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ABSTRACT

Diffusion LMS is an efficient strategy for solving distributed opti-
mization problems with cooperating agents. In some applications,
the optimum parameter vectors may not be the same for all agents.
Moreover, agents usually exchange information through noisy com-
munication links. In this work, we analyze the theoretical perfor-
mance of the single-task diffusion LMS when it is run, intention-
ally or unintentionally, in a multitask environment in the presence
of noisy links. To reduce the impact of these nuisance factors, we
introduce an improved strategy that allows the agents to promote or
reduce exchanges of information with their neighbors.

1. INTRODUCTION
Distributed optimization allows to address inference problems in a
decentralized manner over networks, where nodes are allowed to ex-
change information with their neighbors to improve their local esti-
mates. In single-task networks, all nodes are interested in estimating
the same parameter vector. Among the existing cooperation rules for
single-task problems, we are interested in diffusion strategies [1–4]
since they are scalable, robust, and enable continuous learning.

In multitask networks, nodes are grouped into clusters and each
cluster is interested in estimating its own parameter vector, that is,
each cluster has its own task. Recent studies on diffusion strate-
gies over multitask networks have focused on two scenarios. In a
first scenario, it is assumed that nodes know which cluster they be-
long to, and multitask diffusion strategies were derived to exploit
intra-cluster and inter-cluster information exchanges in a meaningful
way [5–9]. In a second scenario, nodes do not know the cluster they
belong to. Several research efforts have focused on analyzing the
performance of diffusion strategies when they are run, intentionally
or unintentionally, in a multitask environment. It is shown in [10],
for example, that the diffusion iterates converge to a Pareto optimal
solution when the optimization problem consists of a sum of indi-
vidual costs with possibly different minimizers. It is further shown
in [11] that, when the tasks are sufficiently similar to each other,
the single-task diffusion LMS can still perform better than noncoop-
erative strategies. To avoid poor results resulting from cooperation
between neighbors with sufficiently different objectives, extended
diffusion strategies with a clustering step are proposed in [11–14] to
enable agents to identify which neighbors belong to the same cluster
and which neighbors should be ignored.

Usually, the exchange of raw data and local estimates between
nodes may be corrupted by noisy communication links. Useful re-
sults dealing with the consequences of noisy communications on dif-
fusion LMS behavior are presented in [15–18] for single-task envi-
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ronments. In this paper, we are interested in studying the degra-
dation in the mean and mean-square error performance that would
result from running the same diffusion LMS algorithm over a mul-
titask network in the presence of noisy communication links. The
analytical results reveal the influence of each nuisance factor on the
dynamics of the network, on the biases in the weight estimates, and
on the mean-square error performance. Since the mean-square error
depends on the combination coefficients, we also show how these
coefficients can be adjusted efficiently during the learning process in
order to enable agents to cooperate only with neighbors sharing the
same objective, and to simultaneously reduce the effect of exchang-
ing information through noisy links.

Notation. Normal font letters denote scalars. Boldface lower-
case letters denote column vectors. Boldface uppercase letters de-
note matrices. The operator ⊗ refers to the Kronecker product and
col{·} stacks the column vectors entries on top of each other. The
set Nk denotes the neighbors of node k, C(k) denotes the cluster to
which node k belongs, and Ci is the i-th cluster.

2. DIFFUSION LMS IN THE PRESENCE OF NOISY LINKS
Consider a connected network of N nodes. At each time instant i,
node k collects a zero-mean scalar measurement dk(i) and a zero-
meanL×1 regression vectorxk(i) with a positive covariance matrix
denoted by Rx,k = Exk(i)x>k (i). These data are assumed to be
related to an L× 1 unknown vectorwo

k via the linear model:
dk(i) = x

>
k (i)w

o
k + zk(i), (1)

where zk(i) is a zero-mean measurement noise of variance σ2
z,k. The

noise process is assumed to be temporally white and spatially inde-
pendent. The problem is to estimate wo

k at each node k. To solve
this problem, node k can minimize the mean-square error Jk(w):

Jk(w) = E |dk(i)− x>k (i)w|2, (2)

using a stochastic gradient algorithm of the LMS type. In this case,
the performance at node k depends on the variance σ2

z,k [3].
In a single-task environment, all nodes are interested in estimat-

ing the same parameter vectorwo, i.e.,wo
k = wo ∀k. In this case, it

was shown that the use of a diffusion LMS strategy for minimizing,
in a fully-distributed manner, the following aggregate cost [1–3]:

