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ABSTRACT 

For radar echoes sampled at sub-Nyquist rates, it is imprac-
tical, if not impossible, to recover full-range Nyquist samples 
because of huge storage and computational loads. By ex-
ploiting the banded structure of the measurement matrix, we 
develop a novel segment-sliding reconstruction (SegSR) 
scheme to recover the Nyquist samples through low-cost 
segment-based computations. An important feature of the 
proposed SegSR scheme is that the measurement sub-matrix 
in each segment satisfies the restricted isometry property and 
thus the recovery performance is guaranteed. Because of the 
segmenting reconstruction, the adjacent segments will in-
troduce interferences for current segment reconstruction. To 
reduce the effect of such interference, a two-step orthogonal 
matching pursuit process (TOMPP) algorithm is proposed for 
improved segment-based reconstructions. The effectiveness 
of the proposed SegSR with TOMPP is validated by simula-
tions.  

Index Terms— Compressive sampling, orthogonal 
matching pursuit, analog-to-information conversion, seg-
ment-sliding reconstruction, sub-Nyquist sampling 

1. INTRODUCTION 

Analog-to-information conversion (AIC) systems have been 
proposed to sample wideband signals at sub-Nyquist rates. 
Among them, random demodulation (RD) [1], [2], random 
modulator pre-integrator (RMPI) [3], Xampling [4], and 
quadrature compressed sensing (QuadCS) [5], [6] have re-
ceived wide attention for radar applications. Theoretical 
analyses and experimental studies have shown that these AIC 
systems are efficient for sub-Nyquist acquisition of radar 
echo signals [7]-[10]. However, in many cases, it is desired to 
recover the Nyquist samples of radar echoes from 
sub-Nyquist outputs of AIC systems. This problem refers to 
the following sparse signal reconstruction, 
 

1
argmin s.t .ˆ ,  σ σ Ψσy AσΦ  (1) 

where σ  is an 1N   sparse coefficient vector with sparsity 

                                                 
This work was supported in part by the National Science Foundation of 
China under Grants 61171166, 61401210 and 61571228. 

(the number of nonzero entries) K , y is an 1M   measure-
ment vector, Φ  is an M N observation matrix with M N , 
Ψ  is an N N  basis matrix and A ΦΨ  is the yielding 
M N  measurement matrix. It has been shown that σ  can be 
exactly reconstructed via sparse recovery algorithms [11], if 
A  satisfies the restricted isometry property (RIP) [12].  

However, for radar applications, commonly used sparse 
reconstruction algorithms may become impractical because 
of the huge storage and computational requirements. Con-
sider, for example, a radar system with a signal bandwidth of 
100 MHz, a pulse width of 10 s, and a receiving time of 
2490 s. At one-fifth of the Nyquist sampling rate, we need 
to store a measurement matrix with 99600 rows and 498000 
columns, which occupies about 369 GB of memory using the 
standard IEEE double precision. As a result, the full-range 
reconstruction is impractical, if not impossible, with the 
state-of-the-art hardware capabilities. Similar problems also 
appear in the recovery of sparse signals from streaming 
measurements [13]-[15]. Several methods [13]-[16] have 
been proposed to solve such problems. These methods are 
either unsuitable for radar signal reconstruction or short of 
theoretical guarantees. 

In this paper, we develop a segment-sliding reconstruc-
tion (SegSR) scheme to recover full-range pulsed radar 
echoes from sub-Nyquist samples by the RD system. As 
revealed in next section, the matrix A  has a banded structure. 
By taking advantage of this fact, we formulate the meas-
urement sub-matrices which always satisfy the RIP condition, 
a distinctive characteristic from other segmenting schemes 
[14]-[16]. Then, we achieve full-range reconstruction by 
performing sparse reconstruction separately in each segment. 
Because of the segmenting reconstruction, the adjacent 
segments will introduce interferences for current segment 
reconstruction. To suppress the effect of such interferences, 
we develop a two-step sparse reconstruction approach, which 
consists of two orthogonal matching pursuit (OMP) pro-
cesses. Simulation results verify the effectiveness of the 
proposed SegSR approach. 

The remainder of this paper is organized as follows. 
Section 2 provides the signal model and summarizes the 
compressive sampling concept for the underlying RD scheme. 
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Section 3 describes the proposed segment-sliding recon-
struction scheme. Numerical results are presented in Section 
4. Section 5 concludes this paper. 

