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ABSTRACT
This paper investigates the impact of projection design on

the reconstruction of high-dimensional signals from low-

dimensional measurements in the presence of side informa-

tion. In particular, we assume that both the signal of interest

and the side information are described by a joint Gaussian

mixture model (GMM) distribution. Sharp necessary and

sufficient conditions on the number of measurements needed

to guarantee that the average reconstruction error approaches

zero in the low-noise regime are derived, for both cases when

the side information is available at the decoder or at the

decoder and encoder. Numerical results are also presented

to showcase the impact of projection design on applications

with real imaging data in the presence of side information.

Index Terms— Kernel design, side information, com-

pressive sensing, Gaussian mixture models, minimum mean-

squared error.

I. INTRODUCTION

Compressive sensing (CS) is a signal acquisition paradigm

that offers the means to simultaneously sense and compress a

signal without any or with minimal loss of information [1],

[2]. In particular, this emerging paradigm shows that it is

possible to perfectly reconstruct an n-dimensional s-sparse

signal (sparse in some orthonormal dictionary or frame) with

overwhelming probability with only O(s log(n/s)) linear

random measurements or projections. The signal recovery

is performed using tractable �1 minimization methods [3] or

iterative methods, like greedy matching pursuit [4].

However, in many application scenarios, users are offered

with further information about the signal of interest – known

as side information –in the form of a signal correlated with

the signal of interest. For example, video streams are usually

presented with corresponding audio tracks, high definition

images can be presented together with low-resolutions ver-

sions, hyperspectral images can be accompanied by RGB

versions of the same subject [5], etc.

Recent advances in CS have developed frameworks and

reconstruction schemes that leverage the presence of side
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information to improve reconstruction performance of sparse

signals from linear projection measurements [6]–[11].

Of particular relevance, in [5], [12], the impact of side

information for both signal classification and reconstruction

is studied for the case when the signal of interest and the side

information can be described by a joint Gaussian mixture

model (GMM). In particular, [5], [12] provide sufficient con-

ditions on the number of measurements required for reliable

signal classification and reconstruction, when assuming that

random linear projection are extracted from the signal of

interest and the side information.

There are multiple reasons for adopting a GMM rep-

resentation, which can be seen as a union of (linear or

affine) subspaces, where each subspace is associated with

the translation of the image of the (possibly low-rank)

covariance matrix of each Gaussian component within the

GMM. In fact, low-rank GMM priors have been shown to

approximate signals in compact manifolds [13] and have

been shown to provide state-of-the-art results in practical

problems in image processing [14], dictionary learning [13],

image classification [15] and video compression [16].

This paper asks the question:

• What is the impact of projection kernel design on the
reconstruction performance of CS of GMM signals with
side information?

In particular, we consider projection designs aimed at

minimizing the reconstruction minimum mean-squared error

(MMSE) and that leverage the presence of side informa-

tion. We provide necessary and sufficient conditions on

the number of designed projections from the signal of

interest in order to guarantee that the reconstruction error

approaches zero in the low-noise regime. In this way, in

fact we generalize the results in [17] to the case when side

information is available to the decoder and in the projection

design phase.

In the remainder, we denote matrices with boldface upper-

case letters (X) and column vectors with boldface lower-case

letters (x). The symbols In and 0m×n represent the identity

matrix of dimension n×n and the all-zero-entries matrix of

dimension m × n, respectively (subscripts will be dropped

when the dimensions are clear from the context). E[·] and

rank(·) represent the expectation and the rank operators,
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Fig. 1. Compressive sensing with side information model.

The side information can be available at the decoder only or

else at both the encoder and the decoder.

respectively. The Gaussian distribution with mean μ and

covariance matrix Σ is denoted by N (μ,Σ).

II. MODEL
We study the problem of the reconstruction of a high-

dimensional signal x1 ∈ R
n1 from noisy, linear, compressive

measurements y1 ∈ R
m1 , with m1 ≤ n1, in the presence of

side information x2 ∈ R
n2 , which is correlated with the

signal of interest x1. The noisy linear measurements are

given by

y1 = Φ1x1 +w1, (1)

where Φ1 ∈ R
m1×n1 is the projection kernel and

w1 ∼ N (0, Iσ2) represents additive white Gaussian noise

(AWGN) that models possible errors introduced in the mea-

surement process.

