and concave function for
z ≥ 0, with h2(0) < 0 and h2(|ti|) > 0 when ti 6= 0. Thus,
when ti 6= 0, the solution of (10) satisfies 0 < zi < |ti| and
can be computed efficiently, e.g., by a Newton’s method.

3. PROPOSED ALGORITHM

3.1. Lp-ADM Algorithm without Smoothing

In the ADM framework, the `p-norm loss term and the
nonsmooth `1-regularization term are naturally separated.
Specifically, using an auxiliary variable v ∈ Rm, the problem
(3) can be equivalently reformulated as

min
x,v

{
1

µ
‖v‖pp + ‖x‖1

}
subject to Ax− y = v. (11)
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The corresponding augmented Lagrangian function is

L(v,x,w) =
1

µ
‖v‖pp + ‖x‖1 −wT (Ax− y − v)

+
ρ

2
‖Ax− y − v‖2

where w ∈ Rm is the dual variable, ρ > 0 is a penalty pa-
rameter. Then, ADM applied to (11) consists of the following
iterations

vk+1=argmin
v

( 1
µ
‖v‖pp +

ρ

2
‖Axk−y−v−wk

ρ
‖2
)

(12)

xk+1=argmin
x

(
‖x‖1+

ρ

2
‖Ax−y−vk+1−wk

ρ
‖2
)

(13)

wk+1=wk−ρ(Axk+1 − y − vk+1). (14)

The x-subproblem (13) itself is an `2-`1 minimization
problem as (1). We can approximately solve this subproblem
by linearizing the quadratic term of its objective. Specifically,
at a given point xk we have

1

2
‖Ax− uk‖2 ≈ 1

2
‖Axk − uk‖2

+ (x− xk)T d1(x
k) +

L1

2
‖x− xk‖2

where d1(xk) = AT (Axk − uk), uk = y + vk+1 +wk/ρ,
L1 > 0 is a proximal parameter. With this linearization, the
x-subproblem degenerates to the soft-thresholding operator

xk+1 = S1/(ρL1)

(
xk − 1

L1
AT (Axk − uk)

)
. (15)

The v-subproblem (12) is a form of the proximity opera-
tor (7), which can be efficiently solved as

vk+1 = prox 1
µ‖v‖

p
p,ρ

(bk) =


solved as (8), 0 < p < 1

S1/(µρ)(b
k), p = 1

solved as (9), 1 < p < 2

ρbk/(ρ+ 2/µ), p = 2

where bk = Axk − y −wk/ρ.

3.2. Lp-ADM Algorithm Using Smoothed `1-Regularization
For the Nonconvex Case

In the nonconvex case with p < 1, the above algorithm
is not guaranteed to converge. To address this problem, we
propose to solve a smoothed version of the problem (3) when
p < 1. Specifically, the `1-norm regularization in (3) is s-
moothed as

‖x‖1,ε =
∑

i
(x2i + ε2)

1
2 .

ε > 0 is an approximation parameter and we have

lim
ε→0
‖x‖1,ε = ‖x‖1

which means that with a small ε, ‖x‖1,ε accurately approxi-
mates the `1-norm of x. More importantly, with ε > 0, ‖x‖1,ε
is strictly convex and its gradient is Lipschitz continuous. In
this case, the derived algorithm is guaranteed to converge if
the penalty parameter is chosen sufficiently large (see Theo-
rem 3).

Using ‖x‖1,ε as the regularization, the problem becomes

min
x,v

{
1

µ
‖v‖pp + ‖x‖1,ε

}
subject to Ax− y = v. (16)

Accordingly, the x-subproblem becomes

xk+1 = argmin
x

(
‖x‖1,ε +

ρ

2
‖Ax− uk‖2

)
. (17)

We linearize the term ‖x‖1,ε in the objective of (17) at xk as

‖x‖1,ε ≈ ‖xk‖1,ε + (x− xk)T d2(x
k) +

L2

2
‖x− xk‖2

which results in the following closed-form solution of (16)

xk+1 = (L2In + ρATA)−1[L2x
k − d2(xk) + ρATuk]

(18)
where d2(xk) = ∇‖xk‖1,ε with d2(xk)i = xi(x

2
i+ε

2)−
1
2 ,

L2 > 0 is a proximal parameter. Note that, we do not lin-
earize the quadratic term in the objective as the previous case
since it does not yield a closed-form solution when ε > 0.

4. CONVERGENCE ANALYSIS

The proof of the following convergence properties of Lp-
ADM will be presented in a later work.

First, we give the convergence condition of Lp-ADM for
p ≥ 1 when the x-subproblem is updated via (15).

