
LEARNING IN CONSTRAINED STOCHASTIC DYNAMIC POTENTIAL GAMES

Sergio Valcarcel Macua Santiago Zazo Javier Zazo

Universidad Politécnica de Madrid

ABSTRACT

We extend earlier works on continuous potential games to the most
general case: stochastic time varying environment, stochastic re-
wards, non-reduced form and constrained state-action sets. We pro-
vide conditions for a Markov Nash equilibrium (MNE) of the game
to be equivalent to the solution of a single control problem. Then, we
address the problem of learning this MNE when the reward and state
transition models are unknown. We follow a reinforcement learn-
ing approach and extend previous algorithms for working with con-
strained state-action subsets of real vector spaces. As an application
example, we simulate a network flow optimization model, in which
the relays have batteries that deplete with a random factor. The re-
sults obtained with the proposed framework are close to optimal.

Index Terms— Approximate dynamic programming, game the-
ory, multi-agent, network flow, reinforcement learning

1. INTRODUCTION

In a noncooperative stochastic dynamic game, the players compete
in a time-varying environment that we assume can be characterized
by a discrete-time Markov decision process. The game starts at some
initial state. Then, the players take some action, receive some reward
and the system moves to another state. This state-transition pro-
cess is repeated at every time step over an infinite time horizon. We
study the case in which the state transitions and rewards are stochas-
tic and follow some stationary distributions, and where the play-
ers aim to maximize their expected long-term cumulative reward.
Thus, a stochastic game is represented by a set of coupled stochastic-
optimal-control-problems (SOCP), which are generally difficult to
solve. Nevertheless, there is a class of problems, named stochastic
dynamic potential games (SDPG), that can be formulated as a single
multivariate stochastic optimal control problem (MSOCP), which is
generally more tractable than the original set of coupled SOCP.

Static potential games and their applications have been exten-
sively studied [1, 2, 3, 4]. However, SDPG have only been analyzed
for particular cases. The pioneering work on deterministic dynamic
potential games is that of [5]. More recently, [6] extended the analy-
sis to stochastic transition models and stochastic rewards. However,
these works [5, 6] only considered games in reduced form (i.e., they
assumed that the state-transition equation, which express the future
state as a function of the action and current state, can be converted to
express the action as a function of the current and future states). A
more general treatment in non-reduced form can be found in [7, 8]
for the non-stochastic case. But none of these works [5, 6, 7, 8]
considered explicitly constraints in the state-action variables. Up to
our knowledge, the first works to analyze dynamic potential games
in non-reduced form by taking state-action constraints explicitly are
[9, 10]. However, [9, 10] only study deterministic problems. Our

Work supported by Spanish Ministry of Economy and Competitiveness
grant TEC2013-46011-C3-1-R and an FPU doctoral grant to the third author.

first contribution is to extend earlier analysis to the most general
case, by considering SDPG in non-reduced form with constrained
state-action sets. Similar to [10], we use the Euler approach, but in
this case the optimality conditions will be stochastic.

Our second contribution is to show that we can find a solution
to the constrained SDPG even when the state transition and reward
models are unknown. Indeed, we just need to observe the state tran-
sitions, actions, and rewards to estimate the optimal strategy. That
is, we consider the game as a real or simulated black-box and learn
by interaction. The idea is that, once we have converted the SDPG
to an equivalent SMOCP, we can follow a reinforcement learning
(RL) approach. Note though that most RL algorithms are only valid
for discrete state-action sets. Since we deal with subsets of high
dimensional real subspaces, learning the solution of the SMOCP be-
comes very difficult in practice. Therefore, we first survey RL algo-
rithms that are suitable for continuous state-action sets and remark
one that is simple but able to learn complex policies. Since all these
algorithms only work for unconstrained problems, we also propose
a penalty-type extension for dealing with constraints.

Finally, as an application example, we take the dynamic network
flow game due to [10]—in which the users aim to maximize their
throughput through some relays subject to bounded capacity while
also saving the relays’ battery life—and include a random depleting
factor that models the stochastic variations of the channel gain. By
using the proposed penalty-extension with the chosen RL algorithm
we are able to achieve close to optimal results in this problem.

