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∗Department of ECE and DTC, University of Minnesota, 55455, USA
†Department of ECE, Stony Brook University, Stony Brook, NY 11794

ABSTRACT
Opinion dynamics in social networks has been widely studied in
recent years, mostly by considering exchanges of opinions among
neighboring agents. This paper addresses a scenario where the
agents make decisions repeatedly on two hypotheses and where
agents only exchange decisions. Motivated by the Bayesian models
in the literature of human cognition, we model this learning
procedure by the Bayes’ rule. The social belief of each agent is
defined to be the posterior of one of the hypotheses conditioned
on the information it obtained from the society. We show that
under certain conditions, once the social belief evolves to some
region, the agent will refuse to change its belief. We demonstrate
the asymptotical properties of the proposed model by computer
simulations.

Index Terms— Opinion dynamics, Bayesian learning, voter model,

1. INTRODUCTION

Opinion dynamics have been widely studied in the fields of economy
[1], sociology [2], and engineering [3] with the aim of understanding
how opinions among people in a social network evolve over time.
Social networks are modeled as multi-agent systems described by
connected graphs where each node represents one social agent.
Unlike many cooperative systems where consensus is of interest and
may be reached asymptotically, opinions in social networks often
differ from each other and stay that way.

In one category of models, the interactions among agents are
modeled by opinion exchanges; see [2, 4, 5, 6]. Two discrete-time
models based on the idea of bounded confidence are the Krause
model [2, 7] and the Deffuant-Weisbuch model [5]. There, the
opinion exchanges take place only among agents whose differences
in opinions are no larger than a threshold. According to these
models, the opinions eventually evolve to one or several clusters
depending on the model of the agents’ observations.

Another category of models assumes that every agent makes
decisions based on its opinion, and only decisions can be exchanged
among neighboring agents [8, 9, 10, 11]. The opinions are hidden
behind the decisions, and the agents cannot fuse them directly.
Instead, they make inference about the opinions based on the
decisions they observe. In other words, every agent learns from its
neighbors. In addressing this learning procedure, several Bayesian
[12, 13] and non-Bayesian learning [14, 15] models have been
proposed.

This work was supported by NSF under Award CCF-1320626.

Motivated by the similarity between human cognition and the
Bayes’s rule [16], we propose a model where every agent uses the
Bayes’ rule to learn from decisions. In particular, we consider a
network ofN agents that decide on one of two hypotheses. Similarly
to the voter model in [17], at every time slot, one agent is randomly
selected, and it chooses one of its neighbors’s decision for learning.
In [8, 9], the authors propose that once a decision is observed, the
learner adjusts its log opinion ratio by adding or subtracting a fixed
small value. In contrast to [8, 9], this paper proposes a scheme that
quantifies this value by leveraging Bayesian inference. As a result,
this value becomes dynamic. Moreover, under certain conditions,
we prove the existence of two regions of “stubbornness.” Once an
agent’s opinion evolves to such region, the opinion is not changed
any more. By simulations, we show that the opinion of every agent
evolves to these regions in finite time.

The paper is organized as follows. In the next section we explain the
social learning process and describe the studied system. In Sections
3 and 4, we present and analyze the proposed Bayesian learning
scheme. Simulation results are given in Section 5, and concluding
remarks are made in Section 6.

2. PROBLEM FORMULATION

Consider a multi-agent system that consists of N agents Ai, i ∈
NA = {1, 2, ..., N}. The agents are capable of performing local
computations and of exchanging binary decisions with other agents.
Each agent Ai receives a random private observation yi ∈ R,
which is generated according to either hypothesis H0 or H1. The
probability distribution of the yis under Hk, k ∈ {0, 1}, are given
by

Hk : yi ∼ φk(yi), (1)

where φk(·) stands for the distribution of yi under Hk, which
belongs to the exponential family of distributions, i.e.,

φk(yi) = h(yi) exp(η(θk)M(yi)−A(θk)), (2)

where the parameters θk and η are known to the agents. In this
work, the log-likelihood ratio (LLR) of the hypotheses is defined

by log

(
φ1(yi)

φ0(yi)

)
. We distinguish two types of LLRs, bounded and

unbounded. An LLR is bounded if there exist two finite real numbers

z and Z, such that ∀ yi, log

(
φ1(yi)

φ0(yi)

)
∈ [z, Z]. Otherwise, the

LLR is unbounded.

