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ABSTRACT
In this paper, we consider the recovery of piecewise
sparse signals from incomplete noisy measurements via
a greedy algorithm. Here piecewise sparse means that the
signal can be approximated in certain domain with known
number of nonzero entries in each piece/segment. This
paper makes a two-fold contribution to this problem: 1)
formulating a piecewise sparse model in the framework of
compressed sensing and providing the theoretical analysis
of corresponding sensing matrices; 2) developing a greedy
algorithm called piecewise orthogonal matching pursuit
(POMP) for the recovery of piecewise sparse signals.
Experimental simulations verify the effectiveness of the
proposed algorithms.

I. INTRODUCTION
Compressed sensing is capable of recovering sparse

or compressible signals/coefficients from an underdeter-
mined system of linear equations [1]. In practice, however
piecewise sparsity rather than overall sparsity arises more
naturally. For instance, suppose that a signal source is
broadcasting radio programmes (or microwaves, under-
water sound, etc.). In addition to the overall sparsity,
the signal frequency is also sparse piecewisely in each
spectrum band, because the whole frequency spectrum has
to be allocated toL pieces forL different radio stations,
and their programme signals are supposed to be sparse in
each spectral region, which implies that the overall sparsity
lever isK =

∑L
i=1 Ki, whereKi represents the sparsity

in theith piece. In this case a new sparse framework needs
to be formulated.

In this paper we provide the analysis tools and an
algorithm to solve the piecewise sparse recovery problem
specifically. In particular, we address the problem in the
following respects:
• Firstly, we formulate a piecewise sparse model in

the framework of compressed sensing, and provide the
theoretical analysis of the property of the qualified sensing
matrix D for the recovery of a piecewise sparse signals.
Our work is based on the results of the inner product of any
two columns ofD. The result shows that tighter bounds
of coherence and restricted isometry constant (RIC) ofD
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can be derived theoretically for the piecewise sparse signals
compared to the conventional sparse ones.
• Secondly, a greedy algorithm called piecewise or-

thogonal matching pursuit (POMP) is proposed specially
aiming for recovering the piecewise sparse signals from
few measurements. This algorithm, inspired by the OMP
related algorithms [2]–[5], is capable of choosing the
appropriate support ofs and satisfying the constraints of
piecewise sparsityKi, i ∈ {1, · · · ., L} simultaneously.

These two contributions establish an integrated solver
for the practical recovery problem for piecewise sparse
signals in both theory and algorithm design.

I-A. Relations to Prior Work
Sensing matrices have been studied widely by exploiting

RIC and coherences to derive theoretical recovery bounds,
such as for Toeplitz matrices [6], convolutional matrices [7]
or general structured matrices [8]–[10]. Researchers have
also exploited the coherence analyses regarding different
sparsity models. The block-sparse model was first proposed
in [4], and later extended by [5] [11], in which block
orthogonal matching pursuit (BOMP) was developed. Clus-
tered orthogonal matching pursuit (COMP) for clustered
sparse model was considered in [3] but without the analysis
of sensing matrices. In contrast to some previous works,
this paper provides both the theoretical analysis and the
POMP algorithm for reconstruction. The differences be-
tween general, block and piecewise sparsity are illustrated
in Fig. 1.

I-B. Notation
Bold letters are used to denote a vector or a matrix. For

vectors, || · ||1, || · ||2 are the l1 norm ||s||1 =
∑

j |sj |
and Euclidean norm||s||22 =

√
s∗s, respectively;||s||0

is the number of nonzero entries. For matrices,DT and
D∗ denote the transpose, and Hermitian transpose ofD,
respectively. The spectral norm ofD is defined asρ(D) =
σmax(D) =

√

λmax(D∗D), where σmax(D), λmax(D
∗D)

denote the largest singular value ofD and the largest
eigenvalue ofD∗D. [n] represents the set of{1, · · · , n}.

