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ABSTRACT
This paper focuses on the problem of distributed composite
hypothesis testing in a network of sparsely interconnected
agents, in which only a small section of the field modeling
parametric alternatives is observable at each agent. A recur-
sive generalized likelihood ratio test (GLRT) type algorithm
in a distributed setup of the consensus-plus-innovations form
is proposed, in which the agents update their parameter es-
timates and decision statistics by simultaneously processing
the latest sensed information (innovations) and information
obtained from neighboring agents (consensus). This paper
characterizes the conditions and the testing algorithm design
parameters which ensure that the probabilities of decision er-
rors decay to zero asymptotically in the large sample limit.
Finally, simulation studies are presented which illustrate the
findings.

Index Terms— Distributed Inference, Consensus Algo-
rithms, Generalized Likelihood Ratio Tests, Hypothesis Test-
ing, Large Deviations Analysis.

1. INTRODUCTION
This paper revolves around testing a simple hypothesis
against a composite alternative in a distributed multi-agent
network. The hypotheses form a parametric family indexed
by a (finite-dimensional vector) signal parameter, in which
the null hypothesis corresponds to absence of signal, whereas,
the collection of non-zero parameter values correspond to the
(continuous) composite alternative. Broadly speaking, the
objective is to simultaneously estimate the underlying param-
eter or state of the environment and decide which hypothesis
is true based on the time-sequentially collected measurement
data at the agents. This problem captures many practical
applications including cooperative spectrum sensing [1] and
MIMO radars [2]. The Generalized Likelihood Ratio Tests
(GLRT) ([3]) algorithm is a classical approach that has been
used widely in centralized setups for addressing such prob-
lems of composite testing. Apart from being inherently
centralized, the GLRT is based on batch processing of ob-
servation data; further, due to the waiting time involved in
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obtaining a reasonably good estimate of the underlying pa-
rameter so as to ensure reasonable detection performance
subsequently, its implementability in real-time applications
may be limited. Moreover, the estimation and detection
schemes running serially instead of in a parallel fashion con-
sume a lot of sensing energy which may not go well with
most multi-agent network scenarios that are typically energy
constrained. Motivated by such constraints, we propose an
algorithm CIGLRT , a fully distributed recursive testing pro-
cedure, in which agents coordinate through local peer-to-peer
information exchange and, in particular, the detection and
estimation schemes run in parallel. Before elaborating fur-
ther on the setup and the proposed distributed approach, we
briefly review related existing work on distributed hypothesis
testing in collaborative multi-agent networks. Distributed
detection schemes as studied in the literature can be broadly
categorized into three classes. Fusion center based archi-
tectures, where all the relevant information is transmitted to
the fusion center by the agents and the subsequent inference
schemes are operated by the fusion center (see, for exam-
ple [4, 5]), constitutes the first class. Consensus schemes,
which are distributed setups, where the data collection phase
by the agents is followed by information exchange among
them to reach a decision (see, for example [6, 7]) constitute
the second class, whereas the third class consists of schemes
which perform simultaneous assimilation of information ob-
tained from sensing and communication in a recursive time-
sequential manner (for example [8, 9]). The algorithm we
present in this paper belongs to the third class, where agents
make conditionally independent and temporally identically
distributed (but possibly spatially heterogeneous) observa-
tions and update their parameter estimate and test statistic
by simultaneous assimilation of the information obtained
from the neighboring agents (consensus) and the latest lo-
cally sensed information (innovation). This justifies the name
CIGLRT which is a distributed GLRT type algorithm of the
consensus + innovations form. In this paper, so as to closely
replicate typical practical sensing environments, we assume
an agent’s observations, say for agent n, is Mn dimensional,
where Mn << M , M being the dimension of the underlying
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static vector parameter. We not only show the consistency of
the parameter estimate sequence but also show the existence
of feasible choice of thresholds and other algorithm design
parameters which ensure that the probabilities of errors decay
to zero asymptotically. (Fully) distributed detection schemes,
in literature till now are concerned with either binary sim-
ple hypothesis testing (see, for example [8–10]) or multiple
simple hypothesis testing (finite classification) (see, for ex-
ample [11–13]) in contrast with the composite hypotheses
with constant vector parameterization as studied in this paper.
Furthermore, in [11–13] the observability condition assumed
requires at least one agent to be able to distinguish between
every possible pair of parameters, whereas, we require the
weakest form of observability, i.e., the aggregate observation
model is observable for the parameter of interest, referred to
as global observability henceforth. The global observability
requirement is necessary, even for a centralized procedure
having access to all agent data at all times, for attaining
consistent parameter estimates in the large sample limit. Ad-
dressing the fully composite testing setup with a continuous
range of alternatives requires novel technical machinery in
the form of development of analysis of efficient distributed
estimation and detection procedures that interact in a closed
loop fashion which we pursue in this paper. The rest of the
paper is organized as follows. Spectral graph theory, prelimi-
naries and notation are discussed next. The sensing model is
described in Section 2, where we also review some prelimi-
naries concerning the classical Generalized Likelihood Ratio
Tests. Section 3 presents the proposed CIGLRT algorithm,
while Section 4 concerns with the main results of the paper.
The simulation results are stated in Section 5. Finally, Section
6 concludes the paper.
Spectral Graph Theory. The inter-agent communication
network is a simple1 undirected graph G = (V,E), where V
denotes the set of agents or vertices with cardinality |V | = N ,
and E the set of edges with |E| = M . If there exists
an edge between agents i and j, then (i, j) ∈ E. A path
between agents i and j of length m is a sequence (i =
p0, p1, · · · , pm = j) of vertices, such that (pt, pt+1) ∈ E,
0 ≤ t ≤ m − 1. A graph is connected if there exists a
path between all possible agent pairs. The neighborhood of
an agent n is given by Ωn = {j ∈ V |(n, j) ∈ E}. The
degree of agent n is given by dn = |Ωn|. The structure of
the graph is represented by the symmetric N ×N adjacency
matrix A = [Aij ], where Aij = 1 if (i, j) ∈ E, and 0 oth-
erwise. The degree matrix is given by the diagonal matrix
D = diag(d1 · · · dN ). The graph Laplacian matrix is defined
as L = D − A. The Laplacian is a positive semidefinite
matrix, hence its eigenvalues can be ordered and represented
as 0 = λ1(L) ≤ λ2(L) ≤ · · ·λN (L). Furthermore, a graph
is connected if and only if λ2(L) > 0 (see [14] for instance).