At each time slot t, every agent Ai maintains an opinion on H1

quantified by the posterior and according to the Bayes’ rule. This

4588978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016



posterior is given by

β
(t)
i = p(H1|yi, I(t)i ), (3)

∝ π
(t)
i p(yi|H1), (4)

where π(t)
i , referred to as “social belief”, stands for the belief of Ai

on H1 based on all of the information available to it other than yi
and denoted by I(t)i . This π(t)

i serves as the prior distribution, and
it is time varying as more and more decisions of the neighbors of Ai
become known to Ai. At the initial time slot, π(1)

i = 0.5, ∀i ∈ NA.
Equivalently, the Bayes’ rule in the log-form can be expressed as

log
1− β(t)

i

β
(t)
i

= log
1− π(t)

i

π
(t)
i

+ log
φ0(yi)

φ1(yi)
. (5)

We remark that the opinion of Ai is formed by (a) its social belief
that summarizes the information from the society, and (b) the log-
likelihood ratio determined by its private observation.

With the opinion β
(t)
i , the Ai’s decision on choosing one of the

hypotheses is made according to

α(t+1)
n = I(β

(t)
i > 0.5), (6)

where I(·) ∈ {0, 1} is the indicator function on the truthfulness of
the statement inside the parentheses.

In summary, the private observation yi is constant and therefore, the
dynamics of the opinion of Ai is fully defined by the dynamics of
its social belief. Thus, modeling the evolution of the social beliefs
is equivalent to modeling the dynamics of the opinion in the multi-
agent system. In the next section, we will build a Bayesian learning
model for updating the social belief at each time slot.

3. VOTER MODEL WITH BAYESIAN LEARNING

Before we proceed to the proposed model, we first sketch the voter
model from [17]. According to the voter model, at each time slot,
one agent Ai is randomly selected and it randomly picks one of its
neighbors, say Aj ∈ Ni, to follow. Namely, Ai makes its decision
as α(t+1)

i = α
(t)
j , and the the remaining N − 1 agents keep their

opinions unchanged.

Here we propose a modified voter model where the agent Ai learns
from the decisions of its neighbors by the Bayesian method. More
precisely, instead of blindly following the decision ofAj , Ai adjusts
its private belief based on α(t)

j . By Bayes’ rule, we have

log
1− π(t+1)

i

π
(t+1)
i

= log
1− π(t)

i

π
(t)
i

+ log
p(α

(t)
j |H0)

p(α
(t)
j |H1)

. (7)

Due to the property of the log(·) function, it can be shown that

log
1− β(t+1)

i

β
(t+1)
i

= log
1− β(t)

i

β
(t)
i

+ log
p(α

(t)
j |H0)

p(α
(t)
j |H1)

, (8)

where the “action likelihood” p(α(t)
j |Hk) denotes the probability

that Aj makes the decision α(t)
j underHk.

According to (3) and (6), α(t)
j = 1 or α(t)

j = 0 if and only if

p(yj |H1)

p(yj |H0)
≷

1− π(t)
j

π
(t)
j

, (9)

where A ≷ B means that A is greater or less than B, respectively.
When the distributions of the observations are given by (2), we have

log

(
p(yj |H1)

p(yj |H0)

)
=
(
η(θ1)−η(θ0)

)
Tj−

(
A(θ1)−A(θ0)

)
, (10)

where Tj = M(yj). Without loss of generality, we assume that
η(θ1)− η(θ0) > 0. Then, if and only if

Tj ≷ γ
(t)
j (11)

=

(A(θ1)−A(θ0)) + log(
1− π(t)

j

π
(t)
j

)

η(θ1)− η(θ0)
, (12)

the decision α(t)
j is one or zero, respectively. Provided Hk is true,

the probability of α(t)
j = 1 is defined by

l
(t)
j,k = Pr(α

(t)
j = 1|Hk) = Pr(Tj > γ

(t)
j |Hk), (13)

suggesting that Pr(α(t)
j = 0|Hk) = 1− l(t)j,k.

In computing l(t)j,k, Ai must know its neighbor’s current social belief

π
(t)
j , which, however, is unknown to Ai. Consequently, Ai has to

make a “guess” on π(t)
j . We propose two guessing methods. They

are as follows:

Method 1: The agent Ai considers π(t)
j to be a point estimate and

guesses that it is equal to its own social belief. Namely, in the
inference procedure of Ai, π

(t)
j = π

(t)
i , i.e., p(π(t)

j ) = δ(π
(t)
j −

π
(t)
i ). The motivation for this approximation is that Ai and Aj are

neighboring agents in the network, and therefore there is a large
chance that they have common neighbors. The shared neighbors
entail that Ai and Aj get similar information from the society.