II. PROBLEM SETUP
II-A. Piecewise Sparse

Suppose we need to recover a signalx ∈ R
N that is

corrupted by a Gaussian noisee ∈ R
M ∼ N (0, σ2), which
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Fig. 1. Comparison of general sparse signal, block sparse signal and
piecewise signals. All signals have lengthN = 256 and sparsityK = 32.
Piecewise sparsityKi = 2, i ∈ {1, · · · , 16}.

can be written as

b = RΓx+ e, (1)

whereb ∈ R
M ,M < N is the measurements, andRΓ is a

downsampling operator selecting random coefficients ofx
indexed by a setΓ ⊂ [N ], |Γ| = M . Conventionally ifx in
(1) isK-sparse or can be approximated in theΨ ∈ R

N×N

domain as

x = Ψs, ||s||0 ≤ K,K ≪ N, (2)

then b = Ds + e, s ∈ R
N ,K < M < N . Ac-

cording to the CS theory,M ≥ O (K log(N/K)) mea-
surements are enough to recoverx from (1) by ex-
ploiting reconstruction techniques, such as LASSO:ŝ =
argsmin (1/2)||Ds− b||22 + λ||s||1, x̂ = Ψŝ, when the
sensing matrixD = RΓΨ satisfies the restricted isom-
etry property (RIP) with RICδK defined in Def. 4 (see
Appendix), andλ is a regulation parameter [12].

On the other hand, in many scenarios the signals that
researchers are interested in are usually sparse in each
piece [13], [14]. To address this issue, we consider the
case thatx is decomposed piecewise sparsely in theΨ
domain:

Definition 1 (Piecewise Sparse): In (2), s ∈ R
N is

called (N,L,K)-piecewise sparse ifs is a concatenation
of L vectors with lengthRd, d = N/L, and each vector
sT [i], i ∈ [L] is Ki-sparse:

s = [s1 · · · sd
︸ ︷︷ ︸

sT [1]

sd+1 · · · s2d
︸ ︷︷ ︸

sT [2]

· · · sN−d+1 · · · sN
︸ ︷︷ ︸

sT [L]

]T (3)

wheresT [i] denotes theith piece/block,
∑L

i=1 Ki = K.
This definition is apparently different from conventional
sparsity [15] and block-sparsity [5], so the existing unique

recovery conditions are not directly applicable. The piece-
wise compressed sensing problem can be summarized as:

Problem: Assume thats is (N,L,K)-piecewise sparse.
Given the CS model (1,2), how to measure the quality of
D, and how to recovers or x efficiently.

III. PIECEWISE COHERENCE

In CS, the coherence analysis provides an effective
method to measure the quality of sensing matricesD.
Low coherence implies that the columns ofD are almost
mutually orthogonal and that leads to the unique recovery
for s or x. We assume that thel2 norm of all columns of
D, ||di||2 = 1 for i ∈ [N ] throughout the paper, wheredi

is theith column ofD. The coherence ofD is defined as:
Definition 2 (Coherence [16], [17]): The coherence of

a matrixD can be defined as

µ = max
i,j 6=i

|d∗
idj |. (4)

When the RICδ2K of a matrix D satisfiesδ2K < 1/3,
every K-sparse vectors ∈ R

N can be recovered byl1
minimization [17], [18]. It has been proved that the RICδK
can be bounded byµ, so the unique recovery is guaranteed:

Proposition 1 (RIC bound [17]): If D has unit-norm
columns and coherenceµ, then it satisfies the RIP of order
K with δK

δK ≤ (K − 1)µ for all K < 1/µ. (5)

The bound in Prop. 1 is for conventional sparse signals. It
is natural to seek for a tighter bound ofδK by exploiting
the piecewise sparsity in a piecewise sparse setting. Similar
to (3), we representD as a concatenation of columnsD[l]
of sizeM × d:

D = [d1 · · ·dd
︸ ︷︷ ︸

D[1]

dd+1 · · ·d2d
︸ ︷︷ ︸

D[2]

· · ·dN−d+1 · · ·dN
︸ ︷︷ ︸

D[L]