2. PROBLEM FORMULATION

Let Q , {1, . . . , Q} denote the set of players. Let X ⊆ <S denote
the set of states of the game. At every time step t, the state-vector
of the game is xt , (xkt)Sk=1 ∈ X . Every player i ∈ Q can be
influenced by a subset of states X i ⊆ X , determined by a subset of
state-vector components denoted by X (i) ⊆ {1, . . . , S}, such that
xit , (xmt)m∈X (i) indicates the value of the state-vector for player
i at time t. We also define X−i ⊆ X as the subset of components
that do not influence player i, such that x−it , (xlt)l/∈X (i) ∈ X−i.

Let U ⊆ <Q denote the set of actions of all players. Let
U i ⊆ <A

i

stand for the subset of actions of player i, such that
U ,

∏Q
i=1 U

i. We write uit , (uia)A
i

a=1 ∈ U i the action vector of
lengthAi for player i at time t, such that ut , (uit)

Q
i=1 ∈ U contains

the actions of all players. We also define u−it , (ujt)j∈Q,j 6=i ∈
U−i ,

∏
j 6=i U

j as the vector of all players’ actions except that of
player i. Slightly abusing notation, we rewrite ut = (uit,u

−i
t).

The state transitions xt+1 ∼ px(·|xt,ut) are determined by the
state-transition probability distribution over the future state, given
the current state and current action. Theses transitions can be equiv-
alently expressed as a function f : X × U × Θ → X of a random
variable θt ∈ Θ ⊆ <S , such that xt+1 = f(xt,ut,θt), where {θt}
is a sequence of i.i.d. random variables.

4568978-1-4799-9988-0/16/$31.00 ©2016 IEEE ICASSP 2016

Each player i has an instantaneous reward function ri : X i×U×
Σ → <, such that, at every time step, it receives a random reward
rit , ri(xit,ut, σ

i
t), for some sequence of i.i.d. random variables

{σit ∈ Σi ⊆ X i}. This can be also rewritten as rit ∼ pr(·|xit,ut).
We include a vector g , (gc)Cc=1 of C constraints over the sys-

tem state and all players’ actions.
Each player i aims to find the sequence of actions {uit}∞t=1 that

maximizes its long term cumulative utility, given the sequence of
other players’ actions {u−it }∞t=0. Thus, the stochastic game can be
expressed by a set of Q coupled SOCP:

G1 :

∀i ∈ Q

maximize
{ui

t}∈
∏∞

t=0 Ui
E

[
∞∑
t=0

βtri(xit,u
i
t,u
−i
t , σit)

]
s.t. xt+1 ∼ px(·|xt,ut)

g(xt,ut) ≤ 0, x0 given

(1)

where the expectation is taken over all possible transitions and over
the reward distribution. The discount factor 0 < β < 1 bounds the
infinite-horizon cumulative utility.

Since learning an infinite sequence of actions is impractical, we
adopt a closed-loop approach and aim to learn a set of stationary
stochastic policies, π , {πi}Qi=1 ∈ Π, such that, each player’s pol-
icy maps states to distributions over its action set: uit ∼ πi(·|xit) ∈
Πi. Define the set of other players’ policies: π−i , {πj}j∈Q,j 6=i.

Introduce each player’s value function, vi : X × Π → <, as
the expected long term cumulative reward when the system starts at
state x0, the player follows πi and the rest of players follow π−i:

vi(x, πi, π−i) , E

[
∞∑
t=0

βtrit

∣∣∣ x0 = x, rit ∼ pr(·|xt,uit,ui−1
t)

xt+1 ∼ px(·|xt,ut), uit ∼ πi(·|xit), u−it ∼ π−i(·|xt)

]
(2)

We consider the Markov Nash Equilibrium (MNE) (see, e.g.,
[6]) as the solution concept for an SDPG.