Method 2: The agent Ai draws π
(t)
j ∈ [0, 1] from a Beta

distribution, i.e., π(t)
j ∼ Beta(a

(t)
j , b

(t)
j ) given by

p(π
(t)
j |a

(t)
j , b

(t)
j ) =

Γ
(
a
(t)
j + b

(t)
j

)
Γ
(
a
(t)
j

)
Γ
(
b
(t)
j

)
×

(
π
(t)
j

)a(t)j −1 (
1− π(t)

j

)b(t)j −1

(14)

with a(t)j and b(t)j satisfying

a
(t)
j

a
(t)
j + b

(t)
j

= Eπ(t)
j = π

(t)
i , (15)

a
(t)
j + b

(t)
j − 2 = n

(t)
j , (16)

where n(t)
j is the number of times Ai selects Aj up until t. In (15),

we write Eπ(t)
j = π

(t)
i for the same reason as in Method 1. Recall

that if we have a Bernoulli random variable S ∈ Ber(q) with n
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samples, s = [s1, · · · , sn], independently drawn from Ber(q), then
given a Beta prior with parameters a0 = b0 = 1 (a uniform prior of
q on [0, 1]), the posterior p(q|s) is also a Beta distribution but with
parameters an and bn, which satisfy an + bn − 2 = n as in (16).

With both methods, Ai computes l(t)j,k according to

l
(t)
j,k =

∫ 1

0

Pr(α
(t)
j = 1|Hk, π(t)

j ) p(π
(t)
j ) dπ

(t)
j . (17)

With method one, (17) simplifies to

l
(t)
j,k = Pr(α

(t)
j = 1|Hk, π(t)

j = π
(t)
i ). (18)

4. ANALYSIS

In this section, we analyze the opinion dynamics with the proposed
models. In the following proposition, we show that the social belief
of Ai is non-decreasing if it receives a neighbor’s decision of one.
By contrast, the social belief of Ai is non-increasing if it receives a
neighbor’s decision of zero.

Proposition 1 In the proposed model with both methods, let Ai
be selected at time t and let it choose Aj for learning. Then
π
(t+1)
i ≥ π(t)

i if α(t)
j = 1 and π(t+1)

i ≤ π(t)
i , otherwise.

Proof : We first show the case when α
(t)
j = 1. From (7), it is

sufficient to show that log

(
p(α

(t)
j |H0)

p(α
(t)
j |H1)

)
≤ 0, or equivalently, we

need to show that w1 ≥ w0, where wk = Pr(α
(t)
j = 1|Hk).

By the decision making policy in (6), the decision region for α(t)
j =

1, denoted by S1, can be written as

S1 =

{
yj

∣∣∣φ1(yj)

φ0(yj)
>

1− π(t)
j

π
(t)
j

}
. (19)

Also we can define S0 = S\S1 as the decision region for α(t)
j = 0,

where S is the support of yj .

Therefore, we have that

wk =

∫
yj∈S1

φk(yj)dyj . (20)

Next, we show that w1 − w0 ≥ 0 by considering the following two
cases. If π(t)

j ≤ 0.5, we have that

w1 − w0 =

∫
yj∈S1

(
φ1(yj)− φ0(yj)

)
dyj ≥ 0, (21)

because ∀yj ∈ S1, φ1(yj) ≥ φ0(yj). Otherwise, π(t)
j > 0.5

implies that ∀yj ∈ S0, φ1(yj) < φ0(yj). Then we have

w1 − w0 = (1− w0)− (1− w1)

=

∫
yj∈S0

(
φ0(yj)− φ1(yj)

)
dyj > 0. (22)

With (21) and (22), the proof of the case when α
(t)
j = 1 is

completed. When α(t)
j = 0, π(t+1)

i ≤ π
(t)
i can be proved by the

same procedure with just notational changes. 2

With the next proposition, we show that when the LLR is bounded, if
the opinion of an agent evolves to an interval close to zero or one, it
will become a “stubborn” agent. Namely, the agent will stop learning
from its neighbors and will keep its social belief unchanged forever.

Proposition 2 In the proposed model with Method 1, if the LLR is
bounded, then there exist two real numbers u and U with 0 < u <
U < 1, such that once π(t)

i evolves to the intervals [0, u) and (U, 1],
π
(τ)
i = π

(t)
i , ∀τ > t.

Proof : Since the LLR is bounded, there exist z ∈ R and Z ∈ R,
such that z < log

(
p(yi|H1)
p(yi|H0)

)
< Z. From (9), we have that if

log

(
1−π(t)

i

π
(t)
i

)
> Z, the agent Ai will make its decision α(t)

i = 0

regardless of yi. Similarly, if log

(
1−π(t)

i

π
(t)
i

)
< z, α(t)

i = 1 for

any yi. Define u = 1
1+e−z and U = 1

1+e−Z . Then we get that if

π
(t)
i < u or U < π

(t)
i , Ai makes its decision independently of yi.

