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ABSTRACT

This paper presents diffusion filtering as a method to smooth signals
defined on the nodes of a graph or network. Diffusion filtering con-
siders the given signals as initial temperature distributions in the nodes
and diffuses heat through the edges of the graph. The filtered signal
is determined by the accumulated temperatures over time at each node.
We show multiple other interpretations of diffusion filtering and describe
how it can be generalized to encompass a wide class of networks making
it suitable for real-world applications. We prove that diffused signals are
stable to perturbations in the underlying network. Further, we demon-
strate how diffusion filtering can be applied to improve the performance
of recommendation systems by considering the problem of predicting
ratings from a signal processing perspective.

Index Terms— Graph signal processing, filtering, pattern recogni-
tions, recommendation systems.

1. INTRODUCTION

Networks and graphs can be defined as structures that encode pairwise
relations between elements of a set. The simplicity of this definition
drives the application of graphs and networks to a wide variety of disci-
plines such as biology [1,2] and sociology [3,4]. The emerging theory of
graph signal processing [5] is not specifically concerned with the study
of networks but rather with the study of signals supported on the nodes
of a graph, where the latter captures an underlying notion of proxim-
ity between the nodes. Examples of network-supported signals include
gene expression patterns defined on top of gene networks [6] and brain
activity signals supported on top of brain connectivity networks [7].

In this paper we address the problem of smoothing out irregular-
ities of graph signals by incorporating the structure of the underlying
network. Since the network encodes similarities between nodes, we as-
sume that the signals supported on the graph also exhibit such similar-
ities and want the filtered signal to be such that signals on nodes with
high proximities become more alike. We present the notion of diffusion
filtering and argue that it inherits this functionality through its connec-
tion to diffusion processes which, in turn, draw their inspiration from
the diffusion of heat in continuous matter [8, 9]. The linear differen-
tial equation that models heat diffusion can be extended to encompass
dynamics in discrete structures such as networks where every node is
interpreted as containing an amount of heat that flows from hot to cold
nodes [10, 11]. Heat flows through the edges of the graph and the rate at
which heat diffuses is proportional to both the heat imbalance between
the nodes adjacent to the edge and the edge weight representing the prox-
imity between these nodes. Diffusion processes are often used to exploit
their asymptotic configurations in steady state such as in problems of
formation control [12] as well as the propagation of opinions in social
networks [13]. In this paper we do not exploit the asymptotic, but rather
the transient behavior of diffusion processes.

The main contributions of this paper are the definition and interpre-
tation of diffusion filtering for signals supported on networks (Section 2),
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its generalization to arbitrary graphs (Section 3), the proof that the dif-
fused signals are stable to perturbations in the underlying network (Sec-
tion 4), and the utility of diffusion filtering to improve the performance
of recommendation systems (Section 5).

2. DIFFUSION FILTERING

Consider weighted and symmetric networks formally defined as triplets
G = (V, E ,W). The set V = {1, . . . , n} represents the n vertices, the
set E ⊆ V × V denotes the edges defined as ordered pairs (i, j), and
W : E → R++ is a map from the set of edges to the strictly positive
reals associating a weight wij > 0 to each edge (i, j). Since the graph
is symmetric we have (i, j) ∈ E if and only if (j, i) ∈ E and wij = wji
for all (i, j) ∈ E . The edge (i, j) ∈ E symbolizes the existence of
a relationship between i and j and we say that i and j are adjacent or
neighboring. The set of neighboring nodes of i is denoted as Ni. The
weight wij = wji stands for the strength of the relation, or, equiva-
lently, the proximity or similarity between nodes i and j. The networks
considered here do not contain self loops, i.e., (i, i) 6∈ E for all i ∈ V .

We utilize the customary definitions of adjacency, degree, and
Laplacian matrices for the weighted graph G = (V, E ,W) [14, Chapter
1]. The adjacency matrix A ∈ Rn×n+ is defined such that Aij = wij
whenever i and j are adjacent, i.e., whenever (i, j) ∈ E , with Aij = 0
for (i, j) /∈ E . The degree matrix D ∈ Rn×n+ is a diagonal matrix
with its i-th diagonal element Dii =

∑
j wij . The Laplacian matrix is

defined as the difference L := D −A ∈ Rn×n, thus, its elements are
explicitly given by

Lij =

{
−Aij , if i 6= j,∑n
k=1Aik, if i = j.