], (6)

whereD[i] is the ith block matrix. With a slight abuse of
notations, we also useD[i] to represent the columns set
{d(i−1)·d+1, · · · ,di·d}, i ∈ [L]. Then we define the inner
coherence and the piecewise coherence ofD as follows:

Definition 3 (Piecewise Coherence): The (k, r)-inner
coherencevk(r) for the rth column and the piecewise
coherenceµ(K,L) are defined as

vi(r) =
{

maxjk 6=r

∑Ki−1
k=1 |d∗

rdjk |,djk ∈ D[i] if dr ∈ D[i],

max
∑Ki

k=1 |d∗
rdjk |,djk ∈ D[i] if dr /∈ D[i],

µ(K,L) =
1

K − 1
max
r∈[N ]

L∑

i=1

vi(r),

(7)

respectively.
As well as the coherenceµ, the inner coherencevk(r) and
the piecewise coherenceµ(K,L) are also based on the inner
product of two columns ofD, sovk(r) ∈ [0, 1], µ(K,L) ∈
[0, 1]. In addition, we derive their relationships through the
following propositions.
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Proposition 2: For a matrixD given in (6), setGΓ =
D∗

ΓDΓ − IK ,GΓ ∈ R
K×K , whereDΓ is the sub-matrix

of D indexed by the piecewise sparse setΓ ⊂ [N ], then

µ(K,L) =
1

K − 1
· max
Γ⊂[N ],|Γ|≤K

max
r∈Γ

|gΓr|, (8)

wheregΓr denotes the column ofGΓ corresponding to the
rth column ofDΓ.

Proof: The Gramian matrixD∗
ΓDΓ has all ones on its

diagonal entries because the columns ofD are normalized.
Hence forGΓ = D∗

ΓDΓ−IK we only need to consider the
off-diagonal entries. WhenΓ is fixed, from the definition
of gΓr,

max
r∈Γ

|gΓr| = max
r∈Γ

∑

j∈Γ\{r}

|d∗
rdj |. (9)

Taking the maximum operator over all choices ofΓ on
both sides of the equation,

1

K − 1
max
Γ⊂[N ]
|Γ|≤K

max
r∈Γ

|gΓr| =
1

K − 1
max
Γ⊂[N ]
|Γ|≤K

max
r∈Γ

∑

j∈Γ\{r}

|d∗
rdj |

=
1

K − 1
max
r∈[N ]

max
r∈Γ,Γ⊂[N ]

|Γ\{r}|≤K−1

∑

j∈Γ

|d∗
rdj | = µ(K,L),

(10)

where the last step follows becauseΓ ⊂ [N ] corresponds to
the locations of piecewise nonzero coefficients ins, |Γ| =
K =

∑

iKi, and

max
Γ⊂[N ],|Γ|≤K

max
r∈Γ

|gΓr| = max
Γ⊂[N ],|Γ|=K

max
r∈Γ

|gΓr|. (11)

Remark 1:Prop. 2 establishes a relationship between
the piecewise coherence and the Gramian matrix of sub-
matrices ofD, which is useful in the proof of the following
theorem.

Theorem 1:Denoteδ′K as the restricted isometry con-
stant for the (N,L,K)-piecewise sparse signals, and
µ(K,L), µ as the piecewise coherence and coherence, re-
spectively. GivenK ≤ 1/µ, for a matrixD in (6) we have

0 ≤ δ′K ≤ (K − 1)µ(K,L) ≤ (K − 1)µ < 1. (12)

Proof: (a) To prove that0 ≤ δ′K ≤ (K − 1)µ(K,L).
From Def. 4,δ′K is the smallest constant such that

δ′K ||s||22 ≥
∣
∣||Ds||22 − ||s||22

∣
∣ ≥ 0 (13)

holds for all (N,L,K)-piecewise sparses for the reason
in Remark2. Taking the supremum over all possibilities
of piecewise sparses ∈ R

N with its nonzero indexesΓ ⊂
[N ], |Γ| = K =

∑

i Ki and ||s||22 = 1 normalized,

δ′K = sup
s

|((D∗D− I)s)∗ · s|

= sup
sΓ

|(GΓsΓ)
∗ · sΓ| ≤ sup (ρ(GΓ))

≤ max
Γ⊂[N ],|Γ|≤K

max
r∈Γ

|gΓr| = (K − 1)µ(K,L),

(14)

whereGΓ has the expression in Prop 2. The third step
follows becauseGΓ is Hermitian,||s||2 = 1. The last two

steps are due to the Gershgorin’s disk theorem [19] and
Prop. 2.

