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ABSTRACT
We propose fast algorithms that speed up or improve the
performance of recovering spectrally sparse signals from un-
derdetermined measurements. Our algorithms are based on
a non-convex approach of using alternating projected gra-
dient descent for structured matrix recovery. We apply this
approach to two formulations of structured matrix recovery:
Hankel and Toeplitz mosaic structured matrix, and Hankel
structured matrix. Our methods provide better recovery per-
formance, and faster signal recovery than existing algorithms,
including atomic norm minimization.

Index Terms— compressed sensing, atomic norm, sparse
recovery, spectral estimation, matrix completion

1. INTRODUCTION

Compressed sensing is a signal processing paradigm of reduc-
ing the number of measurements needed for accurate signal
recovery [1, 2]. Compressed sensing has successfully found
applications in various areas such as medical imaging, fluo-
rescence microscopy, face recognition, and radar [3].

Compressed sensing has also found applications in super-
resolution and line spectral estimation, which aims at estimat-
ing spectral information from few observations. To recover
spectrally sparse signals from uniformly sampled observa-
tions, we can apply many conventional techniques, such as
Prony’s method [4], ESPRIT [5], matrix pencil method [6],
and the Tufts and Kumaresan approach [7]. Recently, in [8],
Candès and Fernandez-Granda proposed a total variation
minimization approach to use a set of uniformly spaced time
samples to recover sparse continuous-valued frequencies.
Tang et al. introduced off-the-grid compressed sensing
that employs atomic norm minimization to recover sparse
continuous-valued frequencies from few randomly chosen
nonuniformly-spaced time samples in [9]. The total variation
minimization or atomic norm minimization employ semidef-
inite programs (SDP) for recovery. Solving these SDP’s is
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of high complexity, making it difficult to efficiently recover
spectrally sparse signals of high dimensions. Recently, there
have been additional efforts to improve the speed or perfor-
mance of recovering spectrally sparse signals, including grid
discretization [10], structured Hankel matrix completion [11],
iterative reweighting [12, 13], and alternating descent condi-
tional gradient for solving atomic norm minimization [14].

In this paper, we are interested in improving the speed
and performance of recovering spectrally sparse signals, es-
pecially targeting recovery of high-dimensional spectrally
sparse signals. Towards this end, we propose to study a non-
convex optimization approach to structured matrix comple-
tion. In particular, we consider two non-convex optimization
formulations: low-rank Hankel and Toeplitz Mosaic (HTM)
matrix completion, and low-rank Hankel matrix completion
initially introduced in [11]. We suggest general projected
Wirtinger gradient [15] descent methods for directly solving
these two non-convex optimization formulations, without re-
sorting to convex relaxations. Numerical results show that we
can improve the performance or the speed of recovery using
projected Wirtinger gradient descent, compared with atomic
norm minimization [9] and nuclear norm minimization for
Hankel matrix completion [11].

The remainder of this paper is organized as follows. In
Section 2, we briefly review atomic norm minimization [9]
and Hankel matrix completion [11]. In Section 3, we in-
troduce low-rank Hankel and Toeplitz Mosaic (HTM) ma-
trix completion. Thereafter, in Section 4, we propose pro-
jected Wirtinger gradient descent to directly solve the HTM
and Hankel completion problems. Finally, in Section 5, we
demonstrate the efficacy of our algorithms in terms of signal
recovery performance as well as the computational complex-
ity.

Notations: We denote the set of complex numbers as
C. We reserve calligraphic uppercase letters for index sets.
When we use an index set K as the subscript of a vector x,
i.e., xK, it represents the part of the vector x over index set
K. We use the superscripts H , T , and ∗ for matrix con-
jugate transpose, transpose, and conjugate respectively. For
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x = [x1, x2, ..., x2n−1]T , the Hankel matrix over x, denoted
Hank(x), is the Hankel matrix with first column equal to
[x1, ..., xn]T and last row equal to [xn, ..., x2n−1]. The Her-
mitian Toeplitz matrix over x, denoted Toep(x), has its first
column equal to x. We write the Frobenius norm of a matrix
A ∈ Cm×n as ∣∣A∣∣F ≜

√
∑m

i=1∑
n
j=1 ∣Aij ∣2, where Aij is the

element of A in its i-th row and j-th column.