Jglob(w) =

N∑
k=1

E |dk(i)− x>k (i)w|2, (3)

improves the estimation accuracy. In this work, we consider the
adapt-then-combine (ATC) form of diffusion LMS [1, 2]:
ψk(i+ 1) = wk(i) + µk

∑
`∈Nk

c`kx`(i) [d`(i)− x>` (i)wk(i)] (4)

wk(i+ 1) =
∑
`∈Nk

a`kψ`(i+ 1) (5)
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where µk is a small positive step-size parameter at node k andwk(i)
is the estimate ofwo at node k and iteration i. The non-negative co-
efficients c`k and a`k, which are used to scale the data {x`(i), d`(i)}
and the intermediate estimates ψ`(i+1) transmitted from node ` to
node k, are zero if node ` is not connected to node k, that is, ` /∈ Nk.
These coefficients are the (`, k)-th entries of a right-stochastic ma-
trixC and a left-stochastic matrixA, respectively.

Each step of the ATC algorithm (4)-(5) involves the transmission
of information from node ` ∈ Nk to node k. In the presence of noisy
communication links, the ATC diffusion LMS algorithm becomes:

ψk(i+ 1) =

wk(i) + µk
∑
`∈Nk

c`kx`k(i) [d`k(i)− x>`k(i)wk(i)], (6)

wk(i+ 1) =
∑
`∈Nk

a`kψ`k(i+ 1). (7)

where x`k(i), d`k(i), and ψ`k(i + 1) are the noisy data received
by node k from its neighbor `. For modeling noisy communication
links, we adopt the model proposed in [3, 18]:

d`k(i) = d`(i) + zd,`k(i), (8)
x`k(i) = x`(i) + zx,`k(i), (9)
ψ`k(i) = ψ`(i) + zψ,`k(i), (10)

where zd,`k(i) is a scalar noise signal, zx,`k(i) and zψ,`k(i) are
noise vectors of dimension L × 1. Note that this model is more
general than in [15, 16] where diffusion LMS is considered without
exchange of gradient information, that is,C = IN .

In a multitask environment, the local costs Jk(w) are not all
minimized at the same location. It is shown in [10] that, in this case,
when C = IN , the ATC algorithm (4)-(5) leads to a Pareto opti-
mum solution for (3). In [11], the authors study the behavior of the
ATC algorithm (4)-(5) when it is run over a multitask environment,
and analyze the critical role of the distance between tasks, wo

k. In
this work, we extend [11] to the case of noisy communication links.
Before proceeding, we introduce the following assumptions.
Assumption 1. The regressorsxk(i) arise from a zero-mean random
process that is temporally white and spatially independent.
Assumption 2. The noises zd,`k(i),zx,`k(i), and zψ,`k(i) are tem-
porally white, spatially independent zero-mean random variables.
We denote by σ2

zd,`k, Rzx,`k, and Rzψ,`k their variance and co-
variance matrices, respectively.
Assumption 3. {zd,mn(i1)}, {zx,pq(i2)}, {zψ,st(i3)}, {xk(i4)},
and {z`(i5)} are mutually independent for all {k, `,m, n, p, q, s, t}
and {i1, i2, i3, i4, i5}.
Assumption 4. The step-sizes µk are sufficiently small so that terms
depending on higher order powers of the step-sizes can be ignored.

3. PERFORMANCE ANALYSIS
Using model (1), the noisy data {d`k(i),x`k(i)} in (8)-(9) at node k
can be related to the unknown vectorwo

` at node ` via the relation:
d`k(i) = x

>
`k(i)w

o
` + z`k(i), (11)

where we introduce the scalar zero-mean noise signal:
z`k(i) = z`(i) + zd,`k(i)− z>x,`k(i)wo

` , (12)

whose variance is:
σ2
z,`k = σ2

z,` + σ2
zd,`k + (wo

`)
>Rzx,`kw

o
` . (13)

Let w̃k(i) , wo
k −wk(i) be the error vector at node k and time in-

stant i. Using (11), the estimation error that appears in the adaptation
step (6) can be written as:

d`k(i)−x>`k(i)wk(i) = x
>
`k(i)w̃k(i)+x

>
`k(i)u

o
`k+z`k(i), (14)

where uo`k , wo
` −wo

k. Let w̃(i) andwo denote the network block
error vector and the network block optimum vector, namely,

w̃(i) , col
{
w̃k(i)