(1)

Models with asymmetric weights wij 6= wji and signed edges wij < 0
are considered in Section 3.

Our interest in this paper is on signals x = [x1, . . . , xn]T ∈ Rn
whose component xi is interpreted as a value associated with the ith
node of G. For a given graph with Laplacian L and given signal x,
introduce a constant α > 0 to define the time-varying vector x(t) ∈ Rn
as the solution of the linear differential equation

dx(t)

dt
= −αL x(t), x(0) = x. (2)

The differential equation in (2) models the diffusion of heat on the graph
G when the weights represent thermal conductivity across the edges [10].
The given vector x = x(0) specifies the initial temperature distribution
and x(t) represents the temperature distribution at time t. The constant
α scales the thermal conductivities and controls the heat diffusion rate.
The solution of (2) is given by the matrix exponential

x(t) = e−αL t x. (3)

Using (3) we can compute the temperature distribution at any time point
t by diffusing the initial heat profile x on the structure of the underlying
network through its Laplacian L. Notice that as diffusion continues, x(t)
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settles to an isothermal equilibrium – temperature becomes identical on
all nodes – as long as the graph is fully connected.

It is informative to write a componentwise version of (2). If we focus
on the i-th entry xi(t) of x(t), it follows from (1) and (2) that

dxi(t)

dt
=
∑
j∈Ni

αwij (xj(t)− xi(t)) . (4)

Since (4) describes the rate of change in xi(t), it follows that the flow of
heat on an edge increases proportionally with the temperature imbalance
xj(t)− xi(t) as well as the weight wij . In particular, with other things
being equal, nodes with larger proximity tend to equalize their tempera-
tures faster. This means that the time varying vector x(t) defines a series
of temperature profiles by smoothing the initial distribution x using the
underlying graph structure. This allows the interpretation of x(t) as a
smoothed version of the given signal x where variations between nodes
that are strongly related are reduced.

While it is possible to focus on a particular x(t) as a filtered version
of x it is more convenient to aggregate the whole diffusion process. A
possible way of constructing a vector y condensing the time varying
vector x(t) is to consider the discounted integral

y =

∫ ∞
0

e−t x(t) dt =

∫ ∞
0

e−t e−αL t x dt. (5)

We say that the vector y in (5) is the diffused or diffusion filtered signal
obtained from x associated with L. The motivation for (5) is that it con-
siders the heat diffusion profile generated by x on L while giving more
importance to initial times. This is necessary because in the asymptotic
thermal equilibrium the variability of the original signal is completely
smoothed out. Further note that the primitive of the matrix exponential
e−te−αLt = e−(I+αL)t is the matrix−(I+αL)−1e−(I+αL)t with I be-
ing the identity matrix of corresponding size. This can be used to solve
(5) in closed-form as we summarize in the following definition.

Definition 1 Given a network G = (V, E ,W) with Laplacian L, the
diffusion rate α ≥ 0, and a graph signal x ∈ Rn defined in the node
space V , the diffusion filtered signal y obtained from x is defined as

y = (I + αL)−1 x. (6)

Observe that the diffused signal y is another graph signal defined
in the same node space V and that y always exists because I + αL is
strictly diagonally dominant [15, Thm 6.2.27]. Besides its construction
from diffusion dynamics, diffusion filtering can also be seen to follow as
the solution of the optimization problem [16, 17],

min
y∈Rn

‖x− y‖22 + α yTLy. (7)

The diffused signal is then close to x but with small total variation on
the graph, as indicated by the first and second summands in (7), respec-
tively. The balance of these conflicting requirements is mediated by α.
Alternatively, we can also think of y as the result of processing x with
a low-pass graph filter [18–20]. To explain this interpretation, consider
the eigendecomposition of the Laplacian L = VΛVH and define the
graph Fourier transforms of x and y as x̂ = VHx and ŷ = VHy,
respectively. The form of (6) is such that

ŷi =
1

1 + αλi
x̂i. (8)