2. ATOMIC NORM MINIMIZATION AND MATRIX
COMPLETION

Let x♣ be a spectrally sparse signal expressed as a sum of k
complex exponentials as follows:

x♣l =
k

∑
j=1

c♣j e
i2πf♣j l =

k

∑
j=1
∣c♣j ∣a(f♣j , ϕ♣j )l, l ∈ N , (2.1)

where f♣j ∈ [0,1] represents an unknown frequency, c♣j =
∣c♣j ∣eiϕ

♣
j is its coefficient, ϕ♣j ∈ [0,2π] is its phase, and

N = {l ∶ 1 ≤ l ≤ 2n − 1} is the set of time indices.
Here, a(f♣j , ϕ♣j ) ∈ C∣N ∣ is a frequency-atom, with l-th ele-
ment a(f♣j , ϕ♣j )l = ei(2πf

♣
j l+ϕ♣j ). When the phase is 0, we

denote the frequency-atom simply by a(fj). We assume
that the signal is observed over the time index set M ⊆ N ,
∣M∣ = m ≤ 2n − 1, where m observations are chosen ran-
domly. Our goal is to recover the true signal with the smallest
possible number of observations. Recovering the true sig-
nal is not trivial because the frequencies are in a continuous
domain, and their phases and magnitudes are also unknown.

In [9], the authors propose the following atomic norm
minimization to recover a spectrally sparse signal x♣ using
randomly chosen time samplesM ⊆ N :

minimize
x

∣∣x∣∣A

subject to xM = x♣M, (2.2)

where ∣∣x∣∣A represents the atomic norm of a signal x, defined
as ∣∣x∣∣A = inf{∑j ∣cj ∣ ∶ x = ∑j cja(fj)}. The atomic norm
minimization (2.2) can be cast as an SDP as follows [9, (II.6)]:

minimize
u,x,t

1

2∣N ∣
Tr(Toep(u)) + 1

2
t

subject to U1 = [
Toep(u) x
xH t

] ⪰ 0, (2.3)

xM = x♣M,

where Tr(⋅) is the trace function, and Toep(u) is a Hermitian
Toeplitz matrix. We refer the reader to [9] for details. The
atomic norm minimization requires a certain minimum sepa-
ration between frequencies for successful recovery.

Inspired by the matrix pencil approach [6, 16], the authors
of [11] developed the Enhanced matrix completion (EMaC) to
recover spectrally sparse signals from randomly chosen time

samples. The EMaC formulation is stated as follows [11,
(13)]:

minimize
x

∣∣Hank(x)∣∣∗

subject to xM = x♣M, (2.4)

where ∣∣M ∣∣∗ represents the nuclear norm of a matrix M ,
which is the sum of the singular values of M . This convex
program can be further as an SDP:

minimize
x,Q1,Q2

1

2
Tr(Q1) +

1

2
Tr(Q2)

subject to U2 = [
Q1 Hank(x)

Hank(x)H Q2
] ⪰ 0, (2.5)

xM = x♣M,

where the matrices Q1 and Q2 are Hermitian matrices.
When the underlying frequencies satisfy the separation

condition, atomic norm minimization has better signal recov-
ery performance than EMaC. However, EMaC provides ro-
bust signal recovery even when the separation condition is not
satisfied. Moreover, solving the SDP for atomic norm mini-
mization and EMaC can be slow, especially for problems of
large dimensions. In the next section, we propose new opti-
mization formulations and algorithms which can provide bet-
ter recovery performance of spectrally sparse signals in faster
speed, compared with atomic norm minimization and nuclear
norm minimization for Hankel matrix completion.

3. HANKEL AND TOEPLITZ MOSAIC MATRIX
COMPLETION

In this section, we introduce a new optimization formulation,
called Hankel and Toeplitz Mosaic (HTM) matrix comple-
tion, to recover spectrally sparse signals. Our HTM matrix
completion is formulated as follows:

minimize
z,x

rank(U3)

subject to U3 = [
Toep(z) Hank(x)

Hank(x)H Toep(z)T ] ⪰ 0, (3.1)

xM = x♣M,

where rank(⋅) denotes the matrix rank. One can relax (3.1) to
its nuclear norm minimization:

minimize
z,x

2Tr(Toep(z))

subject to U3 = [
Toep(z) Hank(x)

Hank(x)H Toep(z)T ] ⪰ 0, (3.2)

xM = x♣M.

The difference between (2.5) and (3.2) is that (3.2) further im-
poses that the diagonal matrices are Hermitian Toeplitz matri-
ces.
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The following theorem states a relation between (3.2) and
atomic norm minimization. We omit its proof due to space
limitations.

