
FUSION OF ALGORITHMS FOR MULTIPLE MEASUREMENT VECTORS

Deepa K. G.⋆ Sooraj K. Ambat†⋆ K.V.S. Hari⋆

⋆SSP Laboratory, Dept. of ECE, Indian Institute of Science, Bangalore - 560012, India.
†Naval Physical and Oceanographic Laboratory, Defence R&D Organisation, Kochi - 682021, India.

ABSTRACT

We consider the recovery of sparse signals that share a common

support from multiple measurement vectors. The performance of

several algorithms developed for this task depends on parameters

like dimension of the sparse signal, dimension of measurement

vector, sparsity level, measurement noise. We propose a fusion

framework, where several multiple measurement vector reconstruc-

tion algorithms participate and the final signal estimate is obtained

by combining the signal estimates of the participating algorithms.

We present the conditions for achieving a better reconstruction per-

formance than the participating algorithms. Numerical simulations

demonstrate that our fusion algorithm often performs better than the

participating algorithms.

Index Terms— Compressed sensing, Fusion, Sparse signal re-

construction, multiple measurement vectors

1. INTRODUCTION

Consider the standard Compressed Sensing (CS) measurement setup

where a K-sparse signal x ∈ R
N×1 is acquired through M linear

measurements via

b = Ax+w, (1)

where A ∈ R
M×N denotes the measurement matrix, b ∈ R

M×1

represents the measurement vector, and w ∈ R
M×1 denotes the ad-

ditive measurement noise present in the system. The reconstruction

problem, estimating x from (1) using A and b, is known as Single

Measurement Vector (SMV) problem. In this work, we consider the

Multiple Measurement Vector (MMV) problem [1] where we have

L measurements: b
(1) = Ax

(1) + w
(1), b(2) = Ax

(2) + w
(2),

· · · , b(L) = Ax
(L) + w

(L). The vectors {x(l)}Ll=1 are assumed

to have a common sparse support-set. The problem is to estimate

x
(l) (l = 1, 2, . . . , L). Instead of recovering the L signals individu-

ally, the attempt in the MMV problem is to simultaneously recover

all the L signals. MMV problem arises in many applications such

as the neuromagnetic inverse problem in Magnetoencephalography

(a modality for imaging the brain) [2, 3], array processing [4], non-

parametric spectrum analysis of time series [5], and equalization of

sparse communication channels [6].

Recently many algorithms have been proposed to recover signal

vectors with a common sparse support. Some among them are algo-

rithms based on diversity minimization methods like ℓ2,1 minimiza-

tion [7], and M-FOCUSS [1], greedy methods like M-OMP and M-

ORMP [1], and Bayesian methods like MSBL [8] and T-MSBL [9].

However it has been observed that the performance of many

algorithms depends on many parameters like the dimension of the

measurement vector, the sparsity level, the statistical distribution of

the non-zero elements of the signal, the measurement noise power

etc. [9]. Thus it becomes difficult to choose the best sparse recon-

struction algorithm without a priori knowledge about these parame-

ters.

Suppose we have the sparse signal estimates given by various

algorithms. It may be possible to merge these estimates to form a

more accurate estimate of the original. This idea of fusion of multi-

ple estimators has been proposed in the context of signal denoising

in [10] where fusion was performed by plain averaging. Recently,

Ambat et al. [11–15] proposed fusion of the estimates of sparse re-

construction algorithms to improve the sparse signal reconstruction

performance of SMV problem.

In this paper, we propose a framework which uses several MMV

reconstruction algorithms and combines their sparse signal support

estimates to determine the final signal estimate. We refer to this

scheme as MMV-Fusion of Algorithms for Compressed Sensing

(MMV-FACS). We present an upper bound on the reconstruction

error by MMV-FACS. We also present a sufficient condition for

achieving a better reconstruction performance than any participating

algorithm. By Monte-Carlo simulations we show that fusion of

viable algorithms leads to improved reconstruction performance for

the MMV problem.