Definition 1. A solution of problem (1), known as MNE, is a set of
feasible policies π? , {π?i}Qi=1 that ∀i ∈ Q satisfies:

vi(x, π?i, π?−i) ≥ vi(x, πi, π?−i), ∀πi ∈ Πi, ∀x ∈ X

g(x, (πi(x), π?−i(x))) ≤ 0 (3)

We require similar assumptions to the deterministic case [10].
Note that no convexity assumption in ri, f or g is required.

Assumption 1. Utilities {ri}i∈Q are twice continuously differen-
tiable in X × U .

Assumption 2. X , U are open convex subsets of real vector spaces.

Assumption 3. f and g are continuously differentiable and satisfy
some regularity conditions in X × U (see, e.g., [11, Sec. 3.3.5]).

Assumption 4. The set of solutions of the SMOCP (4) (defined be-
low) is nonempty.

3. STOCHASTIC DYNAMIC POTENTIAL GAMES

In general, finding a MNE of problem (1) is difficult. Nevertheless,
for constrained deterministic dynamic games [10] and for uncon-
strained stochastic games [6], it has been shown that these prob-
lems can be solved through a constrained MOCP and unconstrained

SMOCP, respectively. In this section we extend previous analysis,
giving conditions for the constrained stochastic game (1) to be poten-
tial, and proving that it can be solved through the following SMOCP:

P1 :

maximize
π∈Π

E

[
∞∑
t=0

βtJ(xt,ut, σt)

]
s.t. xt+1 ∼ px(·|xt,ut), x0 given

ut ∼ π(·|xt), g(xt,ut) ≤ 0

(4)

where J denotes the instantaneous random reward, and {σt} is an
i.i.d. sequence of random variables. The expectation in (4) is taken
over the state transition and reward distributions.

Theorem 1. Let Assumptions 1–4 hold. Let all players’ reward
functions satisfy the following conditions ∀i, j ∈ Q, ∀m ∈ X (i),
∀n ∈ X (j), a = [1, . . . , Ai] and b = [1, . . . , Aj]:

E

[
∂2ri(xit,ut, σ

i
t)

∂ujbt ∂x
m
t

]
= E

[
∂2rj(xjt ,ut, σ

j
t)

∂uiat ∂x
n
t

]
(5)

E

[
∂2ri(xit,ut, σ

i
t)

∂xnt ∂x
m
t

]
= E

[
∂2rj(xjt ,ut, σ

j
t)

∂xmt ∂x
n
t

]
(6)

E

[
∂2ri(xit,ut, σ

i
t)

∂ujbt ∂u
ia
t

]
= E

[
∂2rj(xjt ,ut, σ

j
t)

∂uiat ∂u
jb
t

]
(7)

Then, problem (1) is a SDPG that has an MNE equal to the solution
of the SMOCP (4) with reward function given by

J(xt,ut, σt) =

Q∑
i=1

(∫ 1

0

∑
m∈X (i)

∂ri(η(λ),ut, σ
i
t)

∂xmt

dηm(λ)

dλ
dλ

+

∫ 1

0

∑
a∈Ai

∂ri(xt, ξ(λ), σit)

∂uiat

dξia(λ)

dλ
dλ

)
(8)

where η(λ) ,
(
ηk(λ)

)S
k=1

, ξ(λ) ,
(
(ξia(λ))A

i

a=1

)Q
i=1

, and η(0)-
ξ(0) and η(1)-ξ(1) correspond to the initial and final state-action
conditions, respectively, and with σt , (σit)

Q
i=1.

Proof. We combine the analysis in [10, Th. 1] and [6, Sec. 3],
for the constrained deterministic and unconstrained stochastic cases,
respectively. First, we derive two sets of optimality conditions. For
problem (1), each player’s Lagrangian is given by

Li
(
xt,ut, σ

i
t,θt,λ

i
t,µ

i
t

)
= E

[
∞∑
t=0

βtri
(
xit,ut, σ

i
t

)
+ λi

>
t (f (xt,ut,θt)− xt+1) + µi

>
t g (xt,ut)

