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ABSTRACT can be derived theoretically for the piecewise sparse Egna
In this paper, we consider the recovery of piecewise compared to the conventional sparse ones.
sparse signals from incomplete noisy measurements via e Secondly, a greedy algorithm called piecewise or-
a greedy algorithm. Here piecewise sparse means that théhogonal matching pursuit (POMP) is proposed specially
signal can be approximated in certain domain with known aiming for recovering the piecewise sparse signals from
number of nonzero entries in each piece/segment. Thisfew measurements. This algorithm, inspired by the OMP
paper makes a two-fold contribution to this problem: 1) related algorithms [2]-[5], is capable of choosing the
formulating a piecewise sparse model in the framework of appropriate support of and satisfying the constraints of
compressed sensing and providing the theoretical analysipiecewise sparsity(;,i € {1,--- ., L} simultaneously.
of corresponding sensing matrices; 2) developing a greedy These two contributions establish an integrated solver
algorithm called piecewise orthogonal matching pursuit for the practical recovery problem for piecewise sparse
(POMP) for the recovery of piecewise sparse signals. signals in both theory and algorithm design.
Experimental simulations verify the effectiveness of the . .

I-A. Relationsto Prior Work

proposed algorithms.
Sensing matrices have been studied widely by exploiting
I. INTRODUCTION RIC and coherences to derive theoretical recovery bounds,

Compressed sensing is capable of recovering sparsesuch as for Toeplitz matrices [6], convolutional matricels [
or compressible signals/coefficients from an underdeter-or general structured matrices [8]-[10]. Researchers have
mined system of linear equations [1]. In practice, however also exploited the coherence analyses regarding different
piecewise sparsity rather than overall sparsity arisessmor sparsity models. The block-sparse model was first proposed
naturally. For instance, suppose that a signal source isin [4], and later extended by [5] [11], in which block
broadcasting radio programmes (or microwaves, under-orthogonal matching pursuit (BOMP) was developed. Clus-
water sound, etc.). In addition to the overall sparsity, tered orthogonal matching pursuit (COMP) for clustered
the signal frequency is also sparse piecewisely in eachsparse model was considered in [3] but without the analysis
spectrum band, because the whole frequency spectrum hasf sensing matrices. In contrast to some previous works,
to be allocated td. pieces forL different radio stations, this paper provides both the theoretical analysis and the
and their programme signals are supposed to be sparse iPOMP algorithm for reconstruction. The differences be-
each spectral region, which implies that the overall sparsi  tween general, block and piecewise sparsity are illusirate
lever is K = Y. | K;, where K, represents the sparsity in Fig. 1.
in theith piece. In this case a new sparse framework needsI_B_ Notation
to be formulated. )

In this paper we provide the analysis tools and an Bold letters are used to denote a vector or a matrix. For
algorithm to solve the piecewise sparse recovery problemVectors, || - [|1,[| - ||z are thely norm |[s[|y = >, |s;]
specifically. In particular, we address the problem in the and Euclidean nornjjs||3 = +/s*s, respectively;||s||o
following respects: is the number of nonzero entries. For matricBs, and

e Firstly, we formulate a piecewise sparse model in D* denote the transpose, and Hermitian transposb of
the framework of compressed sensing, and provide therespectively. The spectral norm Bf is defined ag(D) =
theoretical analysis of the property of the qualified segisin g, (D) = /Amax(D*D), wWhere omax(D), Amax(D*D)
matrix D for the recovery of a piecewise sparse signal  denote the largest singular value Bf and the largest

Our work is based on the results of the inner product of any eigenvalue ofD*D. [n] represents the set dfi,-- -, n}.
two columns ofD. The result shows that tighter bounds
of coherence and restricted isometry constant (RICPof Il. PROBLEM SETUP

I1-A. Piecewise Sparse
This work was supported by the National Natural Science Hation . N .
of China under Grant No. 61573330, and Swedish Researchoflotine Suppose we need to recover %Slglﬂ:alE R2 that is
Linnaeus Center ACCESS at KTH. corrupted by a Gaussian noises R" ~ A/(0,07), which
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Fig. 1. Comparison of general sparse signal, block spargealsand
piecewise signals. All signals have length= 256 and sparsity’ = 32.
Piecewise sparsitys; = 2,7 € {1,---,16}.

