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ABSTRACT

Many modern datasets can be represented as graphs and hence spec-
tral decompositions such as graph principal component analysis
(PCA) can be useful. Distinct from previous graph decomposition
approaches based on subspace projection of a single topological
feature, e.g., the Fiedler vector of centered graph adjacency matrix
(graph Laplacian), we propose spectral decomposition approaches to
graph PCA and graph dictionary learning that integrate multiple fea-
tures, including graph walk statistics, centrality measures and graph
distances to reference nodes. In this paper we propose a new PCA
method for single graph analysis, called multi-centrality graph PCA
(MC-GPCA), and a new dictionary learning method for ensembles
of graphs, called multi-centrality graph dictionary learning (MC-
GDL), both based on spectral decomposition of multi-centrality
matrices. As an application to cyber intrusion detection, MC-GPCA
can be an effective indicator of anomalous connectivity pattern and
MC-GDL can provide discriminative basis for attack classification.

1. INTRODUCTION

Many real-world data ranging from physical systems, social inter-
actions, network flows, knowledge graphs to biological and chemi-
cal reactions are often represented as graphs, especially for anomaly
or community detection [1–9] and graph signal processing [10–14].
Dimensionality reduction methods on graphs allow one to decom-
pose a graph into principal components using a spectral decompo-
sition of the graph adjacency or graph Laplacian matrix. In this
paper we propose a general framework to dimensionality reduction
based on spectral decomposition of a matrix composed of many dif-
ferent graph centrality statistics. This general framework leads to
a single-graph decomposition method that extends graph principal
components analysis (PCA) and a graph-ensemble decomposition
method that extends dictionary learning. These methods are appli-
cable to both directed and undirected graphs with edge weights and
are based on a spectral decomposition, specifically the singular value
decomposition (SVD), of a matrix composed of multiple graph cen-
trality statistics. The proposed methods are denoted multi-centrality
graph PCA (MC-GPCA) and multi-centrality graph dictionary learn-
ing (MC-GDL), respectively. By integrating multiple descriptions
of graph centrality, the proposed methods provide graph community
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detection and graph structure learning that are significantly more ro-
bust to noise and variation affecting graph connectivity structures.

In [15], a kind of graph PCA is performed on the distance ma-
trix of average commute time between nodes. In [16], PCA can also
be performed on the graph Laplacian matrix of nodal similarities.
In [17], the graph Laplacian matrix is used as a smooth regularization
function for robust PCA on graphs. In [18, 19], PCA is performed
on the matrix of origin-destination traffics. In [20–22], dictionary
learning methods for graph signals are proposed based on the graph
Laplacian matrix. Dictionary learning, also known as sparse cod-
ing, linear unmixing and matrix factorization, has been applied to
collections of images, audio, and graph signals to learn low dimen-
sional representations that give a sparse approximation to the en-
tire collection. Dictionary learning finds a low rank factored-matrix
approximation to the observation matrix, whose columns span this
collection. Many different methods for this approximation problem
have been proposed [23, 24]. Among the simplest methods is the
K-SVD approach [25] which uses a spectral decomposition to deter-
mine the best low rank approximation to the observed matrix. For
the purposes of illustration, in this paper we adopt this latter spectral
approach for learning a dictionary spanning an ensemble of graphs.

More often graph PCA and graph dictionary learning approaches
start with a set of raw multivariate data samples, create a similar-
ity (or dissimilarity) graph of the data samples, and aim to learn a
low-dimensional or sparse representation of the original multivariate
dataset. When applied to graph data, these methods are often limited
to graphs that are weighted, undirected and connected, which may
not be feasible for applications such as cyber network data analysis.
Furthermore, these methods often accomplish graph decomposition
based on a single measure of centrality, e.g., betweeness central-
ity [26], closeness centrality [27], ego centrality [28], or eigenvector
centrality [1]. In this paper we introduce graph spectral decompo-
sition methods that combine multiple centrality measures such as
graph walk statistics and graph distances as structural features and
apply them to different graph types including weighted, directed and
disconnected graphs. The proposed MC-GPCA method decomposes
a single graph utilizing multiple centrality features, achieving di-
mensionality reduction and feature decorrelation of the graph. The
proposed MC-GDL performs dictionary learning across a popula-
tion of graphs using multiple centrality features to learn the atoms of
the dictionary and the corresponding coefficients to represent each
individual graph in terms of its projection onto the dictionary. Ap-
plying our approach to cyber intrusion detection, we use MC-GPCA
to define a structural difference score (SDS) that reflects structural
variations within a graph and we use MC-GDL to learn discrimina-
tive structural atoms for classifying the presence of cyber attacks.
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2. STRUCTURAL FEATURE EXTRACTION ON GRAPHS

