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ABSTRACT

In this paper, we investigate the problem of recovering positive semi-

definite (PSD) matrix from 1-bit sensing. The measurement ma-

trix is rank-1 and constructed by the outer product of a pair of vec-

tors, whose entries are independent and identically distributed (i.i.d.)

Gaussian variables. The recovery problem is solved in closed form

through a convex programming. Our analysis reveals that the solu-

tion is biased in general. However, in case of error-free measure-

ment, we find that for rank-r PSD matrix with bounded condition

number, the bias decreases with an order of O(1/r). Therefore, an

approximate recovery is still possible. Numerical experiments are

conducted to verify our analysis.

Index Terms— 1-bit compressed sensing, positive semi-definite

matrix recovery, signal quantization, rank-1 measurement matrix

1. INTRODUCTION

In contrast with the conventional compressed sensing (CS) [1,2],

which relies on real-value measurements to recover the signal, the 1-

bit CS method [3] aims at reconstructing the original signal from

sequence of bits which are obtained by quantizing the measured val-

ues. 1-bit CS is particularly attractive to applications where low-cost

and low-precision analog-to-digital converter (ADC) of high speed

is required. Therefore, the research on 1-bit CS has grown rapidly

in recent years, and has developed from its burgeoning field of error-

free quantization [3–6] to robust 1-bit CS [7–10]. In addition, the

idea of 1-bit CS has also been extended to areas such as 1-bit ma-

trix completion [11], wideband spectral estimation [12,13], and 1-bit

subspace learning [14], etc.

In this paper, we generalize 1-bit CS to the problem of posi-

tive semi-definite matrix (PSD) recovery, which can find applica-

tions in covariance matrix sketching [15], compressed spectral sens-

ing [12, 13], etc. In our measurement model, the PSD matrix is lin-

early measured by rank-1 matrix, which is constructed by the out

product of two random vectors with independent and identically dis-

tributed (i.i.d.) Gaussian entries, and 1-bit quantization is applied to

the resulting sample values. Our work is connected with covariance
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matrix recovery from compressed sampling, which is based on real-

value measurements and has drawn many studies such as [15–17].

However, research on PSD matrix recovery in the context of 1-bit CS

is still very rare. Among the scarce works, the recent work in [14]

is closely related to ours. In fact, we show that the proposed rank-1

measurement is equivalent to the measurement model in [14], where

the difference of two quadratic measurements is quantized. How-

ever, the rank-1 measurement allows more tractable analysis, which

will be shown in our paper. Moreover, the goal of [14] is to estimate

the principle subspace, which is quite different from ours. Another

work related to ours is the 1-bit wideband power spectral estima-

tion method proposed in [12], which is called frugal sensing in [12].

In [12], by comparing the sample values from quadratic measure-

ments against some threshold, the resulting signs are used to recover

the power spectrum. This problem can be reduced to recovering a

PSD Toeplitz matrix. However, like [14], the use of quadratic mea-

surement makes the analysis of performance difficult. Although nu-

merical experiment provides empirical evidence for the effectiveness

of the method, a rigorous error analysis is still missing. Besides,

in [12], the threshold value should be carefully designed to guaran-

tee good performance, whereas no quantization threshold other than

zero is needed in our work.

Built upon the proposed rank-1 measurement and inspired by

the method in [10], we solve the estimated PSD matrix in closed

form through a convex programming. As in [14], the estimated PSD

matrix possesses the identical eigenvectors as the original PSD ma-

trix. But due to the bias in the eigenvalues, which is also observed

in [14], the estimator is biased. Utilizing the rank-1 structure of the

measurement matrix, we are able to quantify the bias. Compared

with the bounds on the estimated eigenvalues in [14], our results

are more useful in analyzing the recovery error in our case. As the

key finding of our paper, we reveal that in the case of error-free 1-

bit quantization, for a n × n PSD matrix with rank r and bounded

condition number, the recovery error under m 1-bit measurements

is bounded by O(
√

nr log(n)/m) +O(1/r) with high probability.