In this work we consider two different scenarios: i) side

information is available only at the decoder, i.e., x2 is used

only in the reconstruction algorithm; ii) side information is

available at the encoder and the decoder, i.e., x2 is used in

the reconstruction algorithm as well as in the design of the

projection kernel Φ1 (See Fig. 1).1

The decoder and the encoder have access to the joint

probability density function (pdf) of the signal of interest

and the side information p(x1,x2). We will be assuming

that x1 and x2 are drawn from a joint Gaussian mixture

model (GMM). In particular, x1 and x2 are characterized

by underlying class labels C1 ∈ {1, . . . ,K1} and C2 ∈
{1, . . . ,K2}, respectively, which have joint probability mass

function (pmf) pC1,C2
(i, k). Conditioned on a pair of classes

C1 = i and C2 = k, the joint distribution of x1 and x2 is

Gaussian, and we have

p(x1,x2) =

K1∑
i=1

K2∑
k=1

PC1,C2
(i, k)p(x1,x2|C1 = i, C2 = k)

=

K1∑
i=1

K2∑
k=1

PC1,C2
(i, k)N (μ(i,k)

x ,Σ(i,k)
x ), (2)

1In this work we consider the case in which side information is presented
at the decoder (and possibly at the encoder) uncompressed and without
additive noise.

where

μ(i,k)
x =

[
μ

(i,k)
x1

μ
(i,k)
x2

]
, Σ(i,k)

x =

[
Σ(i,k)

x1
Σ(i,k)

x12

Σ(i,k)
x21

Σ(i,k)
x2

]
. (3)

In other terms, conditioned on class C1 = i, C2 = k,

x1 is Gaussian distributed with mean μ
(i,k)
x1 and covari-

ance Σ(i,k)
x1

, x2 is Gaussian distributed with mean μ
(i,k)
x2

and covariance Σ(i,k)
x2

, and the cross-covariance between

x1 and x2 is given by Σ(i,k)
x12

. The covariance matrices

are assumed to be possibly low-rank, and we denote such

ranks by r
(i,k)
x = rank(Σ

(i,k)
x ), r

(i,k)
x1 = rank(Σ

(i,k)
x1 ) and

r
(i,k)
x2 = rank(Σ

(i,k)
x2 ).

Reconstruction of the signal of interest is performed via

the optimal conditional mean estimator

x̂1(y1,x2) = E[x1|y1,x2] =

∫ +∞

−∞
x1p(x1|y1,x2)dx1,

(4)

where p(x1|y1,x2) is the a posteriori pdf of x1 given the

compressive measurements y1 and the side information x2.

Note that the conditional mean estimator in (4) can be also

expressed in closed form when p(x1,x2) is a GMM [5], [13],

and it is known to minimize the reconstruction minimum

mean-squared error (MMSE)

MMSE(σ2,Φ1) = E[||x1 − x̂1(y1,x2)||2], (5)

which is a function of the joint distribution p(x1,x2), the

projection kernel Φ1 and the noise variance σ2.

We consider both cases of random and designed projection

kernels, thus allowing to unveil the impact of projection

design on reconstruction performance. In particular, we

consider two different scenarios for kernel design, based on

the fact that the side information x2 is offered only at the

decoder or both at decoder and encoder:

1) When side information is available at the decoder only,

the designed kernel Φ�
1 is obtained as the solution of

the optimization problem

minimize
Φ1

MMSE(σ2,Φ1)

subject to tr(Φ1Φ
T
1) ≤ m1,

(6)

where the trace constraint in (6) limits the average

energy associated to the projection kernel. We denote

the MMSE associated with the optimal kernel design

for this case as follows:

MMSE
opt
d (σ2) = MMSE(σ2,Φ�

1). (7)

2) On the other hand, when x2 is also available at the en-

coder, its value is also used to determine the designed

kernel that minimizes the MMSE. In particular, for a

given value of x2, the conditional MMSE (conditioned

on a specific realization of x2) is given by

MMSE(σ2,Φ1,x2) = E[‖x1−x̂1(y1,x2)‖2|x2], (8)
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and the designed kernel Φ�
1(x2) is obtained as the

solution of the optimization problem

minimize
Φ1

MMSE(σ2,Φ1,x2)

subject to tr(Φ1Φ
T
1) ≤ m1.

(9)

We denote the MMSE associated with the optimal

kernel design for this case as

MMSE
opt
ed (σ2) = E[MMSE(σ2,Φ�

1(x2),x2)], (10)

where the expectation is taken with respect to x2.

Note that, in all scenarios, the decoder has perfect knowledge

of the projection kernel Φ1 adopted to compress x1.