(b) To prove that(K − 1)µ(K,L) ≤ (K − 1)µ ≤ 1.

(K − 1)µ(K,L) = max
r∈[N ]

L∑

k=1

vk(r)

≤
(

L∑

i

Ki − 1

)

µ = (K − 1)µ < 1,

(15)

for K < 1/µ due to equation (4) and (7). The combination
of (a) and (b) completes the proof.

Remark 2:1) The piecewise restricted constantδ′K is a
special case of the generalδK for piecewise sparse signals
s. Given the piecewise sparsity ofs as prior knowledge, a
sensing operatorD1 with δ′K(D1) inherits the properties
of D2 with δK(D2) (such as the uniqueness of recovery)
when δ′K(D1) = δK(D2), but the choice ofD1 is more
flexible thanD2. From another perspective, for a matrix
D the bound ofδ′K(D) is tighter than the bound ofδK(D)
in terms of the coherence, so a reconstruction with better
accuracy is expected to be feasible for piecewise sparse
signals if a proper algorithm is adopted.
2) It is possible to prove a tighter bound forδ, like
δ ≤ maxr∈[N ]maxΓ⊆[N ]\{r}

|Γ|≤K−1

∑

j∈Γ |d∗
jdr| ≤ (K − 1)µ.

However it is also easy to see that(K − 1)µ(K,L) ≤
maxr∈[N ]maxΓ⊆[N ]\{r}

|Γ|≤K−1

∑

j∈Γ |d∗
jdr|, so δ′ still has a

tighter bound thanδ.

IV. PIECEWISE ORTHOGONAL MATCHING
PURSUIT

In this section, we develop a novel algorithm called
piecewise-OMP (POMP) that can be used for reconstruct-
ing piecewise sparse signals efficiently. The algorithm uses
the OMP framework that increases the support set by one
in each iteration, and utilizes the information whose upper
bound of number of nonzero entries is at mostKi in the
piece i ∈ [L]. POMP behaves like regular OMP when
the support number of each piecesi is less thanKi for
all i ∈ [L]. The main difference between POMP and
OMP appears in how to avoid the circumstance that the
number of columns selected from each block exceeds the
sparsity constraintsKi during the support size increases.
Specifically, when the support number in theith piece
s[i], i ∈ [L] increases gradually and reaches the limitKi,
POMP absorbs the final column index in theith piece and
disables other candidates of columns inD[i], which lets
Ki stop at the upper bound of||si||0. This step is described
by the{if , · · · , end} paragraph below from line6 to 8. The
details of the steps for recovering piecewise sparse signals
are demonstrated in Algorithm 1. Please also note that
the algorithm cannot be implemented by applying OMP
L times independently, because only one comprehensive
measurement vectorb is received.
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Fig. 2. Recovery performance of piecewise sparse signals with 10dB, 30dB, 50dB noise versus different number of measurementsM using POMP in
terms of SNR. The testing signals ∈ R

N , N = 256, is generated randomly with the piecewise sparsity{Ki = i, i ∈ {1, · · · , 8}}, K = 36.