2. PROBLEM FORMULATION

The MMV problem involves solving the following L under-determined

systems of linear equations

b
(l) = Ax

(l) +w
(l), l = 1, 2, 3, . . . , L (2)

where A ∈ R
M×N (M ≪ N) represents the measurement matrix,

b
(l) ∈ R

M×1 represents the lth measurement vector, and x
(l) ∈

R
N×1 denotes the corresponding K-sparse source vector. That is,

Notations: Matrices and vectors are denoted by bold upper case and bold
lower case letters respectively. Sets are represented by upper case Greek
alphabets and calligraphic letters. AT denotes the column sub-matrix of
A where the indices of the columns are the elements of the set T . XT , :

denotes the sub-matrix formed by those rows of X whose indices are listed
in the set T . X

K is the matrix obtained from X by keeping its K rows
with the largest ℓ2-norm and by setting all other rows to zero, breaking ties
lexicographically. supp(X) denotes the set of indices of non-zero rows of

X. For a matrix X, x(l) denotes the ℓth column vector of X. X̂i denotes
the reconstructed matrix by the ith participating algorithm. The complement
of the set T with respect to the set {1, 2, . . . , N} is denoted by T c. For
two sets T1 and T2, T1 \ T2 = T1 ∩ T c

2 denotes the set difference. |T |

denotes the cardinality of set T . A† and A
T denote the pseudo-inverse and

transpose of matrix A, respectively. The (p, q) mixed norm of the matrix X

is defined as

‖X‖(p,q) =

(

∑

i

‖Xi,:‖
q
p

)1/q

The Frobenius norm of matrix A is denoted as ‖A‖F .
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|supp(x(l))| ≤ K and x
(l) share a common support-set for l =

1, 2, . . . , L. w
(l) ∈ R

M×1 represents the additive measurement

noise. We can rewrite (2) as

B = AX+W (3)

where X = [x(1),x(2), . . . ,x(L)], W = [w(1),w(2), . . . ,w(L)],

and B = [b(1),b(2), . . . ,b(L)]. For a matrix X, we define

supp(X) =
⋃L

i=1 supp(x
i). In (3), we assume that X is jointly

K-sparse. That is, |supp(X)| ≤ K. There are at most K rows in

X that contain non-zero elements. We assume that K < M and K
is known a priori.

3. FUSION OF ALGORITHMS FOR MULTIPLE

MEASUREMENT VECTOR PROBLEM

In this paper, we propose to employ multiple sparse reconstruction

algorithms independently for estimating X from (3) and fuse the re-

sultant estimates to yield a better sparse signal estimate. Let P ≥ 2
denote the number of different participating algorithms employed

to estimate the sparse signal. Let T̂i denote the support-set esti-

mated by the ith participating algorithm and let T denote the true-

support-set. Denote the union of the estimated support-sets as Γ,

i.e., Γ , ∪P
i=1T̂i, assume that R , |Γ| ≤ M . We hope that dif-

ferent participating algorithms work on different principles and the

support-set estimated by each participating algorithm includes a par-

tially correct information about the true support-set T . It may be also

observed that the union of the estimated support-sets, Γ, is richer in

terms of the true atoms as compared to the support-set estimated by

any participating algorithm. Also note that, once the support-set is

estimated, the non-zero magnitudes of X can be estimated by solv-

ing a Least-Squares (LS) problem on an over-determined system of

linear equations. Hence if we can identify all the true atoms included

in the joint support-set Γ, we can achieve a better sparse signal esti-

mate.

Since we are estimating the support atoms only from Γ, we need

to only solve the following problem which is lower dimensional as

compared to the original problem (3):

B = AΓXΓ,: + W̃, (4)

where AΓ denotes the sub-matrix formed by the columns of

A whose indices are listed in Γ, XΓ,: denotes the submatrix

formed by the rows of X whose indices are listed in Γ, and

W̃ = W + AΓcXΓc,:. The matrix equation (4) represents a

system of L linear equations which are over-determined in nature.

We use the method of LS to find an approximate solution to the

overdetermined system of equations in (4). Let VΓ,: denote the

LS solution of (4). We choose the support-set estimate of MMV-

FACS as the support of VK , i.e., indices of those rows having the

largest ℓ2-norm. Once the non-zero rows are identified, solving

the resultant overdetermined solution using LS we can estimate the

non-zero entries of X̂. The proposed MMV-FACS is summarized in

Algorithm 1.