1A graph is said to be simple if it’s devoid of self loops and multiple
edges.

2. SENSING MODEL AND PRELIMINARIES
There areN agents deployed in the network. Every agent n at
time index tmakes a noisy observation yn(t), a noisy function
of θ∗, which is a deterministic but unknown parameter and
θ∗ ∈ U ⊂ RM , where U is an open set in RM . Formally the
observation model for the n-th agent is given by,

yn(t) = Hnθ
∗ + γn(t), (1)

where {yn(t)} ∈ RMn is the observation sequence for the
n-th agent and {γn(t)} is a zero mean temporally i.i.d Gaus-
sian noise sequence at the n-th agent with nonsingular co-
variance Σn, where Σn ∈ RMn×Mn . Furthermore, the noise
processes at two different agents n, l for n 6= l are indepen-
dent. Motivated by most practical networked-agent applica-
tions, each agent only observes a subset of the components
of θ∗, such that Mn << M . Under such a condition, in
isolation, an agent can only estimate a part of the parameter,
as the local sensing functions Hn’s are not one-to-one on U .
However under appropriate network observability conditions
and through inter-agent collaboration, it might be possible for
each agent to get a consistent estimate of θ∗. Moreover, de-
pending on as to which hypothesis is in force, the observation
model is formalized as follows:

H1 : yn(t) = Hnθ
∗ + γn(t)

H0 : yn(t) = γn(t). (2)

We formalize the assumptions on the inter-agent communi-
cation graph and global observability.

Assumption B1. We require the following global observabil-
ity condition. The matrix G =

∑N
n=1 H>nΣ−1n Hn is full

rank.

