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ABSTRACT

This paper concerns the line spectral estimation problem
within the recent super-resolution framework. The frequen-
cies of interest are assumed to follow a prior probability
distribution. To effectively and efficiently exploit the prior
information, we devise a weighted atomic norm approach
that is physically sound and can be formulated as convex
programming like the standard atomic norm method. Nu-
merical simulations are provided to demonstrate the superior
performance of the proposed approach in accuracy and speed
compared to the state-of-the-art.

Index Terms— Spectral super-resolution, compressed
sensing, weighted atomic norm, probabilistic prior.

1. INTRODUCTION

This paper concerns the line spectral estimation problem that
has wide applications in communications, radar, sonar, seis-
mology, astronomy and so on. In particular, let fk ∈ [0, 1],
k = 1, . . . ,K be the unknown frequencies of interest (K is
unknown as well). We have the data model:

yo =
K∑

k=1

a (fk) sk (1)

and observe part of the entries of yo ∈ CN that form a
subvector yo

Ω ∈ CM , where Ω ⊂ {1, . . . , N} denotes
the index set with M = |Ω| ≤ N . In (1), a (f) =[
1, ei2πf , . . . , ei2π(N−1)f

]T ∈ CN denotes a complex si-
nusoid with frequency f , and sk ∈ C is the amplitude of the
kth sinusoid. Given yo

Ω we want to recover the frequencies
fk, k = 1, . . . ,K. This is known as the compressive data
case since only part of the full data yo is observed.

The study of line spectral estimation has a long histo-
ry. Well known conventional methods include beamforming,
Capon’s beamforming and subspace methods such as MU-
SIC and ESPRIT. Readers are referred to [1] for a complete
review. Since Capon’s beamforming and subspace methods
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require a data covariance estimate, their application is chal-
lenging in the compressive data case in which this estimate is
difficult to obtain.

With the development of sparse representation and com-
pressed sensing, sparse methods have been successfully ap-
plied in line spectral estimation in the past decade by using the
fact that the number of sinusoids K is small. In early sparse
methods, however, the continuous frequency domain has to
be gridded/discretized, resulting in several drawbacks such as
grid mismatch and weak theoretical guarantees [2, 3]. These
drawbacks have recently been resolved by using gridless s-
parse methods within the recent super-resolution and continu-
ous compressed sensing framework [4–7]. In this framework,
the frequencies are dealt with directly in the continuous do-
main; convex optimization methods are proposed by using the
atomic norm—a continuous counterpart of the ℓ1 norm [8];
and they are guaranteed to recover the frequencies provided
the frequencies are sufficiently separated.

In this paper, besides sparsity, we assume that the frequen-
cies of interest follow a prior probability distribution that can
be obtained in practical applications, e.g., based on histori-
cal data or certain physical constraints (note that K is still
unknown). The use of prior distribution for improving per-
formance is common in the literature on statistical estimation
and is typically accomplished by using statistical inference
that however needs the value of K and often requires noncon-
vex optimization. Different from the existing methods, we
solve this frequency recovery problem by using deterministic
convex optimization within the super-resolution framework.
In particular, we devise a weighted atomic norm approach
in which the prior information is used to define a weighting
function that is further used to penalize the frequencies. We
cast the weighted approach as convex programming and solve
it using off-the-shelf solvers.

Before proceeding to the main context, we recall some
related works. The paper [9] assumes that the number of fre-
quencies is known and each follows a prior distribution. The
maximum a posterior (MAP) estimator was derived by using
nonconvex optimization that suffers from local convergence.
Weighted optimization is common in the literature on com-
pressed sensing (in the discrete setting) for exploiting prior
support information of the sparse signal. A subset of the sup-
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port is typically assumed known [10]. But results are rare on
probabilistic priors. Related papers include [11,12], in which
weighted ℓ1 norm methods were studied given the probability
of each entry of the sparse signal being nonzero (note that the
number of nonzeros is thus approximately known). To date,
weighted atomic norm has been studied for frequency recov-
ery by two research groups. In our previous work [13, 14],
weighted atomic norm was iteratively implemented for en-
hancing sparsity and resolution without any prior informa-
tion. In [15,16], a different weighted method was used to deal
with a class of prior distributions that are piecewise constant.
While the approach of this paper can also deal with such spe-
cialized prior information, numerical simulations show that it
can be a magnitude faster with comparable accuracy.

