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ABSTRACT
The problem of estimating the number of superimposed sig-
nals using noisy observations from N antennas is addressed.
In particular, we are interested in the case where a low number
of snapshots L = O(N) is available. We focus on the Min-
imum Description Length (MDL) estimator, which is revised
herein. Furthermore, we propose a modified MDL estimator,
with the help of random matrix tools, which improves the es-
timation of the number of sources. Simulation results demon-
strate the potential of the modified MDL estimator over the
traditional one, in the case where L = O(N).

Index Terms— Detection, Number of Signals, MDL, G-
estimation, Random Matrix Theory

1. INTRODUCTION

The problem of model selection from the observed data, or
snapshots, is a fundamental problem in diverse areas of signal
processing, such as system identification [1] and array sig-
nal processing [2]. In particular, the detection of number of
sources could be classified as a model selection problem. Fur-
thermore, it is well known that the performance of parametric
modelling techniques, such as those found in [3], depends on
the knowledge of the number of signals.

The first and most basic techniques developed to de-
termine the number of sources were based on hypothesis
testing [4]. However, they require a pre-defined threshold to
accept, or reject a certain hypothesis. Then, methods based
on information theoretic criteria, such as Akaike’s Informa-
tion Criteria (AIC) introduced by Akaike in [5] and Minimum
Description Length (MDL) introduced by Rissanen [6] and
Schwartz [7], were used for the detection of number of sig-
nals in [8]. Similar criteria such as the Benjamin-Hochberg
procedure [9, 10] were used in [11] to detect the number of

This work was supported in part by RivieraWaves, a CEVA company,
and a Cifre scholarship. EURECOM’s research is partially supported by its
industrial members, by the French ANR project DIONISOS and by the EU
projects ADEL (FP7) and HIGHTS (H2020).

signals. Other methods, such as bootstrap [12], were devel-
oped to tackle the same issue.

All detection techniques just mentioned depend, merely,
on the sample eigenvalues of the data covariance matrix. In
practice, this data covariance matrix is not the true one, but an
estimate of it. It is referred to as the sample covariance matrix.
Usually, the sample covariance matrix is computed through L
snapshots fromN measurements, or sensors. It is well known
that the sample eigenvalues are L-consistent [13], but (N,L)-
inconsistent [14], estimates of the true ones. In other words,
when L −→∞ at finite N (L� N ), the sample eigenvalues
converge towards the true ones. However, as (N,L) −→ ∞
at the same rate (0 < c = N

L < ∞), the sample eigenvalues
do not converge towards the true ones.

Random matrix theory is a branch of statistics that is de-
voted to the study of the asymptotic behavior of the eigen-
values and eigenvectors of some random matrix models when
the dimensions of the matrices increase without bound at the
same rate [16]. It should be noted that dimensions, in our
case, are N and L. One might think that these dimensions
tend towards a large number since both quantities are increas-
ing without bound, but this is not the only case. The important
factor here is the ratio of both quantities, i.e. c = N

L [17].
The motivation of this paper is to observe the performance

of the traditional MDL criterion when the quantity c is not
neglected, and to propose a modified MDL criterion using
(N,L)-consistent estimates of the eigenvalues of the data co-
variance matrix, such as the ones derived in [15]. Indeed,
other modified estimates of the eigenvalues that are (N,L)-
consistent are discussed in [18,19]. Prior work has been done
on using random matrix theory for the detection problem,
such as [20–23]. However, their main focus was on the hy-
pothesis testing problem.

This paper is divided as follows: Section 2 present the
system model followed by a recap of the MDL criterion in
Section 3. The modified MDL estimator is presented in Sec-
tion 4 with simulation results in Section 5. We conclude the
paper in Section 6.
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Notations: Upper-case and lower-case boldface letters
denote matrices and vectors, respectively. (.)T and (.)H rep-
resent the transpose and the transpose-conjugate operators.
E{.} is the statistical expectation. The matrix IN is the iden-
tity matrix of dimensions N ×N . The operators ”detX” and
”trX” denote the determinant and trace of a square matrix X,
respectively.

2. SYSTEM MODEL

Assume a planar arbitrary array of N antennas. Furthermore,
consider q < N narrowband sources attacking the array from
different angles, i.e. Θ = [θ1 . . . θq]. Collecting L time snap-
shots and following [2], we can write

X = [x(t1) . . .x(tL)] = AS + W (1)

where X ∈ CN×L is the data matrix with lth time snap-
shot, x(tl), stacked in its lth column. The matrix S =
[s(t1) . . . s(tL)] ∈ Cq×L is the source matrix, with s(t) writ-
ten as

s(t) = [s1(t) . . . sq(t)]T (2)

The steering matrix A ∈ CN×q is composed of q steering
vectors, i.e. A = [a(θ1) . . .a(θq)]. Each vector a(θi) is the
response of the array to a source impinging the array from
direction θi. The form of a(θi) is given as

a(θi) =

 e
−jk(x̄1sinθi+ȳ1cosθi)

...
e−jk(x̄Nsinθi+ȳNcosθi)

 (3)

where k = 2π
λ is the wavenumber, and λ is the wavelength.