Notations: Bold letters denote the vectors or matrices. 

1
  and 

2
  respectively denote the 1  and 2  norms of a 

vector. A vector (matrix) with a set as its subscript denotes the 
sub-vector (sub-matrix) containing the elements (columns) of 
the vector (matrix) indexed by the set. ( )T and †( )  represent 
transposition and Moore-Penrose inverse, respectively.     
and     respectively denote the ceiling and floor functions. 

2. BACKGROUND MATERIALS 

2.1. Signal model 

Consider a pulsed radar where the baseband signal ( )s t  has a 
pulse width of Tp and a bandwidth of 2B . Then, for K  
non-fluctuating point targets, the received echo signal at the 
baseband can be represented as 

 
1

0

( ) ( ), [0, ),k

K

k
k

x t s t t t T




    (2) 

where kt  and k  are the time delay and gain coefficient of 
the k-th target, respectively, and T  refers to the receive time 
which is usually much larger than pT , i.e., pT T . For nota-
tional succinctness, the background noise is not explicitly 
presented in the above expression. 

Let 0 1 B   be the Nyquist sampling interval and 

0N T      be the number of Nyquist samples in the receive 
time T . Assume that target delays are integral multiples of 

0 . Then, ( )x t  can be expressed in waveform-matched dic-
tionary 1

0( ) { ( )}N
n nt t 

ψ  with 0( ) ( )n t s t n    as [6],  
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( ) ( ) ( ) ,n
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n
n

x t t t




  ψ σ  (3) 

where T
0 1 1[ , , , ]N   σ  is a sparse coefficient vector de-

fined over all the possible delay positions. For K  targets, 
there are K  nonzero coefficients in σ . When K N , ( )x t  
is K -sparse in ( )tψ . 

2.2. Compressive sampling of radar echoes 

In this section, the principle of compressive sampling is 
introduced for the RD system, as shown in Fig. 1. The input 
signal ( )x t  is first mixed by a pseudorandom 1  chipping 
sequence ( )p t  operating at the chipping rate pB ( pB B ), 
i.e., ( ) 1p t    ( [ , ( 1) )p pt k B k B  , 0,1,2,k   ) . The mixed 
signal passes through a low-pass filter to prevent aliasing, 
and the filtered signal is then sampled. For the accumulated 
filter, the compressive samples are given by 

 int

int( 1)
( ) ( ) , 1,2, , ,

mT

m Tmy x t p t dt m M


    (4) 

where 0intT R  is the integration time, and 1R   is an integer 
referred to as the down sampling rate. During the receive 
time T , we can acquire intM T T     low-rate samples. 

For the waveform-matched dictionary, passing its ele-
ments through the RD system yields, 

 
int

int( 1, )
( ) ( ) , 1,2, , .

mT

m Tm n n t p t dt ma M


    (5) 

Substituting (3) and (5) into (4) results in 
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,
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, 1, , .
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    (6) 

Define 1 2[ , , , ]T
My y yy  , 1, 2, ,[ , , , ]T

n n n M na a aa   and 

0 1 1[ , , , ]N  a a aA  . Then, we can express (6) as  

 
1

0

.
N

n n
n






 y a Aσ  (7) 

Here, y  and A  are referred to as the measurement vector 
and the measurement matrix, respectively. Since 1R  , it is 
clear that M N  and (7) is thus an underdetermined equa-
tion. The recovery of the radar echo signal ( )x t  is equivalent 
to the reconstruction of the sparse vector σ . 

Note that the RD is a special case of the QuadCS [6] with 
a zero intermediate frequency. We have proved in [6] that the 
QuadCS satisfies the RIP for radar signals with flat spectra 
under the waveform-matched dictionary. Then, the sparse 
vector σ  can be exactly reconstructed by solving (1).  