Therefore, higher frequency components of x, which are associated with
larger eigenvalues λi, are attenuated by a larger coefficient. Conversely,
lower frequencies are attenuated by a smaller coefficient as is expected
of a (graph) low-pass filter. Moreover, the larger the diffusion rate α the
steeper the decay of the graph filter response for high frequencies. These
three interpretation – diffusion dynamics, a signal close to the original

with smaller total variation, and the result of applying a low-pass filter –
are compatible. They all imply that y is obtained from x by reducing the
level of variability as measured by the graph Laplacian L. The diffusion
filtering is closely related with Laplacian smoothing, e.g. [21, 22]. In
this paper, we exemplify the use of diffusion filtering in the problem of
predicting ratings in a recommendation system.

3. GENERALIZED DIFFUSION FILTERING

The diffusion filter in Section 2 is derived for symmetric networks with
positive weights and is defined in terms of the graph Laplacian. In some
applications, recommendation systems being an example, we have to
deal with asymmetric networks with weights that can be negative and
the structure of the problem justifies the use of normalized Laplacians.
We discuss these extensions in this section.

Normalized Laplacian. The random walk normalized Laplacian is de-
fined as L̃ := D−1L; see, e.g., [23]. In terms of an explicit repre-
sentation akin to the Laplacian in (1), this definition means that val-
ues in the diagonals are L̃ii = 1 and that the off-diagonal values are
L̃ij = −wij/

∑
j∈Ni

wij . To define the normalized diffusion filter we
just replace L with L̃ in Definition 1. This results in

y =
(
I + α L̃

)−1

x =
(
I + αD−1L

)−1
x. (9)

This expression corresponds to diffusion dynamics where the conduc-
tances out of a node are normalized to sum up to one. In particular,
the componentwise rate of change in node i induced by its neighbors
becomes [cf. (4)]

dxi(t)

dt
=
( ∑
j∈Ni

wij
)−1 ∑

j∈Ni

αwij (xj(t)− xi(t)) . (10)

In (4), nodes with higher degree change at a faster rate. In (10), the rate
of change of xi is driven by the difference with its neighbors and their
relative proximity but is independent of the node’s degree. This prop-
erty is of interest when the underlying graph has a heterogenous degree
distribution. In practice, we find that normalized diffusion filtering is
indeed beneficial in these situations; see Section 5.

Directed network. In asymmetric networks we can define different
Laplacians [24, 25] depending on whether we focus, e.g., in incom-
ing connections or outgoing connections. The definition that preserves
the diffusion interpretation is the outgoing directed Laplacian Lout :=
Dout −A, where the diagonals of Dout contain the out-degree of each
node. The diffusion filtered signal in asymmetric graphs can then be
written as

y = (I + αLout)
−1 x. (11)

The componentwise relationship induced by the corresponding diffusion
process is identical to (4). The difference is that the effect of node j in the
rate of change of the value at node i is not necessarily equal to the effect
of i in the rate of change of the value at j. As in the case of symmetric
networks we can defined a normalized diffusion filter by replacing Lout

with the normalized Laplacian L̃out := D−1
outLout in (11).

Network with negative weights. In a network with negative weights,
the positive weights encode affinity, null weights encode indifference,
and negative weights dissimilarity; see e.g., [26]. Negative values in the
Laplacian cannot be allowed in Definition 1 because the associated dy-
namical system in (2) is unstable. To resolve this problem we define the
absolute degree matrix D with diagonal elements Dii =

∑
j∈Ni

|Aij |,
[27]. The corresponding absolute Laplacian is defined as L := D −A
and the diffusion filtered signal in networks with negative weights is de-
fined as

y =
(
I + αL

)−1
x. (12)

4564



Normalized difference
0 0.05 0.1 0.15 0.2 0.25 0.3

F
re

q
u

e
n

c
y

0

50

100

150

200

250

300

350

400

(a) Directed, L
Normalized difference

0 0.1 0.2 0.3 0.4 0.5

F
re

q
u

e
n

c
y

0

50

100

150

200

250

300
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(c) Directed, negative weights, L̃
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(d) Negative weights, L, ‖ · ‖2

Fig. 1. (a), (b), (c) Histograms of the relative norm of the difference in
the diffused signals ‖y′−y‖∞/‖E‖∞‖x‖∞ for different network struc-
tures. (d) ‖y′−y‖2/‖E‖2‖x‖2 for networks with negative weights. The
ratio is considerably lower than the theoretical upper bound of 1.