]
(9)

with multipliers λit ,
(
λikt
)S
k=1

and µit ,
(
µict
)C
c=1

. Similarly, we
derive the Lagrangian for problem (4):

LMSOCP(xt,ut, σt,θt,γt, δt) = E

[
∞∑
t=0

βt
(
J (xt,ut, σt)

+ γ>t (f (xt,ut,θt)− xt+1) + δ>t g (xt,ut)
)]

(10)

where γt ,
(
γkt
)S
k=1

and δt , (δct)
C
c=1 are the multipliers. Since xt

is set after the random value θt−1 = st−1 is known, we derive the
discrete-time stochastic Euler equations of (9) and (10) and obtain

4569

the following KKT conditions for both problems. The KKT of (1)
for every player i ∈ Q, state components m ∈ X (i) and action
indexes a = 1, . . . , Ai, is given by:

E

[
∂ri
(
xit,ut, σ

i
t

)
∂xmt

+

S∑
k=1

λikt
∂fk (xt,ut,θt)

∂xmt

]

+

C∑
c=1

µict
∂gc (xt,ut)

∂xmt
− λimt−1 = 0 (11)

E

[
Ai∑
a=1

∂ri
(
xit,ut, σ

i
t

)
∂uiat

+

S∑
k=1

λikt
∂fk (xt,ut,θt)

∂uiat

]

+

C∑
c=1

µict
∂gc (xt,ut)

∂uiat
= 0 (12)

xt+1 = f (xt,ut,θt) , g (xt,ut) ≤ 0 (13)

µit ≤ 0, µi
>
t g (xt,ut) = 0 (14)

Similarly, the KKT system of (4) for all state-components (m =
1, . . . , S) and all action indexes (ia ∈ {11, . . . , QAQ}) is given by

E

[
∂J (xt,ut, σt)

∂xmt
+

S∑
k=1

γkt
∂fk (xt,ut,θt)

∂xmt

]

+

C∑
c=1

δct
∂gc (xt,ut)

∂xmt
− γmt−1 = 0 (15)

E

[
∂J (xt,ut, σt)

∂uiat
+

S∑
k=1

γkt
∂fk (xt,ut,θt)

∂uiat

]

+

C∑
c=1

δct
∂gc (xt,ut)

∂uiat
= 0 (16)

xt+1 = f (xt,ut,θt) , g (xt,ut) ≤ 0 (17)

δt ≤ 0, δ>t g (xt,ut) = 0 (18)

Now, by comparing (11)–(14) with (15)–(18), we conclude that the
solution of problem (4) is also a MNE of problem (1) if the following
conditions are satisfied ∀i ∈ Q:

E

[
∂ri
(
xit,ut, σ

i
t

)
∂xmt

]
= E

[
∂J (xt,ut, σt)

∂xmt

]
, ∀m ∈ X (i) (19)

E

[
∂ri
(
xit,ut, σ

i
t

)
∂uiat

]
= E

[
∂J (xt,ut, σt)

∂uiat

]
, a = 1 . . . Ai (20)

λit = γt, µit = δt (21)

These are the stochastic extension of the same conditions given by
[10, Th. 1] for the deterministic case. Similar to the deterministic
case, it is straightforward to see that, under Assumptions 3–4, condi-
tion (21) represents a feasible point of the SMOCP that also satisfies
the KKT system of the game and, hence, it is a MNE of (1). How-
ever, since we do not know J beforehand, (19)–(20) are not easily
verifiable in practice. Instead, it is more convenient to check con-
ditions that depend only on the info available in (1). Introduce the
vector field F = ∇J , conservative by construction. Under Assump-
tion 2 and equivalences (19)–(20), the fact that F is conservative is a
necessary and sufficient condition for (5)–(7) (e.g., [12, Th. 10.9]).

Finally, since the objective J is the potential of F, we can cal-
culate it through the line integral (8).

Instead of verifying (5)–(7), some problems have a separable
structure that makes easier to deduce whether they are a SDPG.