Assumption B2. The inter-agent communication graph,
modeling the information exchange among the agents, is con-
nected, i.e. λ2(L) > 0, where L denotes the associated graph
Laplacian matrix.

In order to motivate our distributed testing approach (pre-
sented in Section 3), we now review some concepts from
Generalized Likelihood Ratio Testing. In a generalized target
detection problem, let the absence of target be modeled by
a simple hypothesis H0, whereas, its presence corresponds
to a composite alternative H1 as the underlying parameter
θ∗ is unknown and can possibly attain a lot of values. Let
y(t) =

[
y1(t)

> · · ·yN (t)>
]> represent the data from all the

agents at time t, where y(t) ∈ R
∑N
n=1Mn . In a centralized

setup, in which the fusion center has access to all the agents’
observations i.e. y(t) at all times t, a classical testing ap-
proach is the generalized likelihood ratio test (GLRT). For-
mally, the GLRT decision rule is defined as follows:

H =

{
H1, if maxθ

∑T
t=0 log

fθ(y(t))
f0(y(t)

> η,

H0, otherwise,
(3)

where η is a predefined threshold and
f0(y(t)) = f1

0 (y1(t)) · · · fN0 (yN (t))

fθ(y(t)) = f1
θ (y1(t)) · · · fNθ (yN (t)), (4)
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which represent the likelihood of observing y under H0 and
H1 respectively. Now, with the assumption that the observa-
tions made by the agents are conditionally independent, we
have,

max
θ

T∑
t=0

log
fθ(y(t))

f0(y(t))
= max

θ

T∑
t=0

N∑
n=1

log
fnθ (yn(t))

fn0 (yn(t))
. (5)

The computation of the decision statistic in the maximization
in (5) which uses all the data collected so far, is the key bottle-
neck in the implementation of the classical GLRT. In general,
a maximizer of (5) is not known apriori as it depends on the
raw data instance, and hence as far as communication com-
plexity in the GLRT implementation is concerned, the maxi-
mization step incurs the major overhead- in fact, a direct im-
plementation of the maximization (5) requires access to the
entire raw data y at the fusion center.
To mitigate the communication complexity in realizing a fu-
sion center having access to all the data, we present a dis-
tributed algorithm in which agents collaborate locally to ob-
tain a maximizing θ. In order to obtain reasonable decision
performance with such localized communication, we propose
a distributed detector of the consensus + innovations type,
which have been introduced in [15, 16]. In particular, each
agent sequentially updates its parameter estimate and decision
statistic in two parallelly running recursive schemes by assim-
ilating the information obtained from its neighbors (consen-
sus potential) and latest sensed local information (innovation
potential).

3. CIGLRT : ALGORITHM
In this section, we develop the algorithm CIGLRT for linear
observation models. In Section 4 we state the main results
concerning the characterization of the thresholds which en-
sure asymptotically decaying probabilities of errors. We skip
the proofs due to space limitations. The proofs can be found
in the longer manuscript ([17]).
Algorithm CIGLRT
The algorithm CIGLRT consists of two parts, namely, the
parameter estimate update and the decision statistic update.
Parameter Estimate Update. The algorithm CIGLRT gen-
erates the sequence {θn(t)} ∈ RM at the n-th agent accord-
ing to the following recursive scheme

θn(t+ 1) = θn(t)− βt
∑
l∈Ωn

(θn(t)− θl(t))︸ ︷︷ ︸
consensus

+ αtH
>
nΣ−1

n (yn(t)−Hnθn(t))︸ ︷︷ ︸
innovation

, (6)

where Ωn denotes the communication neighborhood of agent
n, {βt} and {αt} are consensus and innovation weight se-
quences respectively (to be specified shortly). The update in
(6) can be written in a compact manner as follows:

θ(t+ 1) = θ(t)− βt(L⊗ IM )θ(t) + αtGHΣ−1(y(t)−G>Hθ(t)),
(7)

where θ(t)> = [θ1(t)> · · · θN (t)>],GH = diag[H>1 · · ·H>N ],
y(t)> = [y1(t)> · · · yN (t)>]> and Σ = diag [Σ1, · · · ,ΣN ].