Whereas the first term in the bound diminishes with O(1/
√
m), the

second term is the bias term and decreases with O(1/r). As a re-

sult, in spite of the bias, an approximate recovery can be expected

if r is properly increased. In the numerical experiments, we observe

that small recovery error can be achieved even for PSD matrix with

medium rank. Note that although obtained under the assumption

of error-free measurements, our results can provide insight into the

more general problem of 1-bit PSD matrix recovery.

Notations: In is n × n identity matrix, and R
m×n is the set of

m × n real matrix. diag{x1, . . . , xn} is the diagonal matrix with

diagonal entries x1, . . . , xn. For vector, ‖ · ‖ is the ℓ2 norm. For

matrix, ‖ · ‖ is the spectral norm, and ‖ · ‖F is the Frobenius norm.
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2. 1-BIT SENSING VIA RANK-1 MEASUREMENTS

In this section, we present the measurement model and the re-

covery problem for 1-bit CS sensing of PSD matrix. We denote the

PSD matrix to be sensed as Σ ∈ R
n×n, which could be the sample

covariance matrix as in [14]. Suppose that Σ has eigenvalue de-

composition Σ = QΛQT , where Q ∈ R
n×n is orthogonal, and

diagonal matrix Λ = diag{λ1, . . . , λn} with diagonal elements λi

(i = 1, . . . , n) sorted in descending order. Denote the rank of Σ as r.

Then, the eigenvalues of Σ satisfy λ1 ≥ · · · ≥ λr > λr+1 = · · · =
λn = 0. The condition number of Σ is defined as κ = λ1/λr ≤ ∞.

Since the information of matrix norm is lost in 1-bit sensing, we

adopt the assumption of ‖Σ‖F = 1, which gives
∑r

i=1 λ
2
i = 1.

Denote the kth (k = 1, . . . ,m) rank-1 measurement matrix as

Wk = akb
T
k , where ak,bk ∼ N (0, In) are independent. As

in [8], yk ∈ {+1,−1} in bit sequence y = [y1, . . . , ym]T is drawn

randomly with distribution satisfying

E
[

yk
∣

∣Wk,Σ
]

= θ(〈Wk,Σ〉) = θ(aT
k Σbk), (1)

where θ(z) ∈ [−1, 1] is some nonlinear function, which may be

unknown. Similar to [8], we also define the function

λ(σ2) = Eg∼N (0,σ2) [θ(g)g] . (2)

In (2), since the Gaussian variable g has variance σ2, λ(σ2) is a

function depending on σ2. This is different from [8], where g is

a standard Gaussian variable and λ is constant. For noiseless 1-bit

quantization, i.e., yk = sign(aT
k Σbk), we have θ(z) = sign(z) and

λ(σ2) = σ
√

2/π.

In [14], the measurement matrix is constructed by W̃k =
(ãkã

T
k − b̃kb̃

T
k )/2,1 where ãk, b̃k ∼ N (0, In) are indepen-

dent. Suppose that the 1-bit measurement with W̃k follows the

same model in (1). Namely, E[yk|W̃k,Σ] = θ(〈W̃k,Σ〉) =

θ((ãT
k Σãk − b̃T

k Σb̃k)/2). If

ãk =
1√
2
(ak + bk) , b̃k =

1√
2
(ak − bk) , (3)

we have W̃k = ((ak+bk)(ak+bk)
T−(ak−bk)(ak−bk)

T )/4 =

(Wk + WT
k )/2 and 〈W̃k,Σ〉 = 〈Wk,Σ〉. Just notice that the

transform in (3) is orthogonal and will preserve the independence of

ãk and b̃k. Therefore, the measurement procedure in [14] is equiva-

lent to the measurement with the rank-1 matrix in our paper as long

as ãk and b̃k are related to ak and bk by the transform in (3). We

will show in Section 3 that compared with its equivalence in [14],

the rank-1 measurement matrix is more tractable when it comes to

analyzing the recovery error.