Algorithm 1: Piecewise Orthogonal Matching Pursuit
Input: matrix D ∈ R

M×N , measurementsb ∈ R
M ,

sparsity boundK, piecewise sparsityKi, i ∈ [L].
Set: residual boundξ.
Initialize: support setΓ0 = ∅, abandon setΓ′

0 = ∅,
universe setΛ = {1, · · · , N}, residualr0 = b,
solutions0 = 0, max number of iterationkmax ≤ K.
Iteration: 1. for k = 1, · · · , kmax do
2. Dk = DΛ/Γ′

k−1
\\ update the available columns inD

3. hk = DT
k rk−1 \\ form the residual signal estimate

4. Ωk = argmaxj |hk(j)| \\ find the best support
5. Γk = Γk−1 ∪ Ωk \\ update the support set
\\ abandon redundant columns
6. if |Γ[Ωk]| = Ki \\ identify the sparsity in the block,
7. Γ′

k = Γ′
k−1 ∪ {[Ωk]/(Γk ∩ [Ωk])} \\ add other

\\ indexes in the block into the abandoned set
8. end \\ end if
9. sk = argmins:supp(s)⊆Γk

||b−Dks||2
\\ where supp(s) is the estimate nonzero support

10. rk = b−Dsk \\ calculate the residual by givensk
11. If ||rk||22 ≤ ξ or |Γk| = K, break
12. end \\ end for
Output: x̂ = Ψsk

In Algorithm 1, [Ωk] represents the set of indexes in the
ith block that containsΩk. {[Ωk]/(Γk ∩ [Ωk])} is the set
of all column indexes in the block containingΩk that do
not exist in the support setΓk. Therefore once the sparsity
in a blocki reaches its upper boundKi, the algorithm will
abandon other redundant columns in this block and move
them into the abandoned column setΓ′. The algorithm
continues until the stop criteria is satisfied. The choice of
thresholdξ depends on the problems we are dealing with.
Normally we setξ = 0.01||y||22. We could also implement
the subspace pursuit [20] instead of the matching pursuit to
define the iterations aiming at accelerating the convergence
of the algorithm.

V. NUMERICAL SIMULATIONS

The aim of this section is to examine the proposed algo-
rithms in recovering signals by taking piecewise sparsity
explicitly into account. The sensing matrixD ∈ R

M×N

whose entries are drawn from a random i.i.d. Gaussian

distribution, is normalized so that the resulting columns
have norm1. The true piecewise sparse signals ∈ R

N

is generated with lengthN = 256. More specifically,s
is divided intoL = 8 consecutive pieces with each size
N/L = 32, and the piecewise sparsity of theith piece
is a varying valueKi = i, i ∈ {1, · · · , 8}. Hence the
overall sparsity ofs is K =

∑8
i=1 Ki = 36. s has entries

with i.i.d. Gaussian magnitudes on a randomly chosen
support set following a uniform distribution in each piece
with constraints on sparsityKi. When L = 2, we set
K1 =

∑4
i=1 i = 10 and K2 =

∑8
i=5 i = 26. Similar

settings are implemented whenL = 4. The recovery
results in terms of signal to noise ratio (SNR) versus
different number of measurements are shown in Fig. 2
for input noises SNR= 10, 30, 50dB, respectively. Each
data point is based on the average of1000 iterations. We
can see that when the number of measurements increases,
the performance of recovery becomes better in terms of
SNR, and the recovery results of POMP outperform OMP
by about 2, 5, 10dB in SNR in different circumstances
of noises. In addition the performance of knowing more
information about the sparsity (with largerL) gives a little
better reconstruction.

VI. CONCLUSIONS

This paper considered the recovery of piecewise sparse
signals from noisy incomplete measurements, using the
techniques of compressed sensing. We provided a whole
set of analysis tools with tighter coherence and a novel
greedy algorithm to solve the piecewise sparse recovery
problem specifically. The simulations showed the superior-
ity of the proposed POMP over conventional OMP clearly
in terms of reconstruction SNR.

VII. APPENDIX

Definition 4 (Restricted Isometry Constant (RIC)):
The restricted isometry constantδK of a D ∈ R

M×N is
defined as the smallestδK > 0 such that

(1− δK)||s||22 ≤ ||Ds||22 ≤ (1 + δK)||s||22 (16)

for all K-sparses ∈ R
N . If a matrix D has a RICδK , it

is equivalent to say thatD satisfies the restricted isometry
property of orderK with δK .
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