We make the following assumptions on the weight sequences
{αt} and {βt}.
Assumption B3. The weight sequences {αt} and {βt} are of
the form αt = (t+ 1)−1, βt = b(t+ 1)−δ2 , where b > 0 and
0 < δ2 < 1/2.

Decision Statistic Update. The algorithm CIGLRT gener-
ates the decision statistic sequence {zn(t)} at the n-th agent
according to the distributed recursive scheme

zn(t+ 1) =
t

t+ 1

zn(t)− δ
∑
l∈Ωn

(zn(t)− zl(t))︸ ︷︷ ︸
consensus


+

1

t+ 1
log

fθn(t)(yn(t))

f0(yn(t))︸ ︷︷ ︸
innovation

, (8)

where fθ(.) and f0(.) represent the likelihoods underH1 and
H0 respectively and δ = 2

λ2(L)+λN (L) . The decision statistic
update in (8) can be written in a compact manner as follows:-

z(t+ 1) =
t

t+ 1
(I− δL)z(t)

+
1

(t+ 1)
Gθ(t)Σ

−1

(
y(t)− G>Hθ(t)

2

)
, (9)

where Gθ(t) = diag[θ1(t)TH>1 , · · · , θN (t)TH>N ]. It is to
be noted that the entries of the weight matrix W = I − δL
are designed in such a way that W is non-negative, symmet-
ric, irreducible and stochastic, i.e., each row of W sums to
one. Furthermore, the second largest eigenvalue in magni-
tude of W, denoted by r, is strictly less than one (see [18]).
Moreover, by the stochasticity of W, the quantity r satisfies
r = ||W − J||, where J = 1

N 1N1>N .
The following decision rule is adopted at all times t :

H = H0 if zn(t) ≤ η,H = H1 otherwise. (10)

Under the aegis of such a decision rule, the associated prob-
abilities of errors are as follows:

PM,θ∗(t) = P1,θ∗ (zn(t) ≤ η) ,PFA(t) = P0 (zn(t) > η) , (11)

where PM,θ∗ and PFA refer to probability of miss and proba-
bility of false alarm respectively and P1,θ∗(.) and P0(.) denote
the probability when conditioned on hypothesis H1, which is
in turn parameterized by θ∗, and the probability when condi-
tioned on hypothesisH0 respectively.

4. CIGLRT : MAIN RESULTS
In this section, we specifically characterize the thresholds for
which the probability of miss and probability of false alarm
decay to zero asymptotically. We also derive the large devia-
tions exponent for the probability of false alarm.
Theorem 4.1. Consider the CIGLRT algorithm under As-
sumptions B1-B3, and the sequence {z(t)} generated accord-
ing to (9). We then have under Pθ∗ , for all ‖θ∗‖ > 0,

√
t+ 1

(
zn(t)−

(θ∗)>Gθ∗

2N

)
D
=⇒ N

(
0,

(θ∗)>Gθ∗

N2

)
(12)
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∀n, where D
=⇒ denotes convergence in distribution (weak

convergence).

Theorem 4.1 asserts the asymptotic normality of the test
statistic {zn(t)}, ∀n which in turn follows from the strong
consistency of the parameter estimate sequence {θn(t)}
which was studied in [19]. The next result concerns with
the characterization of thresholds which ensures the proba-
bility of miss and probability of false alarm as defined in (11)
decay to zero asymptotically.
Theorem 4.2. Let the hypotheses of Theorem 4.1 hold. Con-
sider the decision rule defined in (10). Then, we have for all

θ∗ that satisfy (θ∗)>Gθ∗

2N >
( 1
N+
√
Nr)

∑N
n=1Mn

2 , the following
choice of feasible thresholds(

1
N

+
√
Nr
)∑N

n=1 Mn

2
< η <

(θ∗)>Gθ∗

2N
, (13)

ensures that PM,θ∗(t) → 0 and PFA(t) → 0 as t → ∞.
Specifically, PFA(t) decays to zero with the following large
deviations exponent

lim
t→∞

1

t
log (P0 (zn(t) > η)) ≤ −LE (min{λ∗, 1}) , (14)

where LE(λ) = ηλ
1
N

+
√
N

+
(∑N

n=1Mn
2

)
log

(
1− λ( 1

N
+
√
Nr)

1
N

+
√
N

)
and λ∗ =

1
N

+
√
N

1
N

+
√
Nr
− ( 1

N
+
√
N)

∑N
n=1Mn

2η
.

