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? Telecom Bretagne, UMR CNRS Lab-STICC

ABSTRACT

Signal processing on graphs is a recent research domain that
aims at generalizing classical tools in signal processing, in
order to analyze signals evolving on complex domains. Such
domains are represented by graphs, for which one can com-
pute a particular matrix, called the normalized Laplacian. It
was shown that the eigenvalues of this Laplacian correspond
to the frequencies of the Fourier domain in classical signal
processing. Therefore, the frequency domain is not the same
for every support graph. A consequence of this is that there
is no non-trivial generalization of Heisenberg’s uncertainty
principle, that states that a signal cannot be fully localized
both in the time domain and in the frequency domain. A way
to generalize this principle, introduced by Agaskar and Lu,
consists in determining a curve that represents a lower bound
on the compromise between precision in the graph domain
and precision in the spectral domain. The aim of this paper
is to propose a characterization of the signals achieving this
curve, for a larger class of graphs than the one studied by
Agaskar and Lu.

Index Terms— Signal processing on graphs, Uncertainty
principle, Reduction of search space

1. INTRODUCTION

In the field of signal processing on graphs, a signal can be
seen as a temporal series, associating an intensity to every ob-
served moment. In this context, the support of information is
unidimensional, and is represented by the axis of time. One
of the main objectives of signal processing on graphs is to
extend tools from classical signal processing to new signals,
associated with more complex topologies that are represented
by graphs. The portage of tools such as convolution, transla-
tion of a signal, or Fourier transform [1] was made possible
thanks to the correspondence between frequencies in classi-
cal Fourier analysis and the eigenvalues of a certain matrix,
associated with the graph. A signal can therefore be seen as a
vector associating an intensity to every node in the graph, and
having a spectral decomposition according to the eigenvectors
of a particular matrix that is dependent on the graph.
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With the aim of porting tools from classical signal pro-
cessing to signal processing on graphs, Agaskar and Lu [2, 3]
proposed an adaptation of Heisenberg’s uncertainty principle
[4]. This principle classically states that a signal cannot be
fully localized both in the time and frequency domains. The
authors have shown that such a compromise also exists in sig-
nal processing on graphs. Therefore, a signal on a graph can-
not be fully localized both in the graph and spectral domains.

There are alternative definitions for the uncertainty princi-
ple on graphs (eg. [5]). The choice of a definition is a debated
topic in the community of signal processing on graphs. The
approach of Agaskar and Lu has the advantage to give a lot of
importance to the underlying graph in the computation of the
spread of a signal, what we believe should be an prominent
factor.

In more details, Agaskar and Lu have shown that the com-
promise between spectral precision and graph domain preci-
sion is dependent of the graph holding the signals. They have
introduced a notion of uncertainty curves representing, for a
given graph and a chosen node, the pairs (graph domain pre-
cision; spectral precision) being Pareto optima. Moreover,
they have shown that every uncertainty curve is convex, and
have illustrated for a particular example that the curve could
be described by a portion of an ellipse.

In this paper, we extend the work of Agaskar and Lu, by
proposing a method to characterize the signals that reach the
uncertainty curve of a given graph. This method allows one
to reduce the search space of signals reaching the uncertainty
curve, i.e being a Pareto optimum in terms of spectral and
graph domain precisions.

This document is organized as follows: in Section 2, we
present in more details the notions from signal processing on
graphs theory that are required for a full insight of our work.
in Section 3, we detail the notion of uncertainty on graphs, as
introduced in [2]. Finally, in Section 4, we extend the results
of Agaskar and Lu, and propose a method to characterize the
signals reaching the uncertainty curve. Section 5 concludes
this document, and proposes extensions to our work.

2. SIGNAL PROCESSING ON GRAPH

In the field of signal processing on graphs, the support for sig-
nals is not only the time, but can be a more complex structure.
To represent such a support, we introduce the notion of graph:
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Definition 1 (Graph). A graph (simple, non-directed) G is a
tuple (V, E ,W), where V = {1; . . . ;N} is a set of N nodes,
E = V × V is a set of edges, and W is a matrix representing
the weights associated with the edges: ∀u, v ∈ V : (u; v) ∈
E ⇔ Wu;v = Wv;u 6= 0.