Denote Sm = 1
2m

∑m

k=1 yk(Wk + WT
k ) which has eigen-

value decomposition as Sm = UTUT with orthogonal matrix U ∈
R

n×n and diagonal matrix T. Similar to the convex problem in (6)

of [10], which is for recovering sparse signal from 1-bit measure-

ments, we use the following convex programming to recovery Σ

from its 1-bit measurements:

max
X

−tr(XSm) + γtr(X), s.t. X � 0, ‖X‖F ≤ 1, (4)

whose solution is given in closed form as

X̂ =

{

1
‖Dγ(Sm)‖F

Dγ(Sm), if ‖Sm‖ > γ,

0, otherwise,
(5)

1Here we add a scaling factor of 1/2 in W̃k , which is slightly different
from the original definition in [14].

where γ > 0 is the regularization parameter, and Dγ(Sm) =
U(T − γIn)

+UT is the singular value thresholding operator de-

fined in [18].

3. RECOVERY ERROR ANALYSIS

In this section, we derive the recover error of the estimator X̂.

We start our analysis with the following lemma regarding E[ykWk].

Lemma 1. Let the mean of ykWk be S = E [ykWk]. Then, S

has eigenvalue decomposition as S = QDQT , where the diagonal

matrix D = diag{σ1, . . . , σn} with σi = λiδi for i = 1, . . . , r and

σi = 0 for i = r + 1, . . . , n. The scalar δi (i = 1, . . . , r) is given

by

δi = E

[

λ(zTΛ2z)

zTΛ2z
z2i

]

, (6)

where the random vector z = [z1, . . . , zn]
T ∼ N (0, In). In partic-

ular, for error-free 1-bit quantization,

δi =

√

2

π
E

[

z2i√
zTΛ2z

]

. (7)

Proof. Notice that

S = E [ykWk] = E
[

WkE
[

yk
∣

∣Wk,Σ
]]

= E

[

θ(aT
k Σbk)akb

T
k

]

= E

[

θ(σaT
k u1)(a

T
k u1u1 + a

T
k u2u2)b

T
k

]

,

where σ = ‖Σbk‖, and unit vectors u1 = Σbk/σ and u2 satisfy

uT
2 u1 = 0. Conditioned upon bk, random variables aT

k u1,a
T
k u2 ∼

N (0, 1) are independent. So we have

E

[

θ(σaT
k u1)(a

T
k u1u1 + a

T
k u2u2)

∣

∣

∣
bk

]

=
λ(σ2)

σ2
Σbkb

T
k ,

which yields

S = E

[

λ(σ2)

σ2
Σbkb

T
k

]

= QΛ∆Q
T , (8)

where matrix ∆ = E[λ(zTΛ2z)zzT /zTΛ2z], and z = QTbk ∼
N (0, In). As E[λ(zTΛ2z)zizj/z

TΛ2z] = −E[λ(zTΛ2z)zizj/
zTΛ2z] for i, j = 1, . . . , n and i 6= j, which follows from the

symmetry of the distribution N (0, In), we have that the off-diagonal

elements of ∆ are zero, and therefore ∆ is diagonal. So, S has the

expression in (8) as its eigenvalue decomposition and the result in

the lemma is readily obtained.

As is discussed in Section 2, the equivalence between measure-

ment matrices Wk and W̃k gives identical empirical mean Sm.

Thus, the bound on the deviation of Sm from S = E[Sm] in Lemma

2 of [14] can be readily applied here, and we simply reproduce the

result below for reference.

Lemma 2. Let δ ∈ [0, 1]. With probability 1− δ , we have that

‖Sm − S‖ ≤
√

C1n

m
log

2n

δ
, (9)

where C1 > 0 is some constant.