Theorem 4.2 characterizes the range of θ∗’s for which a
range of feasible thresholds exist that guarantee PM,θ∗(t),
PFA(t) → 0 as t → ∞. The incorporation of inaccurate
initial parameter estimates into the decision statistic, though
sub-optimal, makes the detection scheme of CIGLRT a
recursive online procedure, while the classical GLRT is an
offline batch procedure as the corresponding parameter es-
timate used at any time instant depends on the entire raw
data obtained at all agents so far and needs to be estimated
first before computing the decision statistic. In spite of the
sub-optimality in the update of the corresponding decision
statistic, the algorithm CIGLRT ensures that the probabili-
ties of errors decay to zero in the large sample (time) limit.

5. SIMULATIONS
We generate a planar random geometric network of 10 agents.
We consider the underlying parameter to be scalar to give bet-
ter intuition of our algorithm. Out of the 10 agents, 5 agents
are defective i.e. observe only noise. The other 5 agents, ob-
serve noisy scaled versions of the underlying parameter with
the scaling factors being 1, 1.5, 0.8, 2, 0.9 for agents 1 to 5
respectively. We emphasize that the above design ensures
global observability (in the sense of Assumption B1), how-
ever, the defective agents are locally unobservable for θ∗. The
network is poorly connected which in turn is reflected by the
quantity r = ‖W − J‖ and is given by 0.91612. The under-
lying parameter is considered to be θ∗ = 7.8, with the noise

2Intuitively, smaller the value of r, better is the information flow in the
network. For example, for W = J i.e. in the all-to-all connected graph
r = 0, while in case of no collaboration i.e. W = I, r = 1.

power being 3. In particular, for the parameter estimation al-
gorithm, b = 0.2 and δ2 = 0.1, where b, δ2 are as defined in
Assumption B3. Figure 1 shows the convergence of the pa-
rameter estimates of the agents to the underlying parameter,
which in turn demonstrates the consistency of the parame-
ter estimation scheme. For the analysis of the probability of
miss, we run the algorithm for 2000 sample paths. Figure 2
verifies the assertion in Theorem 4.2, with the probability of
miss across the ideal agents and the defective agents going
to zero. It is to be noted that, from Figure 2 the probability
of miss starts decaying even before the parameter estimates
get reasonably close to the true underlying parameter, which
further indicates the online nature of the proposed algorithm
CIGLRT .
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Fig. 1: Convergence analysis of the agents
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6. CONCLUSION
In this paper, we proposed a consensus + innovations type al-
gorithm, CIGLRT , in which every agent updates its parame-
ter estimate and decision statistic by simultaneous processing
of neighborhood information and local newly sensed infor-
mation and where the inter-agent collaboration is restricted to
a possibly sparse communication graph. Under rather generic
assumptions, and a global observability criterion we establish
the consistency of the parameter estimate sequence and char-
acterize the feasible choice of thresholds which ensure that
the probabilities of errors pertaining to the detection scheme
decay to zero asymptotically. A natural direction for future
research consists of considering models with non-linear ob-
servation functions and non-Gaussian noise.

7. REFERENCES

[1] S. Zarrin and T. J. Lim, “Composite hypothesis test-
ing for cooperative spectrum sensing in cognitive radio,”

4576



in IEEE International Conference on Communications,
2009. ICC’09. IEEE, 2009, pp. 1–5.

[2] A. Tajer, G. H. Jajamovich, X. Wang, and G. V. Mous-
takides, “Optimal joint target detection and parameter
estimation by mimo radar,” IEEE Journal of Selected
Topics in Signal Processing, vol. 4, no. 1, pp. 127–145,
2010.