3.1. Theoretical Results

In this section, we will state some theoretical results for the perfor-

mance of MMV-FACS. We consider the general case for an arbitrary

signal matrix. We also state the average case performance of MMV-

FACS subsequently. For brevity we state only the results and the

proofs are available in the extended version of this work [16].

Algorithm 1 : MMV-FACS

Inputs: A ∈ R
M×N , B ∈ R

M×L, K, and
{

T̂i

}

i=1:P
.

Assumption: | P∪
i=1

T̂i| ≤ M .

Initialization: V = 0 ∈ R
N×L.

Fusion:

1. Γ = ∪P
i=1 T̂i ;

2. VΓ,: = A
†
ΓB, VΓc,: = 0;

3. T̂ = supp(VK);

Outputs: T̂ and X̂ (where X̂T̂ ,: = A
†

T̂ ,:
B and X̂T̂ c,: = 0)

For the theoretical analysis, we use the Restricted Isometry

Property (RIP) [17] of the measurement matrix which is defined as

follows.

Definition 1. A matrix A satisfies Restricted Isometry Property

(RIP) if for some δK ∈ [0, 1)

(1− δK) ‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δK) ‖x‖22 (5)

holds for all K-sparse vectors x. The Restricted Isometry Constant

(RIC) is the smallest constant δK ∈ [0, 1) such that (5) holds for all

K-sparse vectors x.

The performance analysis is characterized by a measure called

Signal-to-Reconstruction-Error Ratio (SRER) defined as

SRER ,
‖X‖2F

∥

∥

∥X− X̂

∥

∥

∥

2

F

(6)

where X and X̂ denote the actual and reconstructed signal matrix

respectively.

3.1.1. Performance Analysis for Arbitrary Signals under Measure-

ment Perturbations

It is seen that many signals found in practice are not exactly sparse,

but are compressible in nature [18]. We give an upper bound on the

reconstruction error by MMV-FACS in Theorem 1. We also state a

sufficient condition to get an improved performance of MMV-FACS

scheme over any given participating algorithm.

Theorem 1. Let X be an arbitrary signal with supp(XK )=T . Con-

sider the MMV-FACS setup discussed in Section 3, and assume that

the measurement matrix A satisfies RIP with RIC δR+K . We have

the following results :

1. Upper bound on reconstruction error : Defining ν =
3− δ2R+K

(1− δR+K)2
, C1 =

(

1+ν
√
1 + δR+K

)

, C2 =
ν
√
1 + δR+K√
R +K

and C3 =
1 + δR+K

(1− δR+K)2
, we have the result that

∥

∥

∥X− X̂

∥

∥

∥

F
≤C1

∥

∥

∥X−X
K
∥

∥

∥

F
+ C2

∥

∥

∥X−X
K
∥

∥

∥

2,1

+ C3 ‖XΓc, :‖F + ν ‖W‖F
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2. SRER Gain : Assume that

∥

∥

∥
XT̂ c

i
, :

∥

∥

∥

F
6= 0,

‖XΓc, :‖F 6= 0.

Define ηi =
‖XΓc, :‖F
∥

∥

∥
XT̂ c

i
, :

∥

∥

∥

F

, ζ =
‖W‖F

‖XΓc, :‖F
, and

ξ =
(

3
√

1 + δR+K + 1
)

∥

∥X−X
K
∥

∥

F

3 ‖XΓc,:‖F

+

√
1 + δR+K√
R +K

∥

∥X−X
K
∥

∥

2,1

‖XΓc,:‖F
MMV-FACS provides at least SRER gain of
( (1− δR+K)2

(1 + δR+K + 3ζ + 3ξ)ηi

)2

over the ith participating al-

gorithm

if ηi <
(1− δR+K)2

(1 + δR+K + 3ζ + 3ξ)
.

3.1.2. Exactly K-sparse matrix

Theorem 1 considered the case when X is an arbitrary matrix. If X

is a K-sparse matrix then we have X = X
K . Thus it follows from

part 1 of Theorem 1 that if XΓc,: = 0 (union set contains all the

correct atoms) and W = 0 (clean measurement case) MMV-FACS

provides exact reconstruction.