The generative diffusion process follows from substituting L by L in (2).
The resulting componentwise dynamics can be written as

dxi(t)

dt
=
∑
j∈Ni

α |wij | (sign (wij)xj(t)− xi(t)) . (13)

The rate of change on i induced by neighbor j is governed by the mag-
nitude of the weight between them. Edges with positive weights drive
neighbor signals towards each other – as in regular diffusion – whereas
the value at a node is driven to the additive inverse of the values at adja-
cent nodes when the shared edge has a negative weight. If the network
contains negative weights and is also asymmetric, we replace L with
Lout := Dout − A, where Dout is a diagonal matrix containing the
absolute out-degrees. A normalized version can be likewise defined.

4. STABILITY

The diffusion filtered signal depends on the underlying network structure
through the associated Laplacian. It is therefore crucial to analyze how
a perturbation of the underlying network affects the filtered signal. In
this section we prove that for all the generalized diffusion filters defined
in Section 3, a small network perturbation entails a small change in the
diffused signal. We consider perturbations of a given network as noise
added to its edge weights, and consequently quantify the network per-
turbation as the matrix p-norm of the difference between the Laplacians
of the original and the perturbed networks. We focus our analysis on the
most frequently used p-norms where p ∈ {1, 2,∞}. We formally state
our result next.

Proposition 1 Given the unnormalized (normalized) Laplacian matrix
L (L̃) associated with any graph G, potentially directed and with neg-
ative edge weights, and a diffusion rate α, for a bounded signal x on
the network with ‖x‖∞ ≤ γ, if we perturb the network resulting in the
Laplacian L′ = L + E (L̃′ = L̃ + E) with the difference E such that
‖E‖∞ ≤ ε < 1, the difference between the diffused signal y′ based on
the perturbed network and the diffused signal y based on the original
network is bounded by∥∥y′ − y

∥∥
∞ ≤ γε+ o(ε) < γ + o(1). (14)

Moreover, if the original Laplacian L (L̃) is symmetric, then the above
statement is also true when ‖ · ‖∞ is replaced by ‖ · ‖1 or ‖ · ‖2.

Proof: See [28]. �

Proposition 1 presents a bound for the difference between the dif-
fusion filtered signals computed based on an original graph and its per-
turbed version. This bound depends on the original energy of the signals
‖x‖∞ as well as on the magnitude of the perturbation ‖E‖∞. Since the
bound in (14) contains high order terms, we may divide (14) by ε and
compute the limit as the perturbation vanishes

lim
ε→0

‖y′ − y‖∞
ε

≤ γ, (15)

entailing that, for small perturbations, the difference in the diffused sig-
nals grows linearly. When establishing the underlying network in real-
world applications, edge weights contain inherent errors. Proposition 1
ensures that diffused signals are robust to these minor perturbations.

To illustrate stability, we construct directed networks with edge
weights uniformly picked either from [0, 1] or [−1, 1], the latter used
to generate signed networks. We perturb these networks by adding to
each edge a random weight uniformly picked from [−0.05, 0.05], and
then consider the diffused versions of a graph signal x – also randomly
generated – with respect to the perturbed graph and the original graph,
for both Laplacians L and L̃. To verify Proposition 1 for the 2-norm
‖ · ‖2, we also examine diffusion on symmetric networks. In Figure 1
we plot the histogram for 1000 network perturbations of the norm of the
difference in the diffused signals y and y′, normalized by both the norm
of the perturbation ε and the norm of the graph signal γ, for every setting
analyzed. It is immediate that all perturbations are below the theoretical
upper bound of 1 [cf. (15)] by a considerable margin. This stability
property is of practical relevance, as we present in the next section.

5. RECOMMENDATION SYSTEMS

Rating prediction, i.e., estimating a given user rating for a given item, is
at the core of recommendation systems. Novel approaches to solve such
problems, traditionally solved by machine learning tools, have been pro-
posed recently [29, 30]. In this section, we illustrate a signal processing
perspective for rating prediction and show how diffusion filtering can be
used to improve the performance of recommendation systems.