III. PHASE TRANSITION ANALYSIS
We first determine the impact of projection design on

the reconstruction MMSE by analyzing its low-noise phase
transition. Namely, a phase transition in the MMSE is

observed when the number of measurements extracted from

the signal of interest m1 is such that the corresponding

MMSE tends to zero when σ2 → 0.

Theorem 1: Consider the measurements model in (1) with

side information x2. Assume x1 and x2 are drawn from the

joint GMM distribution in (2), which is known at both de-

coder and encoder. Consider the case when side information

x2 is available at the decoder only, with Φ1 = Φ�
1, where

Φ�
1 is the solution of the optimization problem (6). Then,

lim
σ2→0

MMSE
opt
d (σ2) = 0 ⇒ m1 ≥ max

i,k
r(i,k)x − r(i,k)x2

, (11)

m1 > max
i,k

r(i,k)x − r(i,k)x2
⇒ lim

σ2→0
MMSE

opt
d (σ2) = 0. (12)

Consider now the case in which side information x2 is

available at both encoder and decoder, with Φ1 = Φ�
1(x2),

where, for each value of x2, Φ�
1(x2) is obtained as the

solution of the optimization problem (9). Then, it holds

lim
σ2→0

MMSE
opt
ed (σ2) = 0 ⇒ m1 ≥ max

i,k
r(i,k)x − r(i,k)x2

, (13)

m1 > max
i,k

r(i,k)x − r(i,k)x2
⇒ lim

σ2→0
MMSE

opt
ed (σ2) = 0. (14)

Proof: See the Appendix.

The results in Theorem 1 show that the same necessary

and sufficient conditions for the MMSE phase transition hold

for both cases when side information is available at the

decoder only, or at both decoder and encoder. Moreover,

on comparing such conditions with those in [5, Theorem 4

and 5] obtained for the case of random measurements, we

can observe that projection design does not guarantee any

advantage in terms of MMSE phase transition with respect

to using random projections.

On the other hand, projection design has a significant

impact on the reconstruction performance when the noise

level is not negligible, as testified by the numerical results

reported in the next section.
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Fig. 2. MMSE vs. 1/σ2 for m1 = 1, 2, 3 with side infor-

mation. Side information at the decoder only with random

projection kernel (solid lines) and with designed projection

kernel (dashed lines). Side information at both the encoder

and the decoder with designed projection kernel (circles) and

suboptimal design (classification of x2) (triangles).

IV. NUMERICAL RESULTS
IV-A. Synthetic data

We first provide numerical results on the reconstruction

MMSE vs. 1/σ2 for synthetic data. We consider a joint

GMM distribution for x1 and x2, with dimensions n1 = 10
and n2 = 6, and K1 = K2 = 2. All the means in (3) are zero

and the covariance matrices in (3) are such that r
(i,k)
x = 5,

r
(i,k)
x1 = 3 and r

(i,k)
x2 = 3 for i = 1, 2 and k = 1, 2.

By using the results in [17], it is possible to predict

that phase transition of the MMSE is obtained only when

m1 > max
i,k

r
(i,k)
x1 for the case when no side information is

available. On the other hand, the impact of side information

is showcased in Fig. 2, where we report the MMSE values

for the case of side information available at the decoder

(with random and designed kernels) and at both encoder and

decoder. Designed kernels are obtained by approximating

numerically the solution of the problems in (6) and (9).

A further projection design scheme for the case of side

information at the encoder and the decoder is considered:

class labels Ĉ1 and Ĉ2 are estimated via a MAP classifier

from the side information x2. Then, Φ1 is obtained as the

optimal kernel design for Gaussian inputs with distribution

N (μ
(Ĉ1,Ĉ2)
x1 ,Σ

(Ĉ1,Ĉ2)
x1 ), as described in [17, Theorem 4].

The numerical results are perfectly aligned with the pre-

dictions contained in Theorem 1, as we observe that the

presence of side information guarantees the MMSE phase

transition with m1 > maxi,k r
(i,k)
x − r

(i,k)
x2 = 2. Moreover,

careful design of the projection kernel and the availability of

side information at the encoder side do not provide a further

advantage in terms of measurements needed for the MMSE

phase transition, but they provide significant gains (almost

30 dB) in terms of robustness against noise. We also note
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that the suboptimal scheme for the case of side information

at both encoder and decoder, though computationally simpler

than the design obtained via the solution of the problem in

(9), achieves very similar MMSE values.

IV-B. Real data
We now consider a reconstruction example with real

imaging data. We use the image “Lena” with resolution

512 × 512 as the input signal and a low-resolution version

(128 × 128 pixels) of the same image as side information.