Before proceeding with our analysis of the recovery error, we

give the following proposition, which bounds the eigenvalues of S

for the noiseless quantization and is thus the counterpart of Lemma 1

in [14]. Derived from the exact expression of eigenvalue, the bounds

herein are much tighter.
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Proposition 1. In the case of the error-free 1-bit quantization, the

non-zero eigenvalues of S are bounded by

2

π
≥ σi ≥ 2√

πκr

Γ( r+1
2

)

Γ( r
2
)

, i = 1, . . . , r. (10)

Proof. Evidently, from (7),

σi ≤
√

2

π
E

[

λiz
2
i

λi|zi|

]

=

√

2

π
E[|zi|] = 2

π
, (11)

which gives the upper bound in (10). As to the lower bound,

σi ≥ 2

π
E

[

λiz
2
i

λ1‖zr‖

]

≥
√

2

π
E

[

z2i
κ‖zr‖

]

, (12)

where zr = [z1, . . . , zr]
T ∼ N (0, Ir). Notice that E[z21/‖zr‖] =

· · · = E[z2r/‖zr‖], which is from the symmetry of the distribution

of zr . Then, we have that rE[z2i /‖zr‖] =
∑r

i=1 E[z
2
i /‖zr‖] =

E[‖zr‖] =
√
2Γ((r + 1)/2)/Γ(r/2). The expectation of ‖zr‖,

which is distributed according to the χ distribution with r degrees of

freedom, follows from the moment result in [19, p.452]. Plugging

the result into (12) yields the lower bound in (10).

Remark 1. It is easy to check that in (10) the upper bound is tight

in the case of r = 1, and the lower bound is tight when all non-zero

eigenvalues of Σ are equal and κ = 1. As a byproduct of Proposi-

tion 1, from the limit of the ratio of two gamma functions [20, p.257,

6.1.46], σi (i = 1, . . . , r) can be lower bounded asymptotically by

lim
r→∞

2√
πκr

Γ( r+1
2

)

Γ( r
2
)

=

√
2

κ
√
π

1√
r
. (13)

To perform the error analysis, we first multiply the S by its

Frobenius norm to get S̄ = S/‖S‖F . According to Lemma 1, ma-

trices S̄ and Σ share the identical eigenspace. Moreover, it can be

observed from (7) that when r = 1 or r > 1 and all non-zero eigen-

values of Σ are equal, S̄ and Σ have the same eigenvalues as well.

Except for the aforementioned cases, the eigenvalues of S̄ and Σ are

not the same. Consequently, an error term in the difference of S̄ and

Σ arises from the bias in the eigenvalues of S̄. It is complicated to

quantify such error and give an analysis of recovery error for general

nonlinear function θ(z). As such, in this paper, we settle with the

simple case of error-free 1-bit quantization, i.e., θ(z) = sign(z). As

to the error between S̄ and Σ, we have the following lemma.

Lemma 3. In the case of error-free 1-bit quantization, denote ρ =
1/‖S‖F . If r > 5κ5, the error between S̄ and Σ is bounded by

‖S̄−Σ‖F =
√
∑r

i=1 λ
2
i (ρδi − 1)2 ≤ C2κ

10

r
, (14)

with C2 > 0 as some constant.

Resorting to the lemma below, which bounds the deviation of δi
from 1, Lemma 3 can be proved by straightforward derivation. We

omit the proof due to space limitation.

Lemma 4. Assuming error-free 1-bit quantization, we have the fol-

lowing bound on δi (i = 1, . . . , r)

|δi − 1| ≤ 5κ5

r
. (15)

Proof. Denote u = zTΛ2z − 1. Since
∑r

i=1 λ
2
i = 1 and zis are

i.i.d. standard Gaussian variables, by simple algebra, we can derive

that E[uz2i ] =
∑r

j=1 λ
2
jE[z

2
i (z

2
j − 1)] = λ2

i (E[z
4
i ]−E[z2i ]) = 2λ2

i

and E[u2] =
∑r

i,j=1 λ
2
iλ

2
jE[(z

2
i − 1)(z2j − 1)] =

∑r

i=1 λ
4
iE[(z

2
i −

1)2] = 2
∑r

i=1 λ
4
i . So, for i = 1, . . . , r, we have

|δi − 1| =
∣

∣

∣

∣

E

[

z2i√
1 + u

− 1 +
1

2
uz2i − 1

2
uz2i

]∣

∣

∣

∣

=

∣

∣

∣

∣

E

[

z2i

(

1√
1 + u

− 1 +
1

2
x

)]

− 1

2
E[uz2i ]

∣

∣

∣

∣

≤ E[z2i ]E

[∣

∣

∣

∣

1√
1 + u

− 1 +
1

2
u

∣

∣

∣

∣

]

+ λ2
i .