Theorem 3.1. Let x† be an optimal solution to (3.2), and sup-
pose that Hank(x†) can be decomposed as V DV T , where
D is a diagonal matrix and V has frequency atoms as its
columns. Then the optimal objective value of (3.2) is the
smallest atomic norm among all signals x satisfying the ob-
servation constraints; namely (3.2) is equivalent to atomic
norm minimization.

4. PROJECTED WIRTINGER GRADIENT DESCENT
FOR HTM AND HANKEL MATRIX COMPLETION

We now propose a projected Wirtinger gradient descent algo-
rithm for various structured matrices, especially, HTM matrix
completion and Hankel matrix completion. We first introduce
the method for HTM matrix completion, which solves (3.1).

Let us define the set of all complex-valued matrices with
rank no greater than k as follows:

Rk
C = {L ∈ C2n×2n ∣ rank(L) ≤ k}. (4.1)

We further denote the set of all complex-valued Toeplitz Han-
kel mosaic matrices that are consistent with the observed data
as

HHTM = {[
Toep(z) Hank(x)

Hank(x)H Toep(z)T ] ∣ z ∈ C
n,

x ∈ C2n−1, xM = x♣M}. (4.2)

We then seek a matrix in HHTM with rank no larger than k
by considering the problem:

minimize
L∈Rk

C ,H∈H

1

2
∣∣L −H ∣∣2F . (4.3)

To solve (4.3), we use a projected gradient descent algo-
rithm. We start with initial values H0 and L0. By considering
Wirtinger calculus [15] and applying gradient descent on the
function with complex variables, we derive the update rule of
our projected Wirtinger algorithm as follows:

Lt+1 ∈ PRk
C
(Lt − δ1(Lt −Ht)),

Ht+1 ∈ PHHTM
(Ht − δ2(Ht −Lt+1)), (4.4)

where t is the iteration number, δ1 > 0 and δ2 > 0 are step
sizes, and PRk

C
and PHHTM

are the projections onto Rk
C and

HHTM respectively.
The projection PRk

C
(X), which is the projection onto the

best rank-k approximation to X , is calculated through sin-
gular value decomposition. Let the singular value decompo-
sition of X be X = UΛV H . Then, PRk

C
(X) = UkΛkV

H
k ,

Algorithm 1: Projected Wirtinger gradient descent
method

Input: x♣M, MaxItr, ϵerr , δ1, δ2, k
Output: x

1 Initialize: L0 ← 0, H0 ← 0
2 for t = 0 to MaxItr do
3 Lt+1 ← PRk

C
(Lt − δ1(Lt −Ht))

4 Ht+1 ← PH (Ht − δ2(Ht −Lt+1)) ▷H is HHTM for
HTM completion, or H is the set of Hankel matrices for
Hankel matrix completion

5 if ∣∣Ht+1 −Ht∣∣F /∣∣Ht∣∣F < ϵerr then
6 break
7 end
8 end

where Λk is the diagonal matrix that only retains the k largest
nonnegative singular values of X , and Uk and Vk are the ma-
trices whose columns are the corresponding left and right sin-
gular vectors respectively.

The projection PHHTM
(X) is carried out for Hankel and

Toeplitz matrices separately due to its mosaic structure. More

precisely, for any X = [X11 X12

X∗12 X22
] ∈ C2n×2n, we have

PHHTM
(X) = [

1
2
PT (X11 +XT

22) PH(X12)
PH(X12)H 1

2
(PT (X11 +XT

22))
T ] .

Here PH is the projection onto the set of Hankel matrices
whose anti-diagonals coincide with the observed data. From
[17, (8)],

PH(Y ) = Hank(z),

where
⎧⎪⎪⎨⎪⎪⎩

zi = yi, i ∈M,

zi = mean{Yab∣a + b = i}, otherwise.
(4.5)

Namely, for the missed measurement signal zi, i ∈ N ∖M,
we calculate the average of the i-th anti-diagonal elements of
Y . The operator PT is the projection onto the set of Toeplitz
matrices, and is given by

PT (Y ) = Toep(z),
where zi = mean{Yab∣a − b = i, a ≥ b}. (4.6)

Namely, for Toeplitz matrix projection, we compute the av-
erage of the i-th diagonal elements. The projected Wirtinger
algorithm continues the projections as in (4.4) onto a low-rank
matrix and Hankel Toeplitz mosaic matrix until it converges
to a solution or the maximum number of iterations (MaxItr)
is exhausted.