In this case, the input vectors x1 represent 8 × 8 non-

overlaping patches extracted from the input image, and the

vectors x2 represent 2×2 patches from low-resolution image.

A 20-classes joint GMM distribution describing x1 and x2

is trained via the expectation maximization (EM) algorithm

[18] using images from the “Caltech 101” dataset [19].

(a) Random kernel, side
information at decoder

(b) Designed kernel,
side information at
decoder

(c) Designed kernel,
side information at
encoder and decoder

Fig. 3. Reconstruction results of the image “Lena” for σ2 =
−60 dB. From left to right, the reconstruction PSNR values

are 30.7 dB, 36.3 dB, 36.1 dB.

Fig. 3 reports some reconstruction examples obtained from

m1 = 15 measurements from each patch and with noise

level σ2 = −60 dB. From left to right, the recovery images

correspond to the following scenarios: (a) random projection

with side information at the decoder only; (b) designed

projection kernel with side information at the decoder only;

(c) designed kernel with side information at both the encoder

and the decoder. In this last case, we have considered the

design based on the classification of the side information x2

and on the kernel construction for single Gaussian sources

described in [17, Theorem 4]. Then, on comparing case

(a) with case (b), we can observe that, although it does

not guarantee benefits in terms of phase transition for low-

rank GMM sources, kernel design can significantly improve

reconstruction quality with respect to random projection

kernels. On the other hand, providing the encoder with side

information does not guarantee significant advantages. In

fact, the suboptimal approach based on the classification of

x2 yields peak signal-to-noise ratio (PSNR) values slightly

lower than those obtained with side information at the

decoder only.

V. CONCLUSIONS
In this work, we assessed the impact of projection kernel

design in signal reconstruction from noisy, linear projec-

tions in the presence of side information. In particular, we

have considered the case when both the signal of interest

and the side information are jointly described by a GMM

distribution, with possibly low-rank, class-conditioned input

covariance matrices. We have considered both cases when

side information is provided at the decoder and at the

encoder and the decoder, i.e., when side information is used

in the design of the projection kernel.
Perhaps surprisingly, the main results of this work show

that the characterization of the minimum number of mea-

surements needed to drive to zero the reconstruction error

in the low-noise regime with designed kernel is the same

obtained for random projection kernels. Nevertheless, careful

projection kernel design can lead to significant reduction

of the reconstruction error for finite noise levels. On the

other hand, kernel design schemes that leverage the presence

of side information at the encoder and the decoder do not

provide significant advantages with respect to kernel designs

with side information at the decoder only.

APPENDIX

The sufficient conditions (12) and (14) can be obtained by

upper bounding the MMSE associated with designed kernels

with the MMSE obtained with random projection kernels and

by using the results in [5, Theorem 2].
Consider now the necessary conditions (11) and (13). On

adopting the notation MMSE(u|v) = E[‖u−E[u|v]‖2], we

can write the MMSE with side information as

MMSE(σ2,Φ1) = E[MMSE(σ2,Φ1,x2)] (15)

= E[MMSE(u|v)], (16)

where the expectation is taken with respect to x2, and where

u ∼ p(x1|x2) and v = Φ1u + w1. Then, we observe that

the vector u is distributed according to a GMM with class-

conditioned means and covariance matrices given by

μ(i,k)
u = μ(i,k)

x1
+Σ(i,k)

x12
(Σ(i,k)

x2
)†(x2 − μ(i,k)

x2
) (17)

and

Σ(i,k)
u = Σ(i,k)

x1
−Σ(i,k)

x12
(Σ(i,k)

x2
)†Σ(i,k)

x21
, (18)

respectively, where the symbol (·)† denotes the Moore-

Penrose pseudoinverse [20]. Then, by leveraging [17, Theo-

rem 6], we have that a necessary condition for MMSE(u|v)
to approach zero in the low-noise regime is given by m1 ≥
max(i,k) rank(Σ

(i,k)
u ). Note that such necessary condition

holds also when Φ1 is designed in order to minimize the

MMSE, thus implying that the necessary condition for the

phase transition of MMSE(u|v) holds for both cases when

side information is available at the decoder and at both the

encoder and the decoder (i.e., when the designed Φ1 is a

function of the current realization of x2). Finally, we note

that Σ
(i,k)
u is the generalized Schur complement of Σ

(i,k)
x2 of

the positive semidefinite matrix Σ
(i,k)
x . Then, by using the

result in [21], we have that rank(Σ
(i,k)
u ) = r

(i,k)
x − r

(i,k)
x2 ,

which concludes the proof.
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