Corollary 1. Problem (1) is a SDPG if each player’s reward func-
tion can be expressed as the sum of a term, J , common to all players
plus another term, Ψi, that is independent on its own variables:

ri
(
xit,ut, σ

i
t

)
= J (xt,ut, σt) + Ψi(x−it ,u−it), ∀i ∈ Q (22)

Proof. Taking partial derivatives on (22) with respect to xmt and uiat
yields (19)–(20) (see also [10, Lemma 3] and [1, Prop. 1]).

4. REINFORCEMENT LEARNING FOR SDPG

Having established an equivalence between the SDPG (1) and the
SMOCP (4) is a significant step for finding an MNE. However, there
are cases in which we the problem parameter are unknown, or where
the reward and/or the state-transition distributions are not known at
all. Rather, we have access only to the real system that we want to
control or to a simulator. Thus, we have to learn by interacting with
the real or simulated environment. At every time step, we sense the
state of the environment to some extent, take an action, and observe
the instant reward, obtaining a sequence of tuples {(xt,ut, rt)}Tt=0,
where T is the maximum number of samples. RL is a field that stud-
ies this kind of problems and its solution methods (see, e.g., [13] for
an intuitive introduction to RL; [14] and [15, Vol 2, Ch. 6] for a more
formal perspective; [16, 17] for reviews of modern RL algorithms;
and [18] for a survey on recent developments in the field).

Traditional RL algorithms work well in environments with fi-
nite state and action sets. However, for SDPG, the state set and ac-
tion sets are subsets of <S and <

∑Q
i=1 A

i

, respectively. Two main
approaches for dealing with continuous state-action sets are: i) dis-
cretize the continuous variables so that standard techniques can be
applied (e.g., [19]); and ii) map the state-action variables to a vec-
tor of features and learn a parametric approximation of the value
function and/or the policy from these features (e.g., [20, 17]). The
main problem with discretizing continuous domains is that the num-
ber of discrete states grows exponentially with the number of dimen-
sions. Learning parametric approximations presents also some draw-
backs: appropriate features have to be discovered or hand-crafted
and policies are usually constrained to some parametric class (e.g.,
[21, 22, 23, 24]), which might not be rich enough to represent the
complexities of a constrained problem. Other useful approaches in-
clude [25, 26, 27, 28, 29] and, more recently, the promising [30, 31].

Nevertheless, none of the mentioned methods have considered
constrained state-actions sets. As in standard optimization methods,
we propose to extend the available algorithms by including a penalty
function that gives negative reward to solutions that fall outside the
feasible set [32, Ch. 9]. A suitable penalty function is of the form:

H(xt,ut) , − (max [0, g(xt,ut)]
ρ) (23)

where ρ is some positive integer. The new unconstrained MSCOP—
to which we can apply the surveyed RL algorithms—becomes:

P2 :
maximize

π∈Π
E

[
∞∑
t=0

βtJ(xt,ut, σt) +H(xt,ut)

]
s.t. ut ∼ π, xt+1 ∼ px(·|xt,ut), x0 given

(24)

Among the surveyed algorithms, we choose Exa [27, 33] for its
simplicity and, at the same time, its capability of learning complex
non-parametric policies. This algorithm resembles some features

4570

from the discretization approach. It discretizes the state-action sets
and estimate the Q-values (i.e., a variation of (2) that takes the state-
action pair (x0,u0) as input and estimates the cumulative reward for
ut ∼ π for t = 1, . . . ,∞) for every discrete state-action pair. Since
the Q-values are given for every discrete state-action pair, we can
maximize over the actions to obtain the highest value at every dis-
crete state. This is basically the well known Q-learning algorithm
applied over the discretized sets (see, e.g., [13]). Then, Exa com-
putes the distance from xt+1 to each of the discrete points, takes the
k nearest points to xt+1, and returns an average of the actions that
maximize their Q-values.