[3] O. Zeitouni, J. Ziv, and N. Merhav, “When is the gener-
alized likelihood ratio test optimal?” IEEE Transactions
on Information Theory, vol. 38, no. 5, pp. 1597–1602,
1992.

[4] R. S. Blum, S. A. Kassam, and H. V. Poor, “Distributed
detection with multiple sensors i. advanced topics,” Pro-
ceedings of the IEEE, vol. 85, no. 1, pp. 64–79, 1997.

[5] J. N. Tsitsiklis, “Decentralized detection,” Advances in
Statistical Signal Processing, vol. 2, no. 2, pp. 297–344,
1993.

[6] S. Kar and J. M. F. Moura, “Consensus based detection
in sensor networks: Topology optimization under prac-
tical constraints,” Proc. 1st Intl. Wrkshp. Inform. Theory
Sensor Networks, 2007.

[7] R. Olfati-Saber, E. Franco, E. Frazzoli, and J. S.
Shamma, “Belief consensus and distributed hypothesis
testing in sensor networks,” in Networked Embedded
Sensing and Control. Springer, 2006, pp. 169–182.

[8] D. Bajovic, D. Jakovetic, J. Xavier, B. Sinopoli, and
J. M. F. Moura, “Distributed detection via Gaussian run-
ning consensus: Large deviations asymptotic analysis,”
IEEE Transactions on Signal Processing, vol. 59, no. 9,
pp. 4381–4396, 2011.

[9] S. Kar, R. Tandon, H. V. Poor, and S. Cui, “Distributed
detection in noisy sensor networks,” in IEEE Interna-
tional Symposium on Information Theory Proceedings
(ISIT), 2011. IEEE, 2011, pp. 2856–2860.

[10] D. Jakovetic, J. M. F. Moura, and J. Xavier, “Distributed
detection over noisy networks: Large deviations analy-
sis,” IEEE Transactions on Signal Processing, vol. 60,
no. 8, pp. 4306–4320, 2012.

[11] A. Lalitha, A. Sarwate, and T. Javidi, “Social learn-
ing and distributed hypothesis testing,” in IEEE Interna-
tional Symposium on Information Theory (ISIT), 2014.
IEEE, 2014, pp. 551–555.

[12] A. Lalitha, T. Javidi, and A. Sarwate, “Social learn-
ing and distributed hypothesis testing,” arXiv preprint
arXiv:1410.4307, 2015.

[13] A. Jadbabaie, P. Molavi, A. Sandroni, and A. Tahbaz-
Salehi, “Non-Bayesian social learning,” Games and
Economic Behavior, vol. 76, no. 1, pp. 210–225, 2012.

[14] F. R. Chung, Spectral graph theory. American Mathe-
matical Soc., 1997, vol. 92.

[15] S. Kar and J. M. Moura, “Distributed linear parameter
estimation in sensor networks: Convergence properties,”
in Signals, Systems and Computers, 2008 42nd Asilomar
Conference on. IEEE, 2008, pp. 1347–1351.

[16] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed
parameter estimation in sensor networks: nonlinear ob-
servation models and imperfect communication,” IEEE
Transactions on Information Theory, vol. 58, no. 6, pp.
3575 – 3605, June 2012.

[17] A. K. Sahu and S. Kar, “Recursive distributed detec-
tion for composite hypothesis testing:Algorithms and
Asymptotics,” arXiv preprint arXiv:1601.04779, 2016.

[18] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat,
and A. Scaglione, “Gossip algorithms for distributed
signal processing,” Proceedings of the IEEE, vol. 98,
no. 11, pp. 1847–1864, 2010.

[19] S. Kar and J. M. F. Moura, “Convergence rate analy-
sis of distributed gossip (linear parameter) estimation:
Fundamental limits and tradeoffs,” IEEE Journal of Se-
lected Topics in Signal Processing: Signal Processing in
Gossiping Algorithms Design and Applications, vol. 5,
no. 4, pp. 674–690, August 2011.

4577