Also, it follows from part 2 of Theorem 1 that MMV-FACS pro-

vides at least SRER gain of
( (1− δR+K)2

(1 + δR+K + 3ζ)ηi

)2

over ith al-

gorithm if ηi <
(1− δR+K)2

(1 + δR+K + 3ζ)
. Thus, the improvement in the

SRER gain provided by MMV-FACS over the ith Algorithm for a

K-sparse matrix is greater than that of an arbitrary matrix by a fac-

tor of
(

1 +
3ξ

(1 + δR+K + 3ζ)

)2

.

3.1.3. Average Case Analysis

Intuitively, we expect multiple measurement vector problem to per-

form better than the single measurement vector case. However, if

each measurement vector is the same, i.e., in the worst case, we have

x
(i) = c ∀ i = 1, . . . , L then we do not have extra information on

X than provided by a single vector x(1).

The theoretical results presented till now are worst case analysis,

i.e., conditions under which the algorithm is able to recover any joint

sparse matrix X. This approach does not provide insight into the su-

periority of sparse signal reconstruction with multiple measurement

vectors compared to the single measurement vector case.

To notice a performance gain with multiple measurement vec-

tors, we proceed with an average case analysis. For average case

analysis, on the support set T , we impose that XT ,: = ΣΦ, where

Σ is a K ×K diagonal matrix with positive diagonal entries and Φ
is a K × L random matrix with i.i.d. Gaussian entries. Our goal is

to show that under this signal model the typical behaviour of MMV-

FACS is better than in the worst case.

Theorem 2. Consider the MMV-FACS setup discussed in Section 3.

Assume a Gaussian signal model, i.e., XT ,: = ΣΦ, where Σ is a

K × K diagonal matrix with positive diagonal entries and Φ is a

K×L random matrix with i.i.d. Gaussian entries. Let ei denote the

|Γ|×1 vector with a ‘1’ in the ith coordinate and ‘0’ elsewhere. Let

η = min
i∈(T ∩Γ)

∥

∥

∥
e
T
i A

†
ΓW

∥

∥

∥

2
+ max

j∈(Γ\T )

∥

∥

∥
e
T
j A

†
ΓW

∥

∥

∥

2
and

γ =

min
i∈(T ∩Γ)

∥

∥

∥
e
T
i A

†
ΓAT Σ

∥

∥

∥

2
− max

j∈(Γ\T )

∥

∥

∥
e
T
j A

†
ΓAT Σ

∥

∥

∥

2
− η

C2(L)

min
i∈(T ∩Γ)

∥

∥

∥
e
T
i A

†
ΓAT Σ

∥

∥

∥

2
+ max

j∈(Γ\T )

∥

∥

∥
e
T
j A

†
ΓAT Σ

∥

∥

∥

2

where C2(L) = E ‖Z‖2 with Z = (Z1, . . . , ZL) being a vec-

tor of independent standard Gaussian variables. Assume that

min
i∈(T ∩Γ)

∥

∥

∥
e
T
i A

†
ΓAT Σ

∥

∥

∥

2
− max

j∈(Γ\T )

∥

∥

∥
e
T
j A

†
ΓAT Σ

∥

∥

∥

2
>

η

C2(L)
.

Let Θ denote the event that MMV-FACS picks all correct indices

from the union set Γ. Then, we have

P (Θ) ≥ 1−K exp(−2A2(L)γ
2)

where

A2(L) =

(

Γ̈((L+ 1)/2)

Γ̈(L/2)

)2

≈ L/2

where Γ̈(·) denotes the Gamma function.

Because A2(L) ≈ L/2 the probability that MMV-FACS selects

all correct indices from the union set increases as L increases. Thus

more than one measurement vector improves the performance.

4. NUMERICAL EXPERIMENTS AND RESULTS

We conducted numerical experiments using synthetic data to evalu-

ate the performance of MMV-FACS. The performance is evaluated

using Average SRER (ASRER) which is defined as

ASRER =

∑ntrials

j=1 ‖Xj‖2F
∑ntrials

j=1

∥

∥

∥Xj − X̂j

∥

∥

∥

2

F

where Xj and X̂j denote the actual and reconstructed jointly sparse

signal matrix in the jth trial respectively, and ntrials denotes the

total number of trials.