Theorem 2. For any ρ > 0, p ≥ 1, and arbitrary start-
ing point (x0,w0), the sequence {(vk,xk,wk)} generated
by Lp-ADM via (12), (15) and (14) with L1 > λmax(A

TA)
converges to a solution of (11).

Then, we give a sufficient condition for the convergence
of Lp-ADM for the generalized case of p > 0 when the x-
subproblem is updated via (18).

Theorem 3. Suppose that ε > 0 and AAT � µAIm with
some µA > 0, then, for any p > 0 if

ρ >
C

ε
with C =

4(2α2 + 2α+ 1)

µA(2α− 1)
, (19)

the sequence {(vk,xk,wk)} generated by the ADM algorith-
m via (12), (18) and (14) with L2 = α

ε > 1
2ε (i.e., α > 1

2 )
converges to a stationary point of the problem (16).

When ε → 0, the problem (16) reduces to the problem
(11) and the approximate error vanishes. However, in this
case the sufficient condition (19) requires ρ→∞. In general,
an ADM tends to be very slow when the penalty parameter ρ
gets very large. Thus, a tradeoff should be made between the
approximating accuracy and the algorithm convergent rate.
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Fig. 1. Recovery performance of Lp-ADM versus p in SαS
noise. Left: α = 1 (Cauchy noise). Right: α = 0.5.

5. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the new
method via numerical simulations. It is compared with a s-
tandard reconstruction algorithm, Homotopy [20], and two
robust algorithms, Huber-FISTA [16], and YALL1 [15]. We
use a simulated K-sparse (with K = 30) signal of length
n = 512. The positions of the K nonzeros are uniformly
randomly chosen while the amplitude of each nonzero en-
try is generated according to the Gaussian distribution. An
m × n orthonormal Gaussian random matrix is used as the
sensing matrix. Each provided experimental result is an av-
erage over 200 independent runs. When p ≥ 1, Lp-ADM is
run with ρ = 102 and the x-subproblem is updated via (15)
with L1 = 2. When p < 1, Lp-ADM is run with ρ = 2× 104

and the x-subproblem is updated via (18) with ε = 10−3 and
L2 = 1

ε . In implementing Lp-ADM in the nonconvex case,
we firstly run it with p = 1 to obtain a starting point.

Fig. 1 shows the recovery performance of Lp-ADM ver-
sus p in symmetric α-stable (SαS) noise. We setm = 200. T-
wo impulsive conditions, with characteristic exponents α = 1
(Cauchy noise) and α = 0.5, and three noise levels, with scale
parameters of γ ∈ {10−2, 2 × 10−3, 5 × 10−4}, are consid-
ered. Since the variance of such SαS noise is infinite, the
`2-norm loss formulation is unstable in statistics in this case.
Accordingly, as shown in Fig. 1, the performance correspond-
s to p = 2 deteriorates drastically when the noise gets more
impulsive. Meanwhile, using a smaller value of p can yield
significantly better performance.

In the second experiment, we compare the proposed al-
gorithm with the Homotopy, Huber-FISTA, and YALL1 al-
gorithms. Fig. 2 shows the performance of the compared

Fig. 2. Recovery performance versus CS factor m/n for the
compared algorithms in SαS noise with α = 0.5 and γ =
5× 10−4.

algorithms versus CS factor m/n in SαS noise with α = 0.5
and γ = 5×10−4. We setK = 30 and n = 512. Four typical
values of p, p ∈ {0.2, 0.5, 0.8, 1.2}, are examined for the new
algorithm.

It can be seen from Fig. 2 that, the robust algorithms dis-
tinctly outperform Homotopy when m/n > 0.1. As the CS
factor increases, the recovery accuracy of each robust algo-
rithm improves significantly, but that of Homotopy does not
improve distinctly. This is due to the fact that the consid-
ered SαS noise is highly impulsive, and the `2-loss function
is very sensitive to extremely large outliers. Huber-FISTA
is more robust than Homotopy but less robust than YALL1.
That is due the nature that Huber function fitting lies in be-
tween the least-squares and least-absolute-deviations. When
m/n > 0.25, Lp-ADM with p < 1 achieves better perfor-
mance than Huber-FISTA and YALL1.

6. CONCLUSION

This work introduced a robust formulation for sparse re-
covery, which employs the `p-norm with 0 < p < 2 as the
loss function. An ADM algorithm has been proposed to solve
this formulation efficiently. Moreover, we have provided the
convergence conditions of the new algorithm for both the con-
vex and nonconvex cases. Simulation results demonstrated
that, in highly impulsive noise, the new algorithm with an
appropriate choice of p (p < 1) has the capability to achieve
distinctly better recovery accuracy compared with existing ro-
bust algorithms.
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