2. PROPOSED SOLUTION

2.1. Problem Statement

Let F ∈ [0, 1] be a random variable that describes the fre-
quencies {fk} and let the probability density function (pdf)
of F be p(f). The objective is to recover the frequencies
{fk} given the data model in (1), the observed data yo

Ω and
the prior distribution p(f).

2.2. Preliminaries

We first recall the atomic norm method without any prior in-
formation except sparsity. Note that yo in (1) is a linear com-
bination of K atoms in the set

A =
{
a (f, ϕ) = a(f)ϕ : f ∈ [0, 1] , ϕ ∈ S1

}
(2)

that is called the set of atoms, where S1 = {ϕ ∈ C : |ϕ| = 1}
is the unit circle. Motivated by the literature on sparse repre-
sentation, we seek the sparsest solution by solving the opti-
mization problem:

min
y

∥y∥A,0 , subject to yΩ = yo
Ω, (3)

where ∥y∥A,0 denotes the atomic ℓ0 norm and is defined as
the smallest number of atoms composing y (a continuous
counterpart of the ℓ0 norm). While (3) is in fact a rank min-
imization problem and cannot be practically solved, we turn
to its convex relaxation—the atomic norm problem [4, 5]:

min
y

∥y∥A , subject to yΩ = yo
Ω, (4)

where ∥y∥A denotes the atomic norm and is defined as:

∥y∥A = inf
fk,ϕk,ck>0

{∑
k

ck : y =
∑
k

cka (fk, ϕk)

}
. (5)

It follows from [4,5] that ∥y∥A can be formulated as semidef-
inite programming (SDP).

2.3. Proposed Weighted Atomic Norm Approach

To exploit the prior information, we propose a weighted atom-
ic norm approach in this paper. In particular, we transform the
prior distribution p(f) into a weighting function w(f) ≥ 0
that, instead of p(f) in statistical inference methods, is used
to indicate the preference of the atoms. To be more specific,
A is modified into the set of weighted atoms:

Aw =
{
w(f)a (f, ϕ) : f ∈ [0, 1] , ϕ ∈ S1

}
. (6)

The weighted atomic norm is the atomic norm induced by Aw

that can be written as:

∥y∥Aw = inf
fk,ϕk,ck>0

{∑
k

ck
w(f)

: y =
∑
k

cka (fk, ϕk)

}
.

(7)
Then we solve the weighted atomic norm problem:

min
y

∥y∥Aw , subject to yΩ = yo
Ω. (8)

Inspired by the weighted ℓ1 technique in [17], we attempt
to let w(f) be approximately the magnitude of the potential
frequency component at f so that the weighted atomic nor-
m can approximate the atomic ℓ0 norm in (3). On the oth-
er hand, w(f) must be chosen such that ∥y∥Aw can be effi-
ciently computed. This is the main challenge of the weighted
atomic norm approach, making it substantially different from
the discrete setting in compressed sensing.

We first study how to choose w(f) to meet the computa-
tional criterion. Since strong duality holds [18], we consider
the dual problem of (8):

max
x

⟨xΩ,y
o
Ω⟩R , subject to ∥x∥∗Aw ≤ 1 and xΩc = 0, (9)

where ⟨·, ·⟩R denotes the inner product and Ωc is the comple-
ment of Ω. In (9), the dual weighted norm ∥x∥∗Aw is defined
as:

∥x∥∗Aw = max
∥y∥Aw≤1

⟨x,y⟩R = max
f

w(f)
∣∣aH(f)x

∣∣ . (10)

So it suffices to characterize the inequality∣∣aH(f)x
∣∣ ≤ w−1(f), f ∈ [0, 1] . (11)

Motivated by [4] that deals with the standard atomic norm
for which w(f) ≡ 1, we attempt to characterize (11) as a
linear matrix inequality (LMI) by applying the bounded real
lemma (BRL) for trigonometric polynomials [19]. It follows
from [19, Theorem 4.24] that this can be done if w−1(f) =∣∣aH(f)h

∣∣ for some h ∈ CN . Further, it follows from the
Riesz-Fejér theorem (see, e.g., [19, Theorem 1.1]) that the
above condition is satisfied if w−2(f) is a positive (Hermi-
tian) trigonometric polynomial.