Usually, ratings are considered in the form of a two dimensional
matrix R = R|U|×|I| for the set of users U and the set of items I.
Not every entry of R is known and the objective of the problem is to
predict missing entries of interest, i.e. to obtain predictions R̂u,i for
user u and item i, from known entries (v, j) ∈ K with K denoting
the set of all known entries. Two main techniques have been used to
solve the prediction problem: matrix completion [31] and collaborative
filtering (CF) [32]. Matrix completion looks for a low rank matrix R̂

such that R̂u,i = Ru,i for all known entries (u, i) ∈ K. The application
of Laplacian smoothing in movie recommendation has been evaluated
in [33] where it is considered in matrix completion. In this section, we
apply the diffusion filtering in collaborative filtering. In user-based CF,
given a certain item i, the recommendation system computes prediction
R̂u,i as the weighted sum of the ratingsRv,i evaluated by different users
v for the same item i, i.e.

R̂u,i =

∑
v∈U\{u} s(u, v)Rv,i∑
v∈U\{u} s(u, v)

, (16)

where s(u, v) denotes a similarity or proximity between users u and v.
In this paper, we consider cosine similarities

scos(u, v) =

∑
i∈I Ru,iRv,i√∑

i∈I R
2
u,i

√∑
i∈I R

2
v,i

=
RT
uRv

‖Ru‖2‖Rv‖2
, (17)

where Ru ∈ R|I| is the vector of all ratings for user u and similarly
for v. Since scos(u, v) computes the cosine of the angle between Ru
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unnormalized Laplacian normalized Laplacian
k-NN matrix completion

cosine adj. cosine Pearson usage cosine adj. cosine Pearson usage

user-based CF 0.8995 0.8997 0.9008 0.9042 0.8934 0.8937 0.8929 0.9028 0.9014 0.8981
item-based CF 0.8851 0.8856 0.8859 0.8867 0.8820 0.8817 0.8813 0.8825 0.8881

Table 1. Global RMSEs for different recommender systems. Diffusion filtering, as a preprocessing step, improves the recommendation performance
of collaborative filtering.

and Rv , it is contained between −1 and 1, where larger positive values
indicate stronger similarities between u and v and the opposite is true
for negative values. In (17), to overcome the problem of having missing
values in R, we set all missing values to 0 and adjust the values for
known ratings in Ru as Ru,i := Ru,i − (R̄ + µu),∀(u, i) ∈ K where
R̄ is the average over all known ratings R̄ =

∑
u,i:(u,i)∈KRu,i/|K| and

µu is the user bias defined as

µu =

∑
i∈I:(u,i)∈K

(
Ru,i − R̄

)
|{i ∈ I : (u, i) ∈ K}| . (18)

In the above normalization, missing values in R are set to the average
taste of each user and known ratings are adjusted to compensate for the
fact that some users are more generous than others. Besides resolving
missing values, the mean centering also favors the performance of rec-
ommendation systems [32, 34]. By contrast, in item-based CF, given a
user u, the system predicts rating R̂u,i as the weighted sum of the ratings
Ru,j evaluated by the same user u for different items j [cf. (16)]

R̂u,i =

∑
j∈I\{i} s(i, j)Ru,j∑
j∈I\{i} s(i, j)

. (19)

Again, in this paper we use cosine similarity as measure s(i, j), i.e.,
the analogous to (17) but between items instead of users. One usually
restricts attentions to the k users – in user-based CF – or items – in item-
based CF – that are the most similar to the user or item of interest in
the weighted sum. Such restrictions yield user- or item-based k-Nearest
Neighbor (k-NN) CF.

In contrast with the conventional formulation, we give an interpreta-
tion of the problem from a signal processing perspective. For each user
u, the rating vector Ru can be viewed as a graph signal defined on top of
a common network Gitem describing proximities between items. Under
such setup, users u and v should be similar if they assign similar ratings
to similar movies, even when the items rated by them do not coincide.
This interpretation motivates the use of diffusion filtering to smooth rat-
ing vectors Ru before evaluating the cosine similarities. We refer to this
formulation as item-based-diffusion user-based k-NN.