The projected Wirtinger for Hankel matrix completion is
similar to the projected Wirtinger for HTM. It uses the projec-
tion onto the Hankel matrix, instead of Hankel Toeplitz mo-
saic matrix, according to (4.5). Based on Attouch and Bolte’s
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theory [18, 19], we provide global convergence analysis of
the algorithm in [17]. We refer the reader to our longer ver-
sion [17] for details. We summarize our procedure in Algo-
rithm 1.

5. NUMERICAL EXPERIMENTS

We compare the performance and complexity of our pro-
jected Wirtinger gradient descent methods for both HTM and
Hankel matrix completion with the standard Atomic Norm
Minimization (ANM) [9], and the Enhanced Matrix Comple-
tion (EMaC) [11]. We conducted our numerical experiments
on HP Z220 CMT with Intel Core i7-3770 dual core CPU
@3.4GHz clock speed and 16GB DDR3 RAM, using Matlab
(R2013b release) on Windows 7 OS. We use CVX [20] to
solve convex programs for ANM and EMaC. In all experi-
ments, the phases and frequencies are sampled uniformly at
random in [0,2π) and [0,1] respectively. The amplitudes
∣cj ∣, j = 1, ..., k, are chosen as ∣cj ∣ = 1 + 100.5mj , where mj is
randomly drawn in the uniform distribution on [0,1].

We carried out numerical experiments to compare the sig-
nal recovery performance of our projected Wirtinger method
with ANM and EMaC. We abbreviate HTM and Hankel ma-
trix completion using projected Wirtinger to HTM-PW and
EMaC-PW respectively. We varied the number of measure-
ments m from 20 to 127, and the sparsity k from 1 to 40. We
obtained the probability of successful signal recovery over
100 trials for each parameter setup. We consider a recov-
ery successful if ∣∣x♣ − x̂∣∣2/∣∣x♣∣∣2 ≤ ϵsucc, where ϵsucc =
10−2, x̂ is the estimated signal, and x♣ is the true signal. Fig.
1 demonstrates that the projected Wirtinger algorithms (Fig.
1(a) and (b)) improve the phase transition boundary over other
algorithms (Fig. 1(c) and (d)). We provide Fig. 2 to more
clearly show the advantage of our algorithms in signal recov-
ery, where we use the success criterion ϵsucc = 5 × 10−3. In
particular, when the sparsity k is 40, HTM-PW has 50% suc-
cess rate with around 87 measurements out of 127 respec-
tively, while the success rate of other algorithms with the
same number of measurements is 0. The 50% success rate of
other algorithms is achieved around 110 for EMaC, and 120
for ANM. Even though HTM-PW has the best phase transi-
tion boundary curve, in certain regions (upper orange color
region) of its phase transition, HTM-PW has smaller success
rate than other algorithms. It would be interesting to under-
stand this phenomenon more deeply. We leave this for future
work.

We assess the computational complexity of our algorithms
in terms of the average execution time by averaging over 10
trials. We provide results in Table 1 when the signal dimen-
sion (2n − 1) varies from 101 to 1401, m = ⌊(2n−1)/2⌋, and
k = ⌊0.1(2n − 1)⌋. We stopped our projected Wirtinger algo-
rithms when ∣∣Ht+1 −Ht∣∣F /∣∣Ht∣∣F ≤ 10−6 or the maximum
number of iterations (MaxItr) is exhausted. We set Max-
Itr to 1000. The success rate was similar to that shown in

(a) HTM-PW (b) EMaC-PW

(c) ANM (d) EMaC

Fig. 1. Phase transition for successful signal recovery when
the signal dimension 2n − 1 = 127.

Fig. 2. The probability of signal recovery when (2n − 1, k) =
(127,40).

Table 1. Execution Time (Unit: seconds)

2n − 1 Project Wirtinger CVX
HTM EMaC ANM EMaC

101 3.7 0.1 27.1 5.7
201 7.1 0.2 787.7 51.6
401 309.7 0.9 N/Aa N/A
601 733.4 1.4 N/A N/A
1001 3612.4 6.6 N/A N/A
1401 8999.2 10.1 N/A N/A

a Not Available (Out of Memory)

Fig. 1. Table 1 clearly shows that the speed of our projected
Wirtinger methods outperform those of ANM and EMaC.
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