5. APPLICATION EXAMPLE: NETWORK FLOW

Consider a game in whichQ users aim to maximize their throughput
through a network with S relay nodes, while optimizing the use of
the relays’ batteries. Each player can use multiple paths simultane-
ously; let uit be the vector of flow rates across these paths (see Fig.
1). The system-state xt is the relays’ battery levels. These batteries
deplete proportionally to the sum of the outgoing flows, weighted
by uniform random variables νiat ∼ [0, ν] that model the channel
gain of the outgoing links. Each player reward’s is some function
Γ : U i → < of the sum of rates across all available paths, like the
square root [34], Γ(·) ,

√
(·). Thus, the stochastic dynamic net-

work flow game is given by

maximize
{ui

t}∈
∏∞

t=0 Ui
E

 ∞∑
t=0

βt

αΓ

 Ai∑
a=1

uiat

+ (1− α)

S∑
k=1

xkt

s.t. xkt+1 = xkt −

Q∑
i=1

∑
uia∈Fk

νiat u
ia
t (25)

xk0 = Bkmax, 0 ≤ xkt ≤ Bkmax, νiat ∼ [0, ν]

Mut ≤ cmax, uiat ≥ 0

∀i ∈ Q, k = 1, . . . , S, a = 1, . . . , Ai

where 0 < α < 1 is some weight, Bkmax is the maximum battery
level, cmax ∈ <L is the vector with maximum capacity for each of
the L links; and M = [mlj] is the L×A connectivity-matrix be-
tween links and users’ flows, such that the element mla = 1 if link
l can be used by path a, and mla = 0 otherwise. This model gen-
eralizes the dynamic game proposed by [10] by making the battery
depletion factor a random variable. However, the main novelty of
this section is that we learn an MNE of (25) with no knowledge of
the reward or state-dynamics, just by interaction with a black-box
that simulates the system. At every time step, we observe xt and
take ut, then the system returns stochastic reward and xt+1 values.

1 x1
t 1

2 x2
t 2

u11
t

u12
t

u21
t

u22
t

ν11
t

ν21
t

ν12
t

ν22
t

Fig. 1. Network flow model. Q = 2 users, S = 2 relays, and L = 4
links (one link at the input of each relay and destination node).

It is straightforward to see that each player’s utility can be ex-
pressed in separable form. Hence, Corollary 1 establishes that (25)

is a SDPG. From Theorem 1, we find its equivalent SMOCP:

maximize
π∈Π

E

 ∞∑
t=0

βt

∑
i∈Q

αΓ

 Ai∑
a=1

uiat

+ (1− α)

S∑
k=1

xkt

s.t. xkt+1 = xkt −

∑
i∈Q

∑
uia∈Fk

νiat u
ia
t (26)

xk0 = Bkmax, 0 ≤ xkt ≤ Bkmax, νiat ∼ [0, ν]

Mut ≤ cmax, ut ≥ 0, ut ∼ π(·|xt)

k = 1, . . . , S, a = 1, . . . , Ai

Since problem (25) is concave, we can find its optimal solu-
tion with convex optimization methods for long enough time horizon
(200 steps) and constant gain νiat = ν̄/2, and use it as benchmark
for the RL solution. We simulate problem (26) extended with penalty
(23) in the scenario shown in Figure 1. Figure 2 shows results aver-
aged over 500 trials. Although the RL plots (solid) are different from
the convex solution (dashed), they follow similar trend. Indeed, both
methods provide similar values: vcvx = 16.4 vs. vexa = 16.0, such
that the RL solution achieves 97.4% of the optimal value.

0 10 20 30 40 50
0

0.1

0.2

0.3
Fl

ow
ra

te
s,
u
ia t

u11,exa
t u12,exa

t

u21,exa
t u22,exa

t

u11,cvx
t u12,cvx

t

u21,cvx
t u22,cvx

t

0 10 20 30 40 50
0

2.0

4.0

Time

B
at

te
ry

le
ve

l,
x
k t

x1,exa
t x2,exa

t

x1,cvx
t u22,cvx

t

Fig. 2. Simulation results Exa [27] (solid) vs. CVX [35] (dashed).
Problem parameters: β = 0.9, α = 0.9, B1,2

max = 5, ν̄ = B1,2
max/8,

cmax = B1,2
max·[0.08, 0.4, 0.08, 0.4]. Exa parameters: state grid cov-

ers [0, B1,2
max]2 with 102 points, action grid covers [0, B1,2

max · 0.1]4

with 84 points, k = 24 nearest neighbors, learning rate 5/t0.2, eligi-
bility trace 0.9, exploration 5%-greedy, run for 3 · 104 episodes.