In addition, it can be derived that

1√
1 + u

− 1 +
1

2
u =

u2

2
√
1 + u

(

1

1 +
√
1 + u

+
1

(1 +
√
u+ 1)2

)

≤ u2

√
1 + u

,

and rλ2
1/κ

2 ≤ λ2
1(
∑r

i=2(λ
2
i /λ

2
1) + 1) = 1 =

∑r

i=1 λ
2
i =

λ2
r(
∑r−1

i=1 (λ
2
i /λ

2
r) + 1) ≤ rκ2λ2

r , which yields bounds on λ2
i as

1/(κ2r) ≤ λ2
i ≤ κ2/r. Then, aided by the results above, we can

further bound |δi − 1| as

|δi − 1| ≤ E

[

u2

√
1 + u

]

+ λ2
i ≤ E[u2]E

[

1√
1 + u

]

+
κ2

r

(a)

≤
(

2
r
∑

i=1

λ4
i

)

E

[

κ
√
r

‖zr‖

]

+
κ2

r

(b)

≤ 2κ5

r

√

r

2

Γ( r−1
2

)

Γ( r
2
)

+
κ2

r

(c)

≤ 2κ5

r

√

r
2

√

r
2
− 3

4

+
κ2

r

(d)

≤ 4κ5

r
+

κ2

r
≤ 5κ5

r
,

where (a) is from the results of E[u2] and zTΛ2z ≥ κ2‖z‖2/r,

(b) is derived from the upper bound of λ2
i and directly calculat-

ing E[1/‖zr‖] based on the probability density function (pdf) of χ2

distribution [19], (c) is from applying the upper bound of gamma

function ratio in [21, (2.13)], and (d) follows from the monotonic

decreasing of function
√

x/(x− 3/4).

With Lemmas 1-4, we are now in a position to present our main

result on the recovery error of the solution X̂ in (5) as Theorem 1.

Theorem 1. In the case of error-free 1-bit quantization, let

γ = 2

√

C1n log(2n/δ)

m
(16)

in (4). Then, with probability at least 1 − δ, we have for r > 5κ5

the following bound on recovery error:

‖X̂−Σ‖F ≤ 3

√

C1nr log(2n/δ)

m
+

C2κ
10

r
. (17)

Proof. Using triangular inequality, we have ‖X̂ − Σ‖F ≤ ‖X̂ −
S̄‖F + ‖S̄−Σ‖F . The bound of the second error term, which is the

bias in X̂, follows directly from Lemma 3. The first term in the error

can be bounded based on the idea of the proof for Theorem 1 in [10],

with the aid of Lemma 2. To accommodate the proof in [10] to our

case, the only modification needed is to perform the decomposition

of tangent and normal spaces at Σ as is in [22]. Therefore, we omit

the derivation here since it is largely a repetition of the proof in [10].
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Fig. 3: Recovery error versus m.

Remark 2. Theorem 1 states that the recovery error in the error-free

case is of the order O(nr log(n)/m) +O(1/r) for the PSD matrix

with bounded condition number. In the expression of the recovery

error, it can be seen that with increased r, the second term O(1/r),
which is the estimation bias, can be reduced, whereas the first error

term will grow as O(
√
r). Thus, we can anticipate that at some r

the recovery error reaches a minimum if m is fixed and large enough.

At first glance, the existence of the bias may seem to be a pessimistic

result. However, as will be shown in our simulations, an approximate

recovery with acceptable accuracy can be obtained for moderate r.

4. SIMULATIONS

In this section, we conduct simulation experiments to verify our

analysis. All simulation results are from averaging over 1000 trials,

and the measurement in the experiment is noiseless. For Σ, n is set

as 50, the eigenvectors are generated by orthogonalizing the column

vectors of X ∈ R
50×r , whose entries are i.i.d. standard Gaussian

variables, and except for the extreme eigenvalues, which are set as κ
and 1, other eigenvalues are drawn uniformly on the interval [1, κ].
The eigenvalues of Σ are then normalized so that ‖Σ‖F = 1. For

the eigenvalues of S̄, Monte Carlo method is used to calculate the

integrals in (7).