We define the Signal-to-Measurement-Noise-Ratio (SMNR), as

SMNR , E

{

∥

∥

∥
x
(i)
∥

∥

∥

2

2

}

/

E

{

∥

∥

∥
w

(i)
∥

∥

∥

2

2

}

, where E{·} denotes the

mathematical expectation operator. For brevity, we show only a few

simulation results in this paper. More results are available at [16].

4.1. Experimental Set-up

Following steps are involved in the simulation :

(i) Generate elements of AM×N independently from N (0, 1
M
)

and normalize each column norm to unity.

(ii) Choose K non-zero locations uniformly at random from the

set {1, 2, . . . , N} and fill those K rows of X with values in-

dependently from N (0, 1). Remaining N −K rows of X are

made zero.

(iii) The MMV measurement matrix B is computed as B = AX+
W, where the columns of W, w(i)’s are independent and their

elements are i.i.d and Gaussian with variance determined from

a specified SMNR.

(iv) Apply the MMV sparse recovery method.

(v) Repeat steps (1)-(4), 1000 times.

(vi) Calculate ASRER.
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Fig. 1. Performance of MMV-FACS, averaged over 1, 000 trials, for Gaussian sparse signal matrix with SMNR = 20 dB. Sparse signal

dimension N = 500, Sparsity level K = 20 and number of measurement vectors L = 20.

4.2. Results

We used M-OMP, M-SP, M-BPDN [19] and M-FOCUSS [3] as the

participating algorithms in MMV-FACS. The software code of M-

BPDN was taken from [20]. Since M-FOCUSS and M-BPDN al-

gorithms may not yield an exact K-sparse solution, we estimate

the support-set as the indices of the K rows with largest l2 norm.

We fixed the sparse signal dimension N = 500 and sparsity level

K = 20 in the simulations. As an upper bound on the performance,

we use an Oracle estimator, which is aware of the true support set

and finds the non-zero entries of the sparse matrix by solving least-

squares.

The empirical performance of MMV reconstruction algorithms

for different values of M is shown in Fig.1. The simulation parame-

ters are L = 20, SMNR=20 dB and X is chosen as Gaussian sparse

signal matrix. The results of fusion of MOMP and MSP are shown

in Fig. 1(a). It may be observed that for M = 35 and M = 40
MOMP shows a better ASRER than MSP. However for M = 45
MSP resulted in a better ASRER than MOMP. Interestingly, MMV-

FACS(MOMP, MSP) always resulted in a better ASRER than both

MOMP and MSP in these cases.

Fig. 1(b) depicts the results of fusion of MBPDN and MFO-

CUSS. Here also MMV-FACS yielded a better ASRER than the

participating algorithms MBPDN and MFOCUSS. For example, for

M = 35, MMV-FACS (MBPDN,MFOCUSS) gives 10.67 dB and

4.27 dB improvement over MBPDN and MFOCUSS respectively.

4.2.1. Reproducible Research

We provide necessary Matlab codes to reproduce the figures, pub-

licly downloadable from http://www.ece.iisc.ernet.

in/˜ssplab/Public/MMVFACS.tar.gz.

4.3. Real Compressible Signals

To evaluate the performance of MMV-FACS on compressible sig-

nals and real world data, we used the data set ‘05091 .dat ’ from

MIT-BIH Atrial Fibrillation Database [21]. We used a randomly

generated Gaussian sensing matrix of size M × 250, with different

values of M in the experiment. We assumed sparsity level K = 50

and used M-OMP and M-SP as the participating algorithms. The

reconstruction results are shown in Figure 2.
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Fig. 2. Performance of MMV-FACS for 2-channel ECG signals from

MIT-BIH Atrial Fibrillation Database [21].

Similar to synthetic signals, MMV-FACS shows a better AS-

RER compared to the participating algorithms M-OMP and M-SP.

This demonstrates the advantage of MMV-FACS in real-life applica-

tions, requiring fewer measurement samples to yield an approximate

reconstruction.

5. CONCLUSIONS

We proposed a fusion framework for MMV problem where we em-

ploy multiple MMV sparse reconstruction algorithms and fuse the

resultant estimates to yield a better sparse signal estimate which

is often better than the best sparse reconstruction algorithm among

the participating algorithms. We provided theoretical results for im-

provement in sparse signal reconstruction. The performance of the

proposed method was also verified using Monte Carlo simulations.
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