6. CONCLUSIONS

We have extended earlier works on potential games by addressing
the most general case: stochastic time varying environment, stochas-
tic rewards, non-reduced form and constrained state-action sets. By
applying the stochastic Euler equation to the Lagrangian, we found
conditions for the game to be equivalent to a SMOCP. Once we have
found this SMOCP, we have shown that it is possible to learn its solu-
tion with an RL approach, even when the reward and state transition
models are unknown. However, this is a difficult problem for stan-
dard RL algorithms because the state and action are continuous vec-
tor variables that lie in constrained sets. We have reviewed the RL
literature and found algorithms that can work for continuous vari-
ables. Then, we extended these algorithms by including a penalty
function when the solution does not satisfy the constraints. As an
example, we applied this framework to a network flow optimization
problem, obtaining near optimal results.

4571

7. REFERENCES

[1] M. E. Slade, “What does an oligopoly maximize?,” The Jour-
nal of Industrial Economics, vol. 42, no. 1, pp. 45–61, Mar.
1994.

[2] D. Monderer and L. S. Shapley, “Potential games,” Games and
Economic Behavior, vol. 14, no. 1, pp. 124–143, May 1996.

[3] G. Scutari, S. Barbarossa, and D.P. Palomar, “Potential games:
A framework for vector power control problems with coupled
constraints,” in Proc. IEEE Int. Conf. on Acoustics, Speech and
Signal Processing (ICASSP), May 2006.

[4] O. Candogan, I Menache, A Ozdaglar, and P.A Parrilo, “Flows
and decompositions of games: Harmonic and potential games,”
Mathematics of Operations Research, vol. 36, no. 3, pp. 474–
503, 2011.

[5] W. D. Dechert, “Optimal control problems from second-order
difference equations,” Journal of Economic Theory, vol. 19,
no. 1, pp. 50–63, Oct. 1978.

[6] D. González-Sánchez and O. Hernández-Lerma, “Dynamic
potential games: The discrete-time stochastic case,” Dynamic
Games and Applications, pp. 1–20, Mar. 2014.

[7] W. D. Dechert, “Non cooperative dynamic games: a control
theoretic approach,” Tech. Rep., 1997.

[8] D. Dragone, L. Lambertini, G. Leitmann, and A. Palestini,
“Hamiltonian potential functions for differential games,” Pro-
ceedings of IFAC CAO, vol. 9, 2009.

[9] S. Zazo, S. Valcarcel Macua, M. Sánchez-Fernández, and
J. Zazo, “A new framework for solving dynamic schedulling
games,” in Proc. IEEE Int. Conf. on Acoustics, Speech and
Signal Processing (ICASSP), Apr. 2015, Brisbane, Australia.

[10] S. Zazo, M. Sánchez-Fernández, S. Valcarcel Macua, and
J. Zazo, “Dynamic potential games in communications: Fun-
damentals and applications,” preprint arXiv:1509.01313, 2015.

[11] D.P. Bertsekas, Nonlinear programming, Athena Scientific,
1999.

[12] T.M. Apostol, Calculus: Multi-variable calculus and linear
algebra, with applications to differential equations and proba-
bility, Wiley, 1969.

[13] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 1998.

[14] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Program-
ming, Athena Scientific, 1996.

[15] D. P. Bertsekas, Dynamic Programming and Optimal Control,
Athena Scientific, 2012.

[16] C. Szepesvari, Algorithms for Reinforcement Learning, Mor-
gan & Claypool Publishers, 2009.

[17] L. Busoniu, R. Babuska, D. Schutter, and D. Ernst, Rein-
forcement Learning and Dynamic Programming Using Func-
tion Approximators, CRC Press, 2010.

[18] M. Wiering and M. van Otterlo, Reinforcement Learning:
State-of-the-Art, Springer, 2012.