}N
k=1

, wo , col
{
wo
k

}N
k=1

. (15)

Using relation (14), the network error vector recursion for the diffu-
sion strategy (6)-(7) can be written as:

w̃(i+ 1) = B(i) w̃(i)− g(i)− r(i)− zψ(i+ 1), (16)

where

B(i) = A>(ILN −MR(i)) (17)

M = diag
{
µkIL

}N
k=1

(18)

R(i) = diag
{ ∑
`∈Nk

c`kx`k(i)x
>
`k(i)

}N
k=1

(19)

g(i) = A>Ms(i) (20)

r(i) = A>Mh(i)− (ILN −A>)wo (21)

h(i) = col
{ ∑
`∈Nk

c`kx`k(i)x
>
`k(i)u

o
`k

}N
k=1

(22)

s(i) = col
{ ∑
`∈Nk

c`kx`k(i)z`k(i)
}N
k=1

(23)

zψ(i+ 1) = col
{ ∑
`∈N−

k

a`kzψ,`k(i+ 1)
}N
k=1

(24)

Based on recursion (16), we examine the performance of the ATC
algorithm (6)-(7) in the mean and mean-square-error sense. Due to
space limitations, we only list the main results of the analysis and
omit the proofs.

3.1. Mean behavior analysis
Taking the expectation of both sides of (16), we get:

E w̃(i+ 1) = BE w̃(i)− g − r, (25)

where
B = A>(ILN −MR), (26)

g = A>Ms, (27)
r = A>Mh− (ILN −A>)wo, (28)

R = diag
{ ∑
`∈Nk

c`k(Rx,` +Rzx,`k)
}N
k=1

, (29)

h = col
{ ∑
`∈Nk

c`k(Rx,` +Rzx,`k)u
o
`k

}N
k=1

(30)

s = −Rzxw
o, (31)

and, Rzx is the N × N block matrix whose (`, k)-th block is
ck`Rzx,k`. It can be verified that for any initial conditions, the dif-
fusion LMS algorithm (6)-(7) converges in the mean if the step-sizes
µk satisfy:

0 < µk <
2

λmax
{∑

`∈Nk
c`k(Rx,` +Rzx,`k)

} (32)

for k = 1, . . . , N , where λmax{·} is the maximum eigenvalue of its
matrix argument. The asymptotic mean bias is given by:

b = lim
i→∞

E w̃(i) = −(ILN −B)−1(g + r). (33)
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Note that g in (27) is zero if the regressors are not corrupted by noise
during their transmission. The vector r in (28) is zero if there is no
cooperation between neighbors with different objectives. Finally,
we observe from (32) that the noise corrupting the communication
of regressors affects the stability condition.

3.2. Mean-square-error behavior analysis
We now study the behavior of the variance E ‖w̃(i + 1)‖2Σ, where
Σ is a positive semi-definite matrix that we are free to choose. Let
σ denote the vectorized version of Σ, i.e., σ , vec(Σ). We obtain
from (16) the following equation:

E ‖w̃(i+ 1)‖2σ ≈ E ‖w̃(i)‖2Fσ+

[vec{T>} − 2(BE w̃(i))⊗ (g + r)]>σ, (34)

where we use the notation ‖x‖2Σ and ‖x‖2σ interchangeably to de-
note the same quantity x>Σx. The terms in (34) are given by:

F = EB>(i)⊗B>(i) ≈ B> ⊗B>, (35)
C = C ⊗ IL (36)
T = G+Rzψ +Rr + 2Gr, (37)

G = A>MC>SCMA, (38)

S = diag{σ2
z,kRx,k}Nk=1 + ss

> + diag{Dk}Nk=1, (39)

Rr = rr
> +A>M diag{Hk}Nk=1 MA, (40)

Gr = gr
> −A>M diag{Jk}Nk=1 MA, (41)

Rzψ = diag
{ ∑
`∈N−

k

a2`kRzψ,`k

}N
k=1

, (42)

and

Hk =
∑
`∈Nk

c2`k

(
Rx,`u

o
`k(u

o
`k)
>Rzx,`k + (uo`k)

>Rzx,`ku
o
`kRx,`+

(uo`k)
>Rx,`u

o
`kRzx,`k +Rzx,`ku

o
`k(u

o
`k)
>Rx,`

)
,

Dk =
∑
`∈Nk

c2`k

(
(σ2
zd,`k + ‖wo

`‖2Rzx,`k
)Rx,`+

(σ2
zd,`k + σ2

z,`)Rzx,`k

)
,

Jk =
∑
`∈Nk

c2`k

(
Rx,`u

o
`k(w

o
`)
>Rzx,`k + (wo

`)
>Rzx,`ku

o
`kRx,`

)
.