can be written as

b=Rrx+e, ()

whereb € RM M < N is the measurements, ailitt is a
downsampling operator selecting random coefficients of
indexed by a sef C [N], |T'| = M. Conventionally ifx in
(1) is K-sparse or can be approximated in fiec RV*V
domain as

x = Us, ||s|lo < K, K < N, @

thenb = Ds+e, s € RV X < M < N. Ac-
cording to the CS theoryM > O (Klog(N/K)) mea-
surements are enough to recover from (1) by ex-
ploiting reconstruction techniques, such as LASSO=
arg, min (1/2)||Ds — b||2 + A||s||1,% = ¥S§, when the
sensing matrixD = RpW satisfies the restricted isom-
etry property (RIP) with RICSx defined in Def. 4 (see
Appendix), and\ is a regulation parameter [12].

On the other hand, in many scenarios the signals that
researchers are interested in are usually sparse in each

piece [13], [14]. To address this issue, we consider the
case thatx is decomposed piecewise sparsely in the
domain:

Definition 1 Piecewise Sparse): In (2), s € RV is
called (N, L, K)-piecewise sparse ¥ is a concatenation
of L vectors with lengthR¢,d = N/L, and each vector
sT[i],i € [L] is K;-sparse:

T
S=[51"""848d41 " "52d " SN—d+1" " 5N]

sT[1) sT[2] sT[L]

®3)

wheres”[i] denotes theth piece/block,Zf:1 K, =K.
This definition is apparently different from conventional
sparsity [15] and block-sparsity [5], so the existing uqu
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recovery conditions are not directly applicable. The piece
wise compressed sensing problem can be summarized as:

Problem Assume thas is (IV, L, K)-piecewise sparse.
Given the CS model (1,2), how to measure the quality of
D, and how to recoves or x efficiently.

1. PIECEWISE COHERENCE

In CS, the coherence analysis provides an effective
method to measure the quality of sensing matrit®s
Low coherence implies that the columnsIofare almost
mutually orthogonal and that leads to the unique recovery
for s or x. We assume that thig norm of all columns of
D, ||d;||2 = 1 for ¢ € [N] throughout the paper, whetk
is theith column ofD. The coherence dD is defined as:

Definition 2 Coherence [16], [17]): The coherence of
a matrixD can be defined as

(4)

When the RICdox of a matrix D satisfiesdax < 1/3,
every K-sparse vectos € R™ can be recovered by
minimization [17], [18]. It has been proved that the RIZ
can be bounded by, so the unique recovery is guaranteed:

Proposition 1 RIC bound [17]): If D has unit-norm
columns and coherengg then it satisfies the RIP of order
K with §g

6x < (K — 1) ®)

The bound in Prop. 1 is for conventional sparse signals. It
is natural to seek for a tighter bound & by exploiting

the piecewise sparsity in a piecewise sparse setting. &imil
to (3), we represeriD as a concatenation of columiny/]

of size M x d:

D= dl"'dddd+1"'d2d"'dN7d+1"'dN], (6)

D[1]

— d:d;|.
1 g;.ggg\ Tdy]

forall K < 1/p.

D[2] D[L]

whereDJi] is theith block matrix. With a slight abuse of
notations, we also usB[i] to represent the columns set
{d¢-1).a+1,--- ,dia}, i € [L]. Then we define the inner
coherence and the piecewise coherenc®ads follows:

Definition 3 Piecewise Coherence): The (k,r)-inner
coherencevy(r) for the rth column and the piecewise
coherence.k 1) are defined as

vi(r) =
{ max;, K,ﬁ;l |d:d;,|,d;, € D[i] if d, € D[],
max " |did, |, dj, € D[] if d, ¢ DI,
1 L
MEK,L) = K—1 THEI% ;Vi(r)v
(7
respectively.

As well as the coherenge the inner coherencey () and
the piecewise coherenggy 1) are also based on the inner
product of two columns oD, sovy(r) € [0,1], pk,1) €

[0, 1]. In addition, we derive their relationships through the
following propositions.



Proposition 2: For a matrixD given in (6), setGr =
D;iDr — Ix,Gr € REXE whereDr is the sub-matrix
of D indexed by the piecewise sparse Fet [N], then

! ®

L) K-1 FC[JIVI]I,EH‘(KK
wheregr,. denotes the column d&p corresponding to the
rth column of Dr.