Based on the arguments above, we let w2(f) be the
Capon’s power spectrum:

w2(f) =
[
aH(f)C−1a(f)

]−1
(12)
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that is well known to estimate the sinusoid power as a function
of the frequency f if the data covariance matrix C is given.
Applying [19, Theorem 4.24], we have that (11) holds if and
only if there exists H ∈ CN×N satisfying that[

1 xH

x H

]
≥ 0 and

N−j∑
n=1

Hn,n+j =

N−j∑
n=1

[
C−1

]
n,n+j

,

(13)
j = 0, . . . , N − 1, where Hn,n+j denotes the (n, n + j)th
entry of H . So we successfully cast the dual problem (9)
as SDP that generalizes the case of standard atomic norm
in [4] where C is the identity matrix. A straightforward con-
sequence of the strong duality is that, once (9) is solved, the
frequencies of interest can be located at those f ’s satisfying
that |q(f)| = w−1(f), where, as in [4, 5],

q (f) = aH(f)x (14)

is called the dual polynomial. It follows from similar argu-
ments as in [4] that the frequencies can be obtained by solving
the roots of the polynomial aH(f)

(
C−1 − xxH

)
a(f).

The remaining task is to compute C based on the given
prior distribution p(f). Note first that we need only to deter-
mine C up to a positive scaling factor. We make a common
assumption that the complex amplitudes {sk} in (1) have ran-
dom phases, leading to a common expression of C (as a func-
tion of

{
|sk|2

}
and {fk}): C =

∑K
k=1 |sk|

2
a(fk)a

H(fk).
We further assume that the sinusoid power is independent of
the frequency. As a result, the expectation of C is

EC ∝ Ea(f)aH(f) =

∫ 1

0

a(f)aH(f)p(f)df (15)

that can be explicitly given or at least numerically computed
and will be used as the estimate of C in the proposed ap-
proach (note that in the case when C is ill-conditioned, it can
be modified to C + ϵI where ϵ > 0 is a small regularization
parameter).

To illustrate the proposed weighted approach, we provide
an example in Fig. 1. There the prior distribution is Gaussian,
with mean 0.5 and variance 0.12, truncated on the interval
[0, 1]. The proposed weighting function w(f) is computed
with N = 64. It is interesting to note that w(f) (solid red) is
very close to the squared root of the prior pdf (dashed blue).

2.4. The Perspective of Covariance Fitting

While we have cast the dual problem (9) as SDP, a standard
Lagrangian analysis allows us to derive the SDP formulation
of the primal problem (8):

min
t,u

1

2
t+

1

2
tr
(
C−1T (u)

)
,

subject to
[
t yH

y T (u)

]
≥ 0 and yΩ = yo

Ω,

(16)

Frequency
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

weight
sqrt of pdf

Fig. 1. Weighting function (solid red) of the proposed ap-
proach under a truncated Gaussian prior. The dashed blue
line plots the squared root of the prior pdf.

where T (u) denotes a (Hermitian) Toeplitz matrix the first
row of which is given by the transpose of u ∈ CN . Without
surprise, (16) recovers the formulation of the weighed atomic
norm that was obtained in [14] by using the Vandermonde
decomposition of Toeplitz matrices (see, e.g., [1]). While the
atomic norm method can be viewed as a covariance fitting
method [7], it is interesting to note that the weighted atomic
norm approach corresponds to weighted covariance fitting. In
(16), T (u) plays the role of the data covariance of interest
and C is its prior estimate. Therefore, the matrix weighting
strategy in (16) helps to shape the covariance estimate.

Moreover, the primal SDP formulation (16) provides an-
other way to frequency retrieval, instead of using the dual
polynomial. In particular, given u that can be obtained for
free when we solve the dual problem (9), we can compute the
Vandermonde decomposition of T (u) that provides the solu-
tion of {fk}. Readers are referred to [14] for the details. This
method will be used in the present paper since we find that it
results in higher numerical accuracy.