The position of the nth antenna is (x̄n, ȳn) in xy-plane. The
matrix W ∈ CN×L is background noise. Now, we are ready
to address our detection problem:

”Given the available snapshots X, estimate the number
of source signals, i.e. q.”

Before moving on, we assume the following:

(A.1) The matrix of spatial signatures, i.e. A, is full col-
umn rank. This is valid when q ≤ N and all angles of arrival
are distinct, i.e. θi 6= θj for all i 6= j.

(A.2) The sources are assumed to be non-coherent, i.e.
Rss = E{s(t)sH(t)} is full rank.

(A.3) The noise is modelled as complex Gaussian vectors,
i.i.d over time, with zero-mean and covariance σ2IN. Also,
the noise is independent from the signal.

Under assumption (A.3), the true covariance matrix of the
received signal could be written as

Rxx = ARssA
H + σ2IN (4)

Let l1 ≥ l2 ≥ . . . ≥ lN denote the eigenvalues of Rxx.
Then, under assumptions (A.1) to (A.3), the smallest N − q
eigenvalues of Rxx are all equal, i.e.

lq+1 = . . . = lN = σ2 (5)

We also consider that the q largest eigenvalues are distinct,
i.e. l1 > l2 > . . . > lq . The most straightforward way in
determining the number of signals is based on the multiplic-
ity of the smallest eigenvalues of Rxx as done in the MUSIC
algorithm [24]. However, in practical scenarios, we only have
access to the sample eigenvalues and not the true ones, which
makes it more difficult to distinguish the largest q eigenvalues
from the smallest N − q ones, especially at low SNR or low
number of snapshots.

In the next section, we revise the MDL principle applied
for estimating the number of sources.

3. ESTIMATING NUMBER OF SIGNALS USING
MDL: A RECAP

As stated earlier, the problem of estimating the number of
incoming signals could be seen as a model selection one, i.e.
finding the model that best fits the data X. More specifically,
the problem is to select one of the N following models:

R(k)
xx =

k∑
i=1

(λi−σ2)viv
H
i +σ2IN, k = 0 . . . N−1 (6)

where vi is the eigenvector corresponding to the eigenvalue
λi of R

(k)
xx . Denoting Θ(k) the vector to be estimated, then

Θ(k) = [λ1, . . . , λk, σ
2,vT1 , . . . ,v

T
k ] (7)

Due to (A.3), the likelihood function is as follows

f(X|Θ(k)) =

L∏
i=1

1

πN detR(k)
xx

exp{−x(ti)
H[R(k)

xx ]−1x(ti)}

(8)
The log-likelihood function, with omitted terms that do not
depend on Θ(k), becomes

L(Θ(k)) = −L log det{R(k)
xx } − tr{[R(k))

xx ]−1R̂} (9)

where R̂ is the sample covariance matrix computed by

R̂ =
1

L
XXH (10)

Maximising (9) gives the maximum likelihood estimates of
Θ(k). As in [13], these estimates are

λ̂i = l̂i, i = 1 . . . k (11a)
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σ̂2 =
1

N − k

N∑
i=k+1

l̂i (11b)

v̂i = ûi, i = 1 . . . k (11c)

where l̂1 ≥ . . . ≥ l̂N and û1 . . . ûN are the sample eigen-
values and their corresponding eigenvectors, respectively. In
other words, they are the eigenvalues and eigenvectors of the
matrix R̂. Plugging (11) in (9), we get

L(Θ̂(k)) = log

( N∏
i=k+1

l̂
1

N−k

i

1
N−k

N∑
i=k+1

l̂i

)L(N−k)

(12)

The model selection based on the MDL principle is the one
that minimises the following

MDL(k) = −L(Θ̂(k)) +
1

2
ηlog(L) (13)

where η is the number of free adjusted parameters in the pa-
rameter vector Θ. Substituting (12) in (13) and plugging in
the number of free adjusted parameters η (See [8]), we get

MDL(k) =− log

( N∏
i=k+1

l̂
1

N−k

i

1
N−k

N∑
i=k+1

l̂i

)L(N−k)

+
k

2
(2N − k)log(L)

(14)

Therefore, according to the MDL criterion, the number of
sources q is the argument k that minimises equation (14).

4. A MODIFIED MDL ESTIMATOR

It has been shown in [14] that the sample eigenvalues l̂1 . . . l̂N
extracted from the sample covariance matrix R̂ are (N,L)-
inconsistent estimators of the true eigenvalues of the co-
variance matrix Rxx, that is, the sample eigenvalues do not
converge towards the true ones as (N,L) −→ ∞ at the same
rate (0 < c = N

L <∞). The MDL estimator in (14) depends
on the sample eigenvalues of R̂, therefore, it seems natural
that the performace of the MDL estimator would perform
poorly in the asymptotic regime, i.e. (N,L) −→ ∞ at the
same rate (0 < c = N

L < ∞). In other words, when in-
sufficient number of snapshots L are available with respect
to the number of antennas N in such a way that the ratio
c = N

L is not negligible, then the MDL estimator would
perform poorly. In this section, we present a modified MDL
estimator to cope with this aforementioned issue. The mod-
ified MDL estimator is based on using improved estimators
of eigenvalues of the covariance matrix Rxx, which turn out
to be (N,L)-consistent, as shown in [15]. Before presenting

the improved estimators of the eigenvalues of the covariance
matrix Rxx, we proceed as in [15] and pose the following
assumptions:

(B.1) The covariance matrix Rxx has uniformly bounded
spectral norm for all N , i.e. SupN‖Rxx‖ < ∞ where ‖.‖
denotes spectral norm.