The approximations in (34)-(35) follow from Assumption 4. Fur-
thermore, the evaluation of some terms of T in (37) requires the
calculation of 4-th order moments that are approximated by prod-
ucts of 2-nd order moments. Under these approximations, and for
sufficiently small step-sizes, it can be verified that for any initial con-
ditions, the diffusion LMS algorithm (6)-(7) is mean-square stable if
the error recursion (16) is mean stable and the matrix F is stable.

From equation (34), we obtain a recursion that enables us to
evaluate the variance over time [5]:

E ‖w̃(i+ 1)‖2σ = E ‖w̃(i)‖2σ − E ‖w̃(0)‖2(I−F)Fiσ+

[vec{T>}]>F iσ − 2[(BE w̃(i)⊗ (g + r))> + Γ(i)]σ, (43)

where

Γ(i) = Γ(i− 1)F + [(BE w̃(i− 1))⊗ (g+ r)]>(F − I(LN)2),

with Γ(0) = 01×(LN)2 . Once convergence is achieved, we obtain
in steady state:

lim
i→∞

E{‖w̃(i)‖2(I−F)σ′} = [vec{T>} − 2(Bb)⊗ (g + r)]>σ′.

For the simulations, we shall use Σ = 1
N
ILN , i.e.,σ = 1

N
vec{ILN}

and σ′ = 1
N
(I − F)−1vec{ILN}. This will allow us to evaluate

the network mean-square-deviation (MSD).

4. OPTIMIZING THE COMBINATION WEIGHTS
In order to attenuate the negative effects of running (6)-(7) in a multi-
task environment in the presence of noisy links, we suggest to follow
the strategy used in [11, 12, 18]. It consists of adjusting the combi-
nation weights {a`k} by minimizing the instantaneous MSD at each
node k given by:

E ‖w̃k(i+ 1)‖2 = E
∥∥∥wo

k −
∑
`∈Nk

a`kψ`k(i+ 1)
∥∥∥2 (44)

Relaxing problem (44) as suggested in [12, 18] leads to

min
{a`k}

N∑
`=1

a2`k‖ŵo
k −ψ`k(i+ 1)‖2,

s. t.
N∑
`=1

a`k = 1, a`k ≥ 0, and a`k = 0 if ` /∈ Nk,

(45)

where ŵo
k is some approximation forwo

k. One useful approximation
is the local one-step approximation used in [11]:

ŵo
k(i+ 1) = ψk(i+ 1) + µk

qk(i)

‖qk(i)‖+ ε
, (46)

where ε is a small positive value to avoid the vanishing of the de-
nominator and

qk(i) = xk(i)[dk(i)− x
>
k (i)ψk(i+ 1)]. (47)

Introducing the notation γ2
`k(i+1) , ‖ŵo

k(i+1)−ψ`k(i+1)‖2,
the solution of problem (45) is given by:

a`k(i+ 1) =
γ−2
`k (i+ 1)∑

n∈Nk
γ−2
nk (i+ 1)

, ` ∈ Nk. (48)

It is noticed in [14] that the clustering strategy (48) may suffer from
a larger probability of false alarm, that is, a`k may tend to zero even
in situations where nodes k and ` share the same task. To overcome
this problem, we propose to smooth γ2

`k(i+ 1) as follows:

γ2
`k(i+ 1) = (1− νk)γ2

`k(i) + νk‖ŵo
k(i+ 1)−ψ`k(i+ 1)‖2

(49)
where νk ∈ [0, 1] is a forgetting factor.

The protocol for adjusting the combination weights in [12, 18]
differs from (48) and (49) by using the estimate wk(i) as an ap-
proximation for wo

k in (46). Moreover, the clustering strategy pro-
posed in [11] does not include the smoothing step (49). As shown by
simulations, this step reduces the probability of erroneous clustering
especially in the presence of noisy links.