A signal on a graph is a vector associating an intensity to
every node in the graph:

Definition 2 (Signal on graph). A signal x = {x1; . . . ; xN}
on a graph G of N nodes is a vector in RN . Without loss of
generality, we study in this document signals that have been
normalized, i.e such as ‖x‖2 = 1.

Figure 1 illustrates a signal x on a graph with a star topol-
ogy. The values of the components of x are represented using
colors:
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Fig. 1: Example of a signal on a star graph. The intensity of
the signal on each node is given through the color bar.

Another matrix that provides useful information on the
graph is its normalized Laplacian [6]. This is a differentiation
operator that is analogous to the Laplacian that intervenes in
the heat propagation equations or in harmonic analysis:

Definition 3 (Normalized Laplacian). The normalized Lapla-
cian Ł associated with a graph G with a matrix of weights W
is defined as Ł , IN − D−

1
2 WD−

1
2 , where D is a diagonal

matrix of degrees (i.e ∀u ∈ V : Du;u =
∑
v∈V

Wu;v), and IN is

the N ×N identity matrix.

One property of the matrix Ł is that it is defined as a linear
combination of real symmetric matrices. As a consequence, it
is itself a real symmetric matrix, and can thus be diagonalized
into an orthonormal basis. We denote the eigenvectors of this
basis X Ł = {χ1; . . . ;χN}, and the associated eigenvalues
ΛŁ = {λ1 ≤ λ2 ≤ · · · ≤ λN}.

Shuman et al. have shown that there is a correspondence
between the frequency of the Fourier basis in classical signal
processing and the eigenvalues ΛŁ of the normalized Lapla-
cian. This property allowed researchers to define tools for
signal processing on graphs such as graph Fourier transform,
convolution of signals or wavelets on graphs [1], among oth-
ers.

In this context of porting tools from classical signal pro-
cessing to signal processing on graphs, Agaskar and Lu have

shown [2] that a signal on a graph could nott be fully local-
ized both in the graph domain and in the spectral domain. The
details of their work is the object of the next section.

3. THE UNCERTAINTY PRINCIPLE APPLIED TO
SIGNAL PROCESSING ON GRAPH

Heisenberg’s uncertainty principle states that a signal x can-
not be fully localized both in the time and frequency domains.
More precisely, there exists an analytic expression quantify-
ing this compromise:

∆2
t (x)∆2

ω(x) ≥ 1

4
, (1)

where ∆2
t (x) is the time spread of the signal, and ∆2

ω(x) is its
frequency spread.

In order to transpose this notion to signal processing on
graphs, Agaskar and Lu [2] propose to define notions that are
analogous to ∆2

t (x) and ∆2
ω(x). The graph being used to rep-

resent the support of the signals, thus generalizing the time
line to more complex domains, finds its equivalent in a notion
of graph spread 1:

Definition 4 (Graph spread). Let x be a signal on a graph
G = (V, E ,W). Let uc ∈ V . The graph spread ∆2

G;uc
(x) of

the signal around node uc is defined by:

∆2
G;uc

(x) ,
∑
u∈V

d(uc, u)xu2 = x>Px , (2)

where d is a distance function, and P is the diagonal matrix
of distances to node uc. In the original definition [2], the
authors use the squared geodesic distance for d. This choice
has been discussed in [7].

Moreover, the correspondence between the Fourier do-
main and the eigenvalues of Ł being established, Agaskar and
Lu define a notion of spectral spread [2] for the signal:

Definition 5 (Spectral spread). Let x be a signal on a graph
G = (V, E ,W). The spectral spread ∆2

s(x) of the signal is
defined by:

∆2
s(x) ,

N∑
n=1

λnx̂n2 = x>Łx , (3)

where {λ1; . . . ;λN} are the eigenvalues of Ł, and x̂ =
{x̂1; . . . ; x̂N} is the graph Fourier transform [1] of x on G.