(B.2) The sample covariance matrix written as

R̂ =
√

RxxWWH
√

Rxx (15)

where
√

Rxx denotes the square root of Rxx. The matrix
W is of size N × L with complex i.i.d. absolutely continous
random entries, with each entry having i.i.d. real and imagi-
nary parts of zeros mean, variance 1

2L , and finite eighth-order
moments.

(B.3) For all distinct q+1 eigenvalues of Rxx, which are l1 >
. . . > lq > lq+1 = σ2, we assume infN{ LN − κN (m)} > 0,
where κN (m) is given in (16). In (16), Ki is the multiplicity
of the ith largest eigenvalue of Rxx, i.e. K1 = . . . = Kq = 1
and Kq+1 = N − q. Furthermore, f1 < f2 < . . . < fq are
the real-valued roots of equation (17).

κN (m) =



1
N

q+1∑
i=1

φi,1, if m = 1

max
{ q+1∑
i=1

φi,m−1,
q+1∑
i=1

φi,m
}
, if 1 < m < q + 1

1
N

q+1∑
i=1

φi,q, if m = q + 1

(16a)
with

φi,k = Ki

( li
li − fk

)2
(16b)

and
1

N

q+1∑
i=1

Ki
l2i

(li − f)3
= 0 (17)

4.1. Improved Eigenvalue Estimates

We present a theorem [15] regarding improved eigenvalue
estimates, which are not only L-consistent, but also (N,L)-
consistent. The theorem is as follows:

Theorem: Under assumptions (B.1) to (B.3), the follow-
ing quantities are strongly (N,L)-consistent estimators of lj
(j = 1, . . . , q + 1).

l̂imp
j = L

(
l̂j − µj

)
, j = 1 . . . q (18a)

and

l̂imp
q+1 =

L

N − q

N∑
i=q+1

(
l̂i − µi

)
(18b)
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where µ1 ≤ µ2 ≤ . . . ≤ µN are the real-valued solutions of
the following equation in µ:

1

N

N∑
i=1

l̂i

l̂i − µ
=

1

c
(18c)

4.2. Improved MDL estimator

With the improved eigenvalue estimates of Rxx in hand
from (18), we can modify equations (11a) and (11b) to get

λ̂i = L
(
l̂j − µj

)
, j = 1 . . . k (19a)

σ̂2 =
L

N − k

N∑
i=k+1

(
l̂i − µi

)
(19b)

Using these improved estimates in (19), one could easily ver-
ify that the improved MDL estimtor finally becomes

MDLimp(k) =− log

( ∏N
i=k+1(l̂i − µi)

1
N−k

1
N−k

∑N
i=k+1(l̂i − µi)

)L(N−k)

+
k

2
(2N − k)log(L)

(20)

and, therefore the number of sources are estimated by

q̂ = arg min
k

MDLimp(k) (21)

Remark: As c −→ 0, then we have l̂imp
i −→ l̂i for

all i = 1 . . . q + 1. Consequently, one could show that
MDLimp(k) −→ MDL(k) for all k as c −→ 0.

5. SIMULATIONS

In order to show the improvement of the modified MDL es-
timator, we compare it with the traditional one. We have
plotted two histograms that show the percentage of occu-
rance of an estimate of the number of sources q̂. Simulations
were done under an SNR of 10 dB and in the presence of
6 sources with arbitrary (but sufficiently spaced) angles of
arrival. The sources were non-coherent and the array geome-
try consists of N = 10 antennas uniformly spaced by half a
wavelength. The number of snapshots collected was L = 10,
i.e. c = N

L = 1. Note that both histograms were done using
1000 trials.

Figure 1 shows the histogram of the percentage of occu-
rance of q̂ using the ”traditional” MDL criterion, i.e equa-
tion (14). Indeed, the performance is poor because only 8%
of the estimates of number of sources correspond to the true
one, i.e. q̂ = 6.
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Fig. 1: Histogram of the number of signals resolved by the tradi-
tional MDL estimator.
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Fig. 2: Histogram of the number of signals resolved by the modified
MDL estimator.

On the other hand, figure 2 depicts the histogram of the
percentage of occurance of q̂ using the ”modified” MDL cri-
terion, i.e equation (20). There is a great improvement as
almost 68% of the estimates of number of sources correspond
to the true one.

6. CONCLUSION

In this contribution and with the help of random matrix tools,
we have presented a modified MDL (MMDL) estimator for
detecting the number of superimposed signals. This MMDL
estimator dominates the traditional MDL especially at the low
number of snapshots regime, i.e. when L = O(N). Sim-
ulation results have shown the potential of MMDL over the
traditional MDL.
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