We consider 4 different ways to construct proximity networks be-
tween movies to encode similarities between them. First, we can com-
pute the edge weight between two movies i and j as its cosine similarity
scos(i, j) [cf. (17)]. Second, we can find edge weights through adjusted
cosine similarity [35] by normalizing average ratings for each movie.
Third, we may utilize Pearson correlation [36] by restricting attention
to users who rate both movies i and j. All these three constructions –
cosine, adjusted cosine, and Pearson – are based on comparing the rat-
ing profiles of two items. The intuition is that movies are similar if their
reviews by the same users are similar. The resulting networks would be
symmetric and, potentially, have edges with negative weights. Another
way to construct the network is to consider the proportion of users who
rate both movies relative to the users who rate only one of them

susage(i, j) =
|{u ∈ U : (u, i) ∈ K, (u, j) ∈ K}|

|{u ∈ U : (u, i) ∈ K}| . (20)

The above formulation is based on the idea that two movies are similar if
the set of users that rate them are similar, thus, yields directed networks
since different movies enjoy different levels of popularity represented by

the denominator in (20). In all constructions, edges are removed if their
weights are smaller than a threshold in absolute values.

The rating prediction problem can also be considered from the dual
domain by switching the roles of items and users. For each item i, its
ratings Ri ∈ R|U| evaluated by different users can be considered as a
graph signal defined on top of a common network Guser describing prox-
imities between users. Under such setup, items i and j should be similar
if they are given similar ratings by users with alike tastes, even if there
is no user that rated both of them. We therefore consider smoothing the
ratings Ri utilizing a similarity network between users before comput-
ing the cosine similarity between items in collaborative filtering, and call
this method user-based-diffusion item-based k-NN.

To illustrate how diffusion filtering can facilitate the similarity com-
putation and improve the performance of recommendation systems, we
consider the MovieLen-100k dataset [37] containing 100,000 ratings
from 943 users on 1,682 movies. We perform 5-fold cross validation
by partitioning the users into 5 random sets. For each cross validation
round, 10 randomly selected ratings from each of the users in a given fold
are withheld and kept as the test set, with all remaining ratings forming
the training set. As a performance metric we use the global root mean
squared error (RMSE), averaged across the 5 different testing sets. Ma-
trix completion and k-NN CFs without diffusion filtering are utilized
as benchmark algorithms. In diffusion filtering, we construct different
underlying networks based only on the available training set.

The global RMSEs for different methods averaged across 3 different
5-fold partitions of the data are summarized in Table 1. Collaborative fil-
tering with 8 different diffusion filters – 4 ways to construct networks and
2 choices of Laplacians – all improve the RMSE values except for the
user-based CFs with usage networks. Also, user-based CFs outperform
matrix completion methods when preprocessed with normalized diffu-
sion filtering. The almost 1% improvement in RMSE – from 0.9014 to
0.8929 and from 0.8881 to 0.8813 – is substantial in rating prediction
problems, considering that the benchmark algorithms are highly opti-
mized [32]. The improvements increase to 1.5% − 4% when networks
are constructed from all ratings, as opposed to only those in the training
set. The results presented are robust for a wide range of neighbors k,
diffusion rates α, and thresholding parameters used in constructing the
networks. The only diffusion filter that increases RMSE is user-based
CF with usage networks, partly due to the fact that (20) is based only
on the number of ratings and not on the content of these. This problem
can be solved by considering positive ratings separately from negative
ratings. It is also observed that normalized Laplacian works better than
unnormalized Laplacian. Part of the reason is because some movies or
users tend to be isolated – few weak connections – in the constructed
networks after edge weight thresholding. Therefore, diffusion with un-
normalized Laplacian cannot effectively act on these isolated nodes and
the normalized Laplacian achieves a better performance (cf. Section 3).

6. CONCLUSION
We defined diffusion filtering as a smoothing method for signals sup-
ported on networks. The method relies on the temporal heat map in-
duced by the diffusion of signals across the network and evaluates the
accumulated temperatures across time. We showed that diffused sig-
nals are stable with respect to perturbations in the underlying network
and demonstrated that diffusion filtering can improve the performance
of recommendation systems.
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