3. THE CASE OF BLOCK PRIORS

To compare with [16], we specialize in this section the pro-
posed weighted approach to the case of block priors where all
the frequencies are known to lie in certain frequency bands.1

Let the union of the frequency bands be

D = ∪J
j=1

[
fLj

, fHj

]
, (17)

where
[
fLj , fHj

]
, j = 1, . . . , J are disjoint intervals in [0, 1].

In [16], a piecewise constant weighting function with w(f) =
1, if f ∈ D, and w(f) = 0, otherwise was used to implement
the weighted atomic norm (or constrained atomic norm in the
language of [16]). In the resulting dual problem, the inequal-
ity

∣∣aH(f)x
∣∣ ≤ 1 was characterized on each frequency band

by using two LMIs, leading to an SDP formulation consisting
of 2J LMIs. We next provide a different yet more computa-
tionally efficient approach that contains only a single LMI.

To apply the proposed weighted approach, we naturally
assume that the frequencies are uniformly distributed on D.
This means that p(f) = B−1 on D and p(f) = 0 on [0, 1]\D,

1Though the paper [16] can deal with all piecewise constant prior distri-
butions, it does not provide the optimal weight in its method in general.
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Fig. 2. Weighting function (solid red) of the proposed ap-
proach under the block prior with D = [0.3, 0.45]∪ [0.6, 0.8],
N = 64 and a regularization parameter ϵ = 10−4.
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Fig. 3. Results of success rates under the truncated Gaussian
prior as presented in Fig. 1.

where B =
∑J

j=1

(
fHj − fLj

)
. It follows from (15) that

EC ∝ T (v), where v1 = 1 and for n = 2, . . . , N , vn =
i

2π(n−1)B

∑J
j=1

(
e−i2π(n−1)fHj − e−i2π(n−1)fLj

)
. There-

fore, the weighted atomic norm approach can be implement-
ed by using this data covariance estimate. As an example,
we plot in Fig. 2 the weighting function w(f) in the case of
D = [0.3, 0.45] ∪ [0.6, 0.8] and N = 64. It is interesting to
note that it is very close to the weight used in [16] (up to a
scaling factor).

4. NUMERICAL SIMULATIONS

In this section, we numerically study the performances of the
proposed weighted atomic norm minimization (WANM) ap-
proach, that is implemented in Matlab and solved by using
SDPT3 [20]. In particular, we set N = 64, K = 5 and vary
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Fig. 4. Results of dual polynomials of ANM (upper) and the
proposed WANM (lower) under the truncated Gaussian prior
in a single run.
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Fig. 5. Results of success rates under the block prior as pre-
sented in Fig. 2.
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Fig. 6. Results of averaged CPU times under the block prior.

M . The frequencies are independently generated from a prior
distribution p(f). Note that we do not control the minimum
separation of the frequencies.

In the first simulation, we consider the truncated Gaussian
prior as presented in Fig. 1. While no existing methods can
deal with this prior (note that [9] needs to know K), we only
compare with the standard atomic norm minimization (ANM)
in [5]. We plot in Fig. 3 the success rates of the two methods
in recovering the frequencies (based on 100 Monte Carlo runs
for each M ). It is shown that the proposed approach signifi-
cantly improves the successful recovery rate by exploiting the
prior information. Moreover, we plot in Fig. 4 the results of a
single run at M = 16, in which the proposed WANM (lower)
succeeds while ANM (upper) fails. Note that the absolute val-
ue of the dual polynomial of WANM intersects with w−1(f)
at the true frequencies.

In the second simulation, we consider the block prior as
presented in Fig. 2 and compare the proposed WANM with
ANM and the method in [16]. It is shown in Fig. 5 that
the two weighted approaches ( [16] and ours) have compa-
rable frequency recovery capability and both of them outper-
form ANM. Moreover, it is shown in Fig. 6 that the proposed
WANM is comparable with ANM in computational speed and
is more than a magnitude faster than the method in [16].

5. CONCLUSION

In this paper, we proposed a weighted atomic norm approach
to spectral super-resolution to exploit prior information of the
frequencies. By the proposed weighting strategy, the pro-
posed approach can effectively exploit general probabilistic
priors without increasing the computational complexity. In
the case of block priors it can be a magnitude faster than the
state-of-the-art with comparable accuracy.
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