In both scenarios, we have

log

(
p(α

(t)
i |H0)

p(α
(t)
i |H1)

)
= 0. (23)

Consider that in Method 1, Ai uses its own social belief π(t)
i as π(t)

j

to make inference on the decision of Aj . Thus, once π(t)
i evolves

to the intervals [0, u) and (U, 1], Ai will get log

(
p(α

(t)
j |H0)

p(α
(t)
j |H1)

)
=

0, implying that π(t+1)
i = π

(t)
i . Therefore, π(t)

i will become
unchanged hereafter. 2

Here we remark that Proposition 2 indicates that Ai will also
stop updating its private belief once it becomes stubborn. This is
because of the private belief formulation in (3). From the above two
propositions, it is tempting to conclude that with Method 1, there
exists a finite time t̃ such that beyond t̃, every agent’s belief evolves
to the stubborn region and no agent changes its belief anymore. In
the next section we will show with our simulations that we observed
this phenomenon in every trial. Nevertheless, we do not have a
rigorous proof of this conjecture yet.

5. SIMULATION RESULTS

In this section, we provide two simulation experiments to
demonstrate the properties of the proposed models. In both
experiments, the multi-agent system was modeled by a random
geometric graph G(NA, E), where the N agents were chosen
uniformly and independently on a square of size 1 × 1. Each pair
of agents was connected if the Euclidian distance between them
was smaller than

√
log(N)/N , which is due to the connectivity

requirement. Once the graph was formed, its connectivity was
checked.

We considered the following Binomial hypothesis testing where the
agents had to make a decision between the two hypotheses,

H1 : yn ∼ Bin (n, p1), (24)
H0 : yn ∼ Bin (n, p0), (25)
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where n, p0 and p1 were known by all the agents. For the prior
probabilities of the hypotheses, we let P (H0) = P (H1) = 1/2.
Without loss of generality, we assumed that the data were generated
from H1. In both experiments we set n = 7, p1 = 0.51 and
p0 = 0.49. The number of agents was 20.

In the first experiment, we modeled the behavior of the agents when
they adopted Method 1. In Fig. 1, the top-left and bottom-left plots
show two realizations of the evolution of the number of agents at
time t, K(t), making decision 1. We can see that the number of
agents making decision 1 eventually became stable. In the plots
on the right, we displayed the evolution of the social beliefs of the
agents over time in a same realization. The abscissa represents the
time index and the ordinate the social belief of all the 20 agents at
a given time t. In the top-right plot, the social belief of the agents
evolved to the same interval, while in the bottom plot, the belief
diverged into two intervals. From the figures we can see that after
reaching one of the thresholds, the beliefs of the agents stayed stable.

t

0 5000

K
(t

)

0

10

20

t

0 5000

π
i(t

)

0.4

0.5

0.6

t ×10
4

0 5 10

K
(t

)

0

10

20

t ×10
4

0 5 10

π
i(t

)

0.4

0.5

0.6

Fig. 1. Top-left and bottom-left: evolution of number of agents with
time that make decision one using Method 1; Top-right and bottom-
right: evolution of agents’ social beliefs with time using Method 1.
The two figures on top depict the results from one and the bottom
figures the results from another realization.

In Fig. 2, we plotted the histograms of the social beliefs of the
agents in the first experiment at time slots t = 1, 20, 50, 100,
200, 500, 1000, 1500, 2000, respectively. From the histograms,
we can see that these beliefs started from 0.5, which corresponds
to the uninformative prior we have set. After iterations of belief
updating, the beliefs gradually moved into the stable intervals and
stopped evolving.

In the second experiment, we modeled the behavior of the agents
when they use Beta distribution to approximate the social beliefs of
the other agents. This is our Method 2. The results are shown in Fig.
3. In contrast to the first model, we did not observe that the social
beliefs evolve to two clusters. Instead, we see that all the social
beliefs converge to a very small interval.

Fig. 2. The histogram of the agents’ social belief at time slots t =
1, 20, 50, 100, 200, 500, 1000, 1500, 2000 when they use Method 1.

t

0 500 1000 1500 2000

K
(t

)

0

10

20

t

0 2000 4000 6000 8000

π
i(t

)

0.4

0.5

0.6

Fig. 3. Top: The evolution of the number of agents making decision
one over time using Method 2; Bottom: The evolution of agents’
social beliefs over time using Method 2.

6. CONCLUSION

In this paper, a Bayesian learning model was introduced for studying
opinion dynamics in systems with decision exchanges. We presented
analysis of the asymptotic properties of the proposed models and
verified them by simulations. It was shown that with a bounded
LLR every agent eventually becomes stubborn if for inference of the
opinions of their neighbors the agents use Method 1. By contrast,
if they use Method 2, the social beliefs of the agents will not stop
evolving. This work has several intriguing directions. They include
(i) finding the relationship between the number of formed clusters
and the observation model and (ii) determining the critical time after
which the social belief stops evolving.
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