As a justification of Lemma 3, the curves of average error

E[‖S̄ − Σ‖F ] versus r with various κs are plotted in Fig. 1. In the

figure, r varies form 2 to 40, and the curve of 1/r is also plotted as

comparison. As is predicted by Lemma 3, for large r the error de-

cays with the order of O(1/r) and increases with κ. But as shown in

the figure, the increase with κ tends to be bounded, which indicates

that the bound in Lemma 3 can be further improved.

To determine the regularization γ in (4), we adopt a similar ap-

proach as in [10] to set γ = C
√

n log(n)/m. The curves of error

‖X̂− S̄‖F versus C ∈ [0, 1] under several combinations of m and r
are presented in Fig. 2. From Fig. 2, the best performance is obtained
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Fig. 4: Recovery error versus r.

around C = 0.5, which is used in the remaining experiments.

Figures 3a and 3b show the performance of recovery error ‖X̂−
Σ‖F versus m ∈ [1000, 300000]. In Figures 3a and 3b, r = 5 and

10, respectively, and κ = 20. We denote the estimator in Section 2

as Algorithm 1 (Alg. 1). As a comparison, we also solve the problem

min
X

−tr(XSm), s.t. X � 0, ‖X‖F = 1, ‖X‖∗ ≤ √
r, (18)

which is an extension of the problem in (III.2) of [8] and is referred to

as Algorithm 2 (Alg. 2). Apart from recovery errors of Algorithms

1 and 2, the deviation of X̂ from S̄ (Deviation from mean), i.e.,

‖X̂ − S̄‖F , and the error ‖S̄ − Σ‖F (Error in mean) are depicted

as well. In the figures, the recovery errors of both algorithms are

quite close and get smaller with increasing m. Also, according to

Lemma 3, the error between Σ and S̄ is irreducible by increasing

m, so the recovery error is bounded by the bias in the estimator,

which dominates the performance for large m. As is expected by

Theorem 1, the bias in the estimator in Fig. 3b for r = 10 is smaller

than that for r = 5 in Fig. 3b. However, from both figures, it can be

observed that the bias is not large even for moderate r. As a result,

satisfactory recovery can still be achieved provided that the sample

size is adequate.

Figs. 4a and 4b show the curves of recovery error versus r ∈
[1, 40] for Algorithm 1. In Figs. 4a and 4b, m = 1 × 105 and

3× 105, respectively, and κ = 20. In the figures, for r = 1, there is

no error between S̄ and Σ, which can be deduced from Lemma 1, so

the recovery error is small. For r ≥ 3, as the deviation ‖X̂ − S̄‖F
grows with r and the error ‖S̄ − Σ‖F decays with r, the recovery

error reaches a minimum at some r, which confirms our discussion

in Remark 2 for Theorem 1. Interestingly, there is a peak of recovery

error at r = 3. One explanation for this is that the large κ makes the

r = 2 case approximates the r = 1 case and leads to a smaller

recovery error than the r = 3 case. As in Figs. 3a and 3b, it can also

be observed that increasing m is helpful in reducing the deviation of

X̂ from S̄ but not the error between S̄ and Σ.

5. CONCLUSIONS

We have studied the problem of recovering PSD matrix from 1-

bit sensing with rank-1 measurement matrices. We solved the prob-

lem in closed form, and for the case of error-free measurement, we

derived the recovery error bound and found in the error a bias term

which decreases with the rank of PSD matrix. The analysis results

were verified by simulation experiments. We believe that in the field

of 1-bit CS of PSD matrix, there are still many unsolved problems.

Important topics for future research includes PSD matrix recovery

from noisy 1-bit measurement, 1-bit sensing of PSD Toeplitz matrix

and other structured PSD matrix, etc.
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