As stated in Section 1, directly solving (1) is impractical. 
Note that 0( ) ( )n t s t n    of ( )tψ  has a finite duration of pT , 
i.e., ( ) 0n t   for 0 0[ , )pt n T n   , 0,1, , 1n N  . Then, it 
is clear from (5) that the n-th column of the measurement 
matrix A  takes nonzero values only in finite indexes, i.e., 

, 0m na   for /m n R     or 0 int( ) / 1p Tm T n     . Therefore, 
A  can be described by 
 , 0, or ,m na n R m d n R m     (8) 

where int 1pd T T     for 1,2, ,m M   and 0,1, , 1n N  . 
An example with 10 MHzB  , 0.9 μspT  , and 3R   is 
shown in Fig. 2 in which 18M   and 45N  . It is clearly 
seen that the matrix A  has a banded structure. By exploiting 
this structure characteristic, we develop a segment-sliding 
method where the reconstruction of the vector σ  is per-
formed in small-size segments. 

3. SEGMENT-SLIDING SPARSE 
RECONSTRUCTION SCHEME 

With the banded structure of matrix A, we can perform the 
reconstruction of the vector σ  as discussed in [14], [16]. The 
problem with them is that the resulting measurement 
sub-matrices cannot be guaranteed to satisfy the RIP condi-
tions. In our development, we take a different way to segment 
σ , y  and A  such that the measurement submatrices always 
satisfy the RIP conditions as long as the full measurement 
matrix A  does. The segmentation scheme is shown in Fig. 2. 
The vector σ  is divided into L  overlapping sub-vectors ( )lσ , 

( )x t

( )p t
Pseudorandom
      generator

my

intt mTint

t

t T
1

 

Fig. 1.  Structure of the RD system. 
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 ( ) ( : 1), 1,2, , ,l n n N l L   σσ     (9) 

where ( 1) pn l N  , (1 )pN SN S P   , and L P S  . In (9), 
we assume that the receive time T  is P  times the radar pulse 
width pT , i.e., pT PT , and then pN N P  is the number of 
Nyquist samples in a pulse width with P denoting an integer. 
The segmentation in (9) implies that ( )lσ  is of length pSN  
and is sliding down a pulse width in comparison with ( 1)lσ . 
Let ( ) ( ) (( 1) : 1)l l

s p ps N sN  σ σ   be the vector of length pN . 
We can further express ( )lσ  as ( ) ( ) ( ) ( )

1 2[ ) ,( ) , , ) ]( (l l T l T l T T
Sσ σ σ σ    . 

The selection of S  depends on the computational capacity 
and sparsity in the sub-vector ( )lσ . In the following, we as-
sume that sub-vectors ( )lσ  are sparse for all 1,2, ,l L  .  

Similarly, the measurement vector y  is divided into L  
overlapping measurement sub-vectors ( )ly , expressed as, 

 ( ) ( : 1), 1,2, , ,l m m M l L   y y      (10) 

where ( 1) 1pm l M    and ( 1) pM S M  with ( )pM N RP  
denoting the number of compressive samples within a pulse 
width. 

With the segmentation on σ  and y , we can formulate an 
M N   measurement sub-matrix ( )lA  as 

 ( ) ( : 1, : 1), 1,2, , ,l m m M n n N l L     A A        (11) 

by extracting the columns and rows of A  corresponding to 
( )lσ  and ( )ly  (refer to Fig. 2). Following the partitioning of 
( )lσ , we can express ( )lA  as ( ) ( ) ( ) ( )

1 2[ , , , ]l l l l
SA A A A     with 

( ) ( ) (1: ,( 1) : 1)l l
s p pM s N sN  A A   . 

From (9), (10) and (11), we have  

 

( ) ( ) ( 1) ( 1)

( ) ( 1) ( 1) ( ) ( ) ( 1) ( 1)
1

( 1) ( 1) ( ) ( )
1
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, ,

l l l l
S

l l l l l l l
S

l l l l

l

l L

l L
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where 
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It is observed in (12) that ( )ly  is generally related to three 
sub-vectors ( 1)

1
lσ , ( )lσ , and ( 1)l

S
σ . The terms ( 1) ( 1)

1
l l A σ   and 

( 1) ( 1)l l
S

 A σ 


 are due to the contributions of ( 1)
1
lσ  and ( 1)l

S
σ , 

respectively. Define 
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 (15) 

where ( 1)
1

ˆ lσ  is the estimate of ( 1)
1
lσ . Moreover, define 

 

( 1) ( 1)

( ) ( 1) ( 1) ( 1) ( 1)
1

( 1) ( 1)
1

, 1,

, 2,3, , 1,

, .