Here we describe three categories of generic structural features that
can be extracted from a graph, namely graph walk statistics, central-
ity measures and internode distances. The utility of the introduced
features with respect to different graph types, including weighted, di-
rected and disconnected graphs, is summarized in Table 1. While not
investigated in this paper, application-specific features such as web-
site hit rates, social interaction frequency, source-destination traffics
can also be leveraged as structural features. Without loss of general-
ity a graphG = (V, E) can be characterized by two n×nmatrices A
and W representing the adjacency and weight matrix, respectively,
where V (E) is the set of nodes (edges), and n is the total number
of nodes (i.e., graph size). A is a binary matrix such that its entry
[A]ij = 1 if there is an edge connecting from node i to node j, and
[A]ij = 0 otherwise. Throughout this paper we consider graphs
with nonnegative edge weights such that W is a nonnegative matrix,
where its entry [W]ij ≥ 0 if [A]ij = 1, and [W]ij = 0 otherwise.

2.1. Graph walk statistics

Graph walk statistics include commute time and cover time [29],
graph diffusion [30], hitting times [31], and hop walks. In this paper
we focus on hop walk statistics. An h-hop walk of a node on a graph
is a path starting from the node and traversing through (possibly re-
peated) h edges. An h-hop walk weight is defined as the sum of edge
weights of the corresponding path. We consider the number and to-
tal weight of h-hop walks of each node as features since they entail
the structural information of nodal reachability relative to its h-hop
vicinity. In principle one should extract graph walk statistics from
h = 1 to at least h = graph diameter hops as structural features,
where graph diameter is the largest shortest path hop count between
any node pairs in all connected components of a graph. We propose
an efficient iterative computation method to incrementally computes
these two structural features with respect to the hop count number h:
• Iterative computation of number of h-hop walks
Let Ah denote the matrix product of h copies of A. Observe that
the entry of A2, [A2]ij =

∑
k[A]ik[A]kj , is the number of 2-hop

walks from i to j. Extending this result to Ah we have [Ah]ij be-
ing the number of h-hop walks from i to j. Let a(h) = Ah1n be a
column vector where its entry [a(h)]i is the number of h-hop walks
starting from i and 1n denotes the n×1 column vector of ones. Then
a(h+1) can be computed by the matrix-vector product iteration

a(h+1) = Ah+11n = A ·Ah1n = Aa(h). (1)

• Iterative computation of total h-hop walk weight
Let W(h) be an n×nmatrix such that its entry [W(h)]ij is the sum
of all h-hop walk weights from node i to node j. Then we have

[W(h+1)]ij =
∑
k∈V

(
[W]ik · [Ah]kj + [W(h)]kj

)
·Aik

=
∑
k∈V

[W]ik · [Ah]kj +
∑
k∈V

[W(h)]kj ·Aik

= [WAh +AW(h)]ij , (2)

where we use [W]ik · [A]ik = [W]ik. Let w(h) = W(h)1n denote
a column vector such that its entry [w(h)]i is the total h-hop walk
weight starting from node i. Then w(h+1) can be computed by

w(h+1) =
[
WAh +AW(k)

]
1n = Wa(h) +Aw(h). (3)

Table 1: Utility of the introduced structural features.

Feature / Graph Type Weighted Directed Disconnected
# of h-hop graph walks X X X
total h-hop walk weight X X X
degree X X X
betweenness X X
closeness X X
eigenvector centrality X X X
ego X X X
LFVC X X
graph distance X X

2.2. Centrality measures

A centrality measure is a quantity that evaluates the level of impor-
tance or influence of a node in a graph and it reflects certain topolog-
ical characteristics. Here we introduce several centrality measures,
which will be used in the sequel to define feature sets associated with
a graph or a set of graphs.
•Degree