5. SIMULATION RESULTS
We considered the connected network in Fig. 1(a), consisting of 20
agents grouped into 4 clusters: C1 = {1, . . . , 6}, C2 = {7, . . . , 12},
C3 = {13, . . . , 16}, and C4 = {17, . . . , 20}. Regressors were
2 × 1 zero-mean Gaussian random vectors with covariance matri-
ces Rx,k = σ2

x,kI2. Noises zk(i) were zero-mean i.i.d. Gaussian
with variance σ2

z,k. Variances σ2
x,k and σ2

z,k are shown in Fig. 1(b).
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Fig. 1. Experimental setup.
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Fig. 2. Network MSD behavior for different levels of noise.

Noises over links zd,`k(i), zx,`k(i), and zψ,`k(i) were also zero-
mean i.i.d. Gaussian random variables of variance σ2

z for all ` ∈
Nk \ {k}. The objectives were uniformly distributed on a circle of
radius r centered atwc = [0.5,−0.5]>. More details on the experi-
mental setup appear in [11]. We used a constant step-size µk = 0.01
for all k. The results were averaged over 100 runs. Let A0 and
C0 be uniform combination matrices, namely, a`k = |Nk|−1 for
` ∈ Nk and c`k = |N`|−1 for k ∈ N`, respectively.

First, we considered the case where tasks are close to each other
by setting r = 0.02. We ran the ATC algorithm (6)-(7) withC0 and
A0 for 4 levels of noise over links: L0 : σ2

z = 0, L1 : σ2
z = 10−4,

L2 : σ2
z = 10−3, and L3 : σ2

z = 10−2. The non-cooperative LMS
was also considered by setting A = C = IN . The network MSD
learning curves are reported in Fig. 2. It can be observed that the
theoretical findings match well the simulated curves. Furthermore,
for a certain degree of similarity between tasks, diffusion LMS with
perfect information exchange can still deliver superior performance
compared to non-cooperative strategies despite the bias introduced
by the multitask scenario. The performance decreases when the level
of noise over links increases.

In the following, we use A(0) = A0 and C(0) = C0. The
coefficients c`k(i) were set such thatC(i+1) = A>(i). Three dif-
ferent protocols for adjusting the combination coefficients a`k were
considered: the rule (46)-(49) with νk = 0.05 and ε = 0.01, the rule
in [11] with ε = 0.01, and the rule in [12, 18] with νk = 0.05. We
ran algorithm (6)-(7) for r = 0.02 and σ2

z = 10−2 with the adaptive
combination rules mentioned earlier. Figure 3 illustrates the network
MSD behavior for these algorithms. It appears that all these rules al-
low us to reduce the negative effects of noise over communication
links. Our rule (46)-(49) achieves the best performance.

To test the clustering ability of the ATC algorithm (6)-(7) with
adaptive combiners in the presence of noisy links, we increased the
distance between tasks by setting r = 1. In Fig. 4, we compare
the network MSD of the algorithm under perfect (left plot) and im-
perfect (right plot) information exchange, by setting σ2

z = 0 and
σ2
z = 10−4, respectively. In each case, we considered fixed combin-
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Fig. 3. Network MSD for different combination rules (close tasks).
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Fig. 4. Network MSD for different combination rules (distant tasks)
with perfect (left) and imperfect (right) information exchange.

ers {a`k, c`k} and adaptive combiners using the 3 different protocols
mentioned earlier. As shown by the experiments, the use of adap-
tive combiners is necessary when the tasks are not close enough.
Furthermore, our rule (46)-(49) provides the best performance es-
pecially in the presence of noisy information exchange. To better
analyze this behavior, we report in Fig. 5 the probabilities of erro-
neous clustering decisions of types I and II. Consider the link L`,k
connecting k to its neighbor `. The probability of type I for node k
is the probability that L`,k is erroneously dropped while wo

k = wo
` .

The probability of type II is the probability that L`,k is erroneously
connected while wo

k 6= wo
` . We considered that the link is dropped

off if a`k(i) < 0.05. The experiments show that the rule in [12, 18]
suffers in the presence of imperfect information exchange. The rule
in [11] tends to drop off links between agents of the same clusters,
notably in the presence of noisy links. Our rule (46)-(49) is able to
perform a perfect clustering in the presence and absence of noisy
links since both types of probabilities are decaying to zero.

6. CONCLUSION
This work analyzed the performance of the diffusion LMS when it is
run in a multitask environment in the presence of noisy links. An on-
line strategy for adapting the combination coefficients was proposed
to reduce the impact of these nuisance factors.
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Fig. 5. Erroneous clustering decisions of type I (left) and II (right)
with perfect (solid) and imperfect (dashed) information exchange.
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