[19] A. Geramifard, T. J. Walsh, S. Tellex, G. Chowdhary, N. Roy,
and J. P. How, “A tutorial on linear function approximators for
dynamic programming and reinforcement learning,” Founda-
tions and Trends in Machine Learning, vol. 6, no. 4, pp. 375–
451, 2013.

[20] G. Konidaris, “Value function approximation in reinforcement
learning using the fourier basis,” in Proc. AAAI Conf. on Arti-
ficial Intelligence, Chicago, Illinois, July 2008.

[21] A. Antos, C. Szepesvari, and R. Munos, “Fitted Q-iteration
in continuous action-space MDPs,” in Advances in Neural In-
formation Processing Systems 20 (NIPS), Vancouver, Canada,
Dec. 2007.

[22] H. Van Hasselt and M. et al. Wiering, “Reinforcement learning
in continuous action spaces,” in Proc. IEEE Int. Symp. on Ap-
proximate Dynamic Programming and Reinforcement Learn-
ing (ADPRL), Honolulu, Hawaii, Apr. 2007, pp. 272–279.

[23] F. S. Melo and M. Lopes, “Fitted natural actor-critic: A new al-
gorithm for continuous state-action mdps,” in Machine Learn-
ing and Knowledge Discovery in Databases, vol. 5212, pp. 66–
81. Springer, 2008.

[24] M. G. Azar, A. Lazaric, and E. Brunskill, “Online stochas-
tic optimization under correlated bandit feedback,” in Proc.
Int. Conf. on Machine Learning (ICML). Beijing, 2014, JMLR
Workshop and Conference Proceedings.

[25] J. Millán, D Posenato, and E. Dedieu, “Continuous-action Q-
learning,” Machine Learning, vol. 49, no. 2-3, pp. 247–265,
2002.

[26] A. Lazaric, M. Restelli, and A. Bonarini, “Reinforcement
learning in continuous action spaces through sequential monte
carlo methods,” in Advances in neural information processing
systems (NIPS), Vancouver, Canada, Dec. 2007, pp. 833–840.

[27] J. A. Martin H and J. de Lope, “Ex〈a〉: An effective algo-
rithm for continuous actions reinforcement learning problems,”
in IEEE Annual Conf. of Industrial Electronics (IECON), Nov
2009, pp. 2063–2068.

[28] G. Neumann and J. R. Peters, “Fitted q-iteration by advantage
weighted regression,” in Proc. Advances in neural information
processing systems (NIPS), Vancouver, Canada, Dec. 2009, pp.
1177–1184.

[29] J. Pazis and M.G. Lagoudakis, “Reinforcement learning in
multidimensional continuous action spaces,” in IEEE Symp. on
Adaptive Dynamic Programming And Reinforcement Learning
(ADPRL), Paris, France, Apr. 2011.

[30] H. Van Hoof, J. Peters, and G. Neumann, “Learning of non-
parametric control policies with high-dimensional state fea-
tures,” in Proc. Int. Conf. on Artificial Intelligence and Statis-
tics (AISTATS), San Diego, California, May 2015, pp. 995–
1003.

[31] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep re-
inforcement learning,” preprint arXiv:1509.02971v1, 2015.

[32] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear pro-
gramming: theory and algorithms, Wiley-Interscience, Hobo-
ken, N.J, 3rd ed edition, 2006.

[33] J. A. Martin H, J. de Lope, and D. Maravall, “Robust high per-
formance reinforcement learning through weighted k-nearest
neighbors,” Neurocomputing, vol. 74, no. 8, pp. 1251–1259,
2011.

[34] A. Nedic and A. Ozdaglar, “Cooperative distributed multi-
agent optimization,” in Convex Optimization in Signal Pro-
cessing and Communications, D. P. Palomar and Y. C. Eldar,
Eds. Cambridge University Press, 2010.

[35] M. Grant and Stephen Boyd, “CVX: Matlab software for dis-
ciplined convex programming, version 2.1,” Mar. 2014.

4572