Informally, these two notions quantify the concentration
of a signal in the graph domain or in the spectral domain. As
an example, consider a signal x = {1; 0; . . . ; 0}, with the only
non-zero component being on node uc. With this signal, we

1 We recall that we consider unit-norm signals. As a consequence, the `2
normalization in the original equation of [2] is no longer required here.
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obtain ∆2
G;uc

(x) = 0, which corresponds to a signal that is
fully localized on one node in the graph domain

It is worth remarking that ∆2
s(x) is minimized for a signal

having all its energy on the first eigenvalue λ1 = 0, which is
also an observed property on signals diffused a high number
of times on a non-bipartite graph. As a matter of fact, when
a signal has all its energy on λ1, then it is observable that it
completely spread in the graph domain.

Agaskar and Lu have shown that the compromise between
localization of a signal in the graph domain and in the spectral
domain is dependent on the topology of the graph. Therefore,
to the best of our knowledge, no work has been done to pro-
vide a universal bound on the compromise (for a given N ), as
it was classically made in Equation 1. Although, Rabbat and
Gripon [8] have shown that the minimal graph spread for a
null spectral spread was obtained for the star graph, which is
a first result in the obtention of such a bound.

In order to study Heisenberg’s uncertainty principle ap-
plied to signals on graphs, it is necessary to fix a graph G and
a node uc used as reference for the graph spread. We can then
determine an uncertainty curve representing the best possible
compromises:

Definition 6 (Uncertainty curve). The uncertainty curve γuc

associated with a graph G, for a chosen node uc, is defined
by:

γuc
(α) , min

x
∆2
G;uc

(x) s.t. ∆2
s(x) = α , (4)

and can be plotted by varying α from 0 to 1 [2].

In the rest of this section, we choose to study an un-
weighted star graph, as in Figure 1, and set uc as the middle
node of the graph. For this particular graph, the uncertainty
curve is depicted in Figure 2. Contrary to most graphs, it
is possible to show that this curve is the same for every star
graph, whatever the value of N :
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γuc(α) for a star graph

Fig. 2: Uncertainty curve associated with a star graph. The
middle node is chosen for uc, and we use the squared geodesic
distance for the computation of ∆2

G;uc
in Equation 2.

The approach in Equation 4 to obtain γuc requires to
search the whole space of signals in order to find those that
minimize ∆2

G;uc
for a fixed value of ∆2

s. We denote x̃ the
signals that reach the uncertainty curve, i.e such as the pair
(∆2
G;uc

(x̃); ∆2
s(x̃)) represents a point in γuc

. For a star graph,
when choosing uc as the middle node, Agaskar and Lu have
shown that every x̃ is of the form x̃ = {x̃1; x̃2; . . . ; x̃2}. With-
out loss of generality, it is possible to describe the signals
reaching the uncertainty curve using the fact that they are
included in a circle. Therefore, for a star graph with central
uc, γuc corresponds to the lower left portion of an ellipse of
equation:

(∆2
s − 1)2 + (2∆2

G;uc
− 1)2 = 1 . (5)

For more complex graphs, the authors use an algorithm
called the sandwich algorithm to approximate the uncertainty
curve with arbitrary precision.

4. REDUCTION OF THE SEARCH SPACE OF
SIGNALS REACHING THE UNCERTAINTY CURVE

In order to reduce the search space for the resolution of Equa-
tion 4, we want to characterize the signals that reach the un-
certainty curve. To propose such a characterization, we ex-
tend the work of Agaskar and Lu in [2], appendix C. This
work was originally made to show that the solution signals x̃
for a complete graph or a star graph – for uc being the middle
node – have a particular form. The objective of this section
is to generalize this approach to make it relevent for a larger
class of graphs. We propose to prove Property 1 :

Property 1. Let M(α) , P − αŁ be a matrix defined for a
fixed α. If M(α) is of the form:

M(α) =

(
A B
C D

)
, (6)

where:

• A is a square matrix of dimension j.

• B is a matrix that is constant by line, i.e B = y1j> for
y any vector, and for 1j a vector of dimension j with all
components equal to 1.

• C is any matrix.