Proof: The Gramian matriD;Dr has all ones on its
diagonal entries because the column®oare normalized.
Hence forGr = D} Dr—Ix we only need to consider the
off-diagonal entries. Whef' is fixed, from the definition
of gy,

max lgr,|,

max [gr, | =max > |d;d;]| ©)
JET\{r}

Taking the maximum operator over all choices Ibfon

both sides of the equation,

1
——— max max = max max dxd;
K —1 rcinz] rer l&r,| K —1 rcin] rer [d7d;]

IT[<K ID[<K Jjer\{r}
1

= ——— max max E dxd;|=p

K — 1 rE[N] rerrcing < |d7d,| H(K,L)s

ID\{r}I<K~1 jET
(10)

where the last step follows becaudse” [N] corresponds to
the locations of piecewise nonzero coefficients,il’| =
K=3%,K; and

m

max |gr., | max
r PC[N],ID|=K

me ax|gr, |- (11)

max
IC[N),|ID|<K €

[ |
Remark 1:Prop. 2 establishes a relationship between

the piecewise coherence and the Gramian matrix of sub-

matrices ofD, which is useful in the proof of the following
theorem.

Theorem 1:Denoted}, as the restricted isometry con-
stant for the (N, L, K)-piecewise sparse signal and

steps are due to the Gershgorin’s disk theorem [19] and
Prop. 2.

(b) To prove that( KX — 1)uk 1) < (K —1)p < 1.

L
(K= Dpx,r) = max > vi(r)
; k=1 (15)
< (ZKZ-1> p=(K-1n<1,

for K < 1/p due to equation (4) and (7). The combination
of (a) and (b) completes the proof. [ ]

Remark 2:1) The piecewise restricted constait is a
special case of the genewgl for piecewise sparse signals
s. Given the piecewise sparsity sfas prior knowledge, a
sensing operatoD; with &% (D;) inherits the properties
of Dy with dx(D2) (such as the uniqueness of recovery)
when §% (D) = dx(D2), but the choice oD, is more
flexible thanD,. From another perspective, for a matrix
D the bound o, (D) is tighter than the bound @fx (D)
in terms of the coherence, so a reconstruction with better
accuracy is expected to be feasible for piecewise sparse
signals if a proper algorithm is adopted.

2) It is possible to prove a tighter bound far like
d < max,¢[nj Maxre (v, () Z]‘er|d§dr| < (K —1)p.

ITI<

However it is also easy to see thaK — 1)ux,r) <

maxX,¢[N] maXrgN]\{r}Z- F‘d%drh so ¢’ still has a
ITI<K-—1 Je J

tighter bound than.

IV. PIECEWISE ORTHOGONAL MATCHING
PURSUIT

In this section, we develop a novel algorithm called
piecewise-OMP (POMP) that can be used for reconstruct-

K,y 1 as the piecewise coherence and coherence, reing piecewise sparse signals efficiently. The algorithnsuse

spectively. Givenk < 1/u, for a matrixD in (6) we have
0<d0x <(K =gy <(K-p<l (12

Proof: (a) To prove thad < 6% < (K — 1)ux 1)
From Def. 4,57 is the smallest constant such that

Srellsl3 > |[Ds][3 — [Is|[3] >0 (13)

holds for all (IV, L, K)-piecewise sparss for the reason
in Remark2. Taking the supremum over all possibilities
of piecewise sparse c R™ with its nonzero indexef C
[N],IT| = K =Y, K, and||s||3 = 1 normalized,

i = sup|((D'D ~ Ds)* - 5|
= sup |(Grsr)" - sr| < sup (p(Gr)) (14)

<  max max|gr,|=(K-1)

T TC[N]IT|<K rel H(K, L)

where Gr has the expression in Prop 2. The third step
follows becausdsr is Hermitian,||s||o = 1. The last two
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the OMP framework that increases the support set by one
in each iteration, and utilizes the information whose upper
bound of number of nonzero entries is at mé&tin the
piecei € [L]. POMP behaves like regular OMP when
the support number of each piesgis less thank; for

all ¢ € [L]. The main difference between POMP and
OMP appears in how to avoid the circumstance that the
number of columns selected from each block exceeds the
sparsity constraintg; during the support size increases.
Specifically, when the support number in thida piece
s[i],7 € [L] increases gradually and reaches the lifit
POMP absorbs the final column index in tik piece and
disables other candidates of columnsId:], which lets

K; stop at the upper bound ¢§;||o. This step is described

by the{if,-- - ,end paragraph below from liné to 8. The
details of the steps for recovering piecewise sparse signal
are demonstrated in Algorithm 1. Please also note that
the algorithm cannot be implemented by applying OMP
L times independently, because only one comprehensive
measurement vectds is received.
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Recovery performance of piecewise sparse signdls 10idB, 30dB, 50dB noise versus different number of measen¢s M/ using POMP in

terms of SNR. The testing signalc R™, N = 256, is generated randomly with the piecewise spar§ity; = 4,7 € {1,--- ,8}}, K = 36.