l l
S

l l l l l
S

l l

l

l L

l L

 

   

 

 
    
  

A σ

n A σ A σ

A σ

 
    

 
 (16) 

where ( 1) ( 1) ( 1)
1 1 1

ˆl l l    σ σ σ    is the error between ( 1)
1
lσ  and 

( 1)
1

ˆ lσ . Then, we have a general form of compressive meas-
urements in the presence of noise as 
 ( ) ( ) ( ) ( ) , 1,2, , .l l l l l L  y A σ n     (17) 

Note that ( )ln  stems from the estimation error in the 
previous segment and the partial measurement in the subse-
quent segment. For convenience, we refer to ( )ln  as the vir-
tual noise sub-vector and  ( 1) ( 1)

1
l l A σ   and ( 1) ( 1)l l

S
 A σ 


 as the 

forward and backward virtual noise, respectively. Their effect 
on the reconstruction of ( )lσ  is simulated in Section 4. Simi-
larly, we refer to ( )ly  as a virtual measurement sub-vector.  

It becomes clear that the large-scale reconstruction (1) is 
now decomposed into L  small-scale ones (17). As such, we 
can robustly reconstruct ( )lσ  by solving the constrained op-
timization problem 

 ( ) ( ) ( ) ( ) ( ) ( )

21
ˆ argmin s.t . ,l l l l l l  σ σ y A σ     (18) 

in which 
2

( ) ( )l ln . We name the method as seg-
ment-sliding sparse reconstruction (SegSR), which is sum-
marized as Algorithm 1.  

Note that each column of ( )lA  completely contains all 
nonzero elements of the corresponding column of A , and 
then the sub-matrix ( )lA  in (17) satisfies the RIP, which is 
different from other formulations [14], [16]. 

Solving (18) is one of the major steps in the proposed 
SegSR scheme. From (16), we note that the forward and 

Algorithm 1. SegSR Scheme 

Input: S , pM , pN , M , N  and L  
Output: Estimated sparse vector σ̂  
Steps: 
1) Initialize 1l  . 
2) Extract the 1M   measurement sub-vector ( )ly  and the 

M N   measurement sub-matrix ( )lA . 
3) Calculate the virtual measurement sub-vector ( )ly  by (15). 
4) Solve (18) and obtain the estimate ( )ˆ lσ  of ( )lσ . 
5) Let 1l l  . If l L , go to Step 6)；otherwise, generate the 

M N   sub-matrix ( 1)lA  by (13), extract the sub-vector 
( 1)
1

ˆ lσ  from the estimated ( 1)ˆ lσ  and go to Step 2). 
6) Estimate the sparse vector σ  as 

            
( )
1

( )

ˆ( 1) : 1) , 1, , 1,

( 1

ˆ (

ˆˆ ( ) : 1) , .

l

L

p p

p

l N lN l L

l N N l L

    






  

σ

σ

σ

σ

 


 

 

(1)A
(2)A

(3)A

N

M
pM

pN

y

M
(1)y

(2)y
(3)y

pM N(1)σ

σ

pN

(2)σ

(3)σ

A

Fig. 2.  Schematic illustration of the segmentation. 
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backward virtual noise exists only in the range of [1: ]pM  
( [ 1: ]pM M M   ), and the backward virtual noise level is 
generally much higher than that of the forward virtual noise. 
Then we can utilize two OMP processes to improve the re-
construction. The first OMP process with threshold 1  ob-
tains a rough estimate (Steps 2-4 in Algorithm 2) derived for 
the whole virtual noise, and the second one with threshold 2  
(Steps 5-7 in Algorithm 2) refines the estimate for sparse 
coefficients lied in [0 : 1]pN N  . The resulting algorithm is 
referred to as two-step OMP process (TOMPP). In addition, 
there exists a partial overlap between two consecutive seg-
ments of the sparse vector σ . Then the partially known 
support (PKS) from the previous segment can be incorpo-
rated into the initialization of the first OMP process in the 
current segment (Step 1 in Algorithm 2), which further im-
proves the reconstruction performance.  