• D is circulant of dimension k.

then x̃ is of the form:

{x̃1; . . . ; x̃j ; x̃j+1; . . . ; x̃j+1︸ ︷︷ ︸
k times

} . (7)

For the needs of the proof, we recall Property 2 from [2] :
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Property 2. Every signal x̃ reaching the uncertainty curve
is the eigenvector associated with the lowest eigenvalue of a
matrix M(α) , P− αŁ.

Proof of Property 1.

• Since D is circulant, we have that 1k is an eigenvector for
D. By construction of M(α), D is symmetric, and can thus be
decomposed into an orthonormal basis. Let {χ1; . . . ;χk−1}
be the eigenvectors of D orthogonal to 1k, associated with
the eigenvalues {λ1; . . . ;λk−1}. By construction, we have
〈χi; 1k〉 = 0,∀i ∈ {1; . . . ; k − 1}.
• For all i ∈ {1; . . . ; k − 1}, we build a vector χ+

i ,
{0j ;χ>i }>, where 0j is the null vector of dimension j.
Using the fact that B is constant by line, we obtain that
∀i : M(α)χ+

i = λiχ
+
i . Therefore, every χ+

i is eigenvec-
tor of M(α). Using the methodology of [2], appendix C
(Rayleigh inequality), we obtain that the eigenvector associ-
ated with the smallest eigenvalue of M(α) must be orthogonal
to χ+

i ,∀i ∈ {1; . . . ; k − 1}.
• By noting that the j first components of vectors χ+

i are null,
and by application of Property 2, we obtain that every vector
x̃ attaining the uncertainty curve is of the form in Equation 7.

It is interesting to remark that the application of Property 1
can be made recursively on A, allowing one to refine the char-
acterization of the x̃1 . . . x̃j components in Equation 7, and
thus to reduce the search space of solutions.

To illustrate the characterization of signals x̃ reaching the
uncertainty curve, let us consider a star graph, but this time
with uc taken as one of the leave nodes of the graph. We
obtain that M(α) can be decomposed in a way that a square
circulant submatrix D of dimension N − 2 appears. Using
Property 1, we obtain that, for this graph and this choice of
uc, all signals x̃ are of the form {x̃1; x̃2; x̃3; . . . ; x̃3}.

In order to iterate over the solution signals x̃, we can con-
sider the set of unit-norm signals defined on an hypersphere
of dimension M , where M is the number of distinct com-
ponents in the characterization of x̃. In the considered ex-
ample, we can thus reduce the set of potential solutions to
signals characterized by two parameters θ and φ as follows:
{cos θ; sin θ cosφ; sin θ sinφ√

N−2 }.
Figure 3 represents the pairs (∆2

G;uc
(x̃); ∆2

s(x̃)) for sig-
nals x̃ obtained by sub-sampling, by iterating over the pos-
sible values of θ and φ in the interval [0; 2π], with a step of
0.05. We also depict the uncertainty curves obtained using the
sandwich algorithm, and observe that they match the frontier
of the set of explored signals.

5. CONCLUSION

In this document, we have presented an extension of the
method introduced by Agaskar and Lu in [2] in order to char-
acterize the signals that realize the uncertainty curve, for a
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Fig. 3: Sub-sampling of the space of potential solutions for a
star graph, for different choices of uc. The lower left border of
the set of explored signals is the uncertainty curve. Approxi-
mation through the sandwich algorithm matches the obtained
results.

given graph and a chosen reference node uc. Whereas the
original approach was only developped for complete graphs
and star graphs (only when uc was chosen as the middle
node), our method can give a characterization of solution
signals for a larger class of graphs. To illustrate our results,
we have plotted a subset of potential solution signals in the
case of a star graph when choosing ucas a leaf, and have
observed that our results are matched by those provided by
the approached sandwich algorithm.

To improve our work, we will first try to find a method
to reduce the size of the search space to discriminate signals
on the uncertainty curve from other potential solutions. Also,
we will study in more details the impact of the choice of uc,
in order to be able to propose a canonical uncertainty curve
and to allow comparison of different graphs. Finally, another
direction of our work will be to try to determine, for a fixedN ,
what could be a universal uncertainty curve for every possible
graph topology, thus enabling to state an uncertainty principle
similar to Equation 1.
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