Algorithm 1: Piecewise Orthogonal Matching Pursuit

Input: matrix D € RM*N  measurementb ¢ R,
sparsity bound, piecewise sparsitys;, i € [L].

Set: residual bound.

Initialize: support sef’y = @, abandon sef}, = &,
universe sef\ = {1,---, N}, residualrg = b,
solutionsg = 0, max number of iteratiott,,,, < K.
Iteration: 1. fork =1, -, kpq, dO

2.Dy =Dyyr,_, \\ update the available columns In

3.hy =DJrr_1 \\ form the residual signal estimate
4.y, = argmax;|hi(j)|  \\ find the best support
5T, =T1_1UQ \\\ update the support set
\\\ abandon redundant columns
6. if |T'jq,j| = K5 \\ identify the sparsity in the block,
7. T =T U{[%]/(Tx N [%])} \\ add other
\\ indexes in the block into the abandoned set
8.end \\ endif
9. s}, = arg mingsypgs)cr, || — Ds|l2
\\ where supfs) is the estimate nonzero support
10.r, = b — Ds; \\ calculate the residual by given,
11, If ||rg]|3 < € or |T%| = K, break
12. end \\ end for
Output: x = Psy,

In Algorithm 1, [Q] represents the set of indexes in the
ith block that containg. {[Q%x]/(Tx N [Q%])} is the set
of all column indexes in the block containirfg, that do
not exist in the support s&t,. Therefore once the sparsity
in a blocki reaches its upper bourtd;, the algorithm will

distribution, is normalized so that the resulting columns
have norml. The true piecewise sparse sigmak RY

is generated with lengtlv = 256. More specifically,s

is divided into L = 8 consecutive pieces with each size
N/L = 32, and the piecewise sparsity of thith piece

is a varying valuek; = i,i € {1,---,8}. Hence the
overall sparsity ok is K = Y5 | K; = 36. s has entries
with i.i.d. Gaussian magnitudes on a randomly chosen
support set following a uniform distribution in each piece
with constraints on sparsity(;. When . = 2, we set
Ky =Y, ,i=10andKy = 35 i = 26. Similar
settings are implemented wheh = 4. The recovery
results in terms of signal to noise ratio (SNR) versus
different number of measurements are shown in Fig. 2
for input noises SNR 10, 30,50dB, respectively. Each
data point is based on the averagel660 iterations. We
can see that when the number of measurements increases,
the performance of recovery becomes better in terms of
SNR, and the recovery results of POMP outperform OMP
by about2,5,10dB in SNR in different circumstances
of noises. In addition the performance of knowing more
information about the sparsity (with largé) gives a little
better reconstruction.

VI. CONCLUSIONS

This paper considered the recovery of piecewise sparse
signals from noisy incomplete measurements, using the
techniques of compressed sensing. We provided a whole
set of analysis tools with tighter coherence and a novel

abandon other redundant columns in this block and movegreedy algorithm to solve the piecewise sparse recovery

them into the abandoned column gé&t The algorithm

problem specifically. The simulations showed the superior-

continues until the stop criteria is satisfied. The choice of ity of the proposed POMP over conventional OMP clearly

threshold¢ depends on the problems we are dealing with.

Normally we sett = 0.01||y]||3. We could also implement

the subspace pursuit [20] instead of the matching pursuit to
define the iterations aiming at accelerating the convergenc

of the algorithm.

V. NUMERICAL SIMULATIONS

The aim of this section is to examine the proposed algo-

in terms of reconstruction SNR.

VIl. APPENDIX

Definition 4 Restricted Isometry Constant (RIC)):
The restricted isometry constafig of a D € RM*V s
defined as the smallesf; > 0 such that

(1=dx)lsll3 < [|Dsll3 < (1 +dx)][sl[3

(16)

rithms in recovering signals by taking piecewise sparsity for all K-sparses € RY. If a matrix D has a RICd, it

explicitly into account. The sensing matlR € RM*¥N

is equivalent to say thdD satisfies the restricted isometry

whose entries are drawn from a random i.i.d. GaussianpProperty of orderK with dx.
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