4. SIMULATION RESULTS 

In this section, we evaluate the performance of the proposed 
SegSR scheme through several simulation experiments. 
Without special statements, 500 realizations are conducted 
and the averaged results are presented. The reconstruction 
error and the running time of the SegSR scheme with 
OMP-PKS [17] and TOMPP are presented and the relative 
reconstruction error 

2 2
ˆrE  σ σ σ  is taken as the criterion 

for performance evaluation. 
We consider a linear frequency modulated (LFM) pulse 

signal with bandwidth 100 MHzB   and pulse width 
10 μspT  . To make a comparison with direct reconstruction, 

we set the receive time 100 μsT   such that the measurement 
matrix is of a moderate size. For the RD system, we set the 
chipping rate to be 100 MHzpB   and the integration time to 
be int 0.05 μsT  . For echo model (2), we assume that the 
amplitudes follow a uniform distribution in (0,1] , and the 
time delays are randomly chosen in resolution grids. Fur-
thermore, it is assumed that the elements of the coefficient 
vector σ  take a nonzero value with a probability p.  

Fig. 3 shows the relative reconstruction error versus p  
for different values of S  in the noiseless case. The OMP 
results obtained from direct solving (1) are not shown here, 
because they derive much smaller errors in the noise-free 
case. It is seen that the relative reconstruction errors by the 
TOMPP are much lower than those obtained from the 
OMP-PKS. For the parameters being studied, the relative 
reconstruction errors by the TOMPP do not significantly 
change when S  is larger than 3. 

We now use CPU time to illustrate the running time. The 
simulation is performed using MATLAB 2011b in a PC with 
3.1 GHz Intel core i5-2400 processor and 4 GB RAM. The 
running times of the SegSR scheme with TOMPP and the 
original direct reconstruction by OMP are given in Fig. 4. It is 
clear that the TOMPP is much faster than the OMP. It should 
be noted that the simulations are only illustrative for a mod-
erate size example. In fact, the TOMPP solves large-scale 
reconstruction problems which cannot be solved directly by 
the OMP. Note that the running time of TOMPP increases as 
S  increases. Considering the reconstruction error and the 
running time, 3S   is chosen in our simulations.  

5. CONCLUSION 

In this paper, we have developed a SegSR scheme to recover 
full-range pulsed radar echoes from the sub-Nyquist samples. 
The SegSR scheme decomposes a large-scale reconstruction 
problem into a series of small-scale ones, and all the meas-
urement sub-matrices satisfy the RIP conditions such that the 
recovery performance can be guaranteed. Although devel-
oped from RD, the SegSR scheme can be applied to other 
AIC systems in which the measurement matrices have a 
similar structure. 
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Algorithm 2. TOMPP 

Input: ( )ly , ( )lA , pN , N , ( 1)ˆ lσ , threshold parameters 1  and 

2  ( 2 1  ) 
Output: Estimated sparse sub-vector ( )ˆ lσ  
Steps: 
1) Initialize the index set [0]  as the known support in the 

-thl segment estimate,  [0] ( 1)ˆsupport ( : 1)l
pN N  σ  ; 

the residual  [0] ( )
0

l r I P y  , where  [ 0 ] [ 0 ]

†
( ) ( )

0
l l

 
P A A   

denotes the projection onto the linear space spanned by the 
columns of [ 0]

( )l


A . Let 1i  . 

2) Find the column of ( )lA  that has the highest correlation 
with the residual [ 1]ir , i.e.,  

[ ] ( ) [ 1]
0,1, , 1

arg max , ,i l i
jj N

 
  a r

   

and update the index set  [ ] [ 1] [ ]i i i    . 
3) Update the residual as  [ ] ( )i l

i r I P y  . 
4) Let 1i i  . If [ 1] [ ]

12 2

i i   r r  , go to Step 5); other-
wise, return to Step 2). 

5) For columns 0 1pN N   of ( )lA , find the column that 
has the highest correlation with the residual [ 1]ir , i.e.,  

               [ ] ( ) [ 1]
0,1, , 1

arg max , ,
p

i l i
jj N N

 
   a r

   

and update the index set  [ ] [ 1] [ ]i i i    . 
6) Update the residual as  [ ] ( )i l

i r I P y  . 
7) If [ 1] [ ]

22 2

i i   r r  , go to Step 8); otherwise, let 1i i   
and return to Step 5). 

8) Compute the estimate ( )ˆ lσ  as  [ ] [ ]

†
( ) ( ) ( )ˆ

i i

l l l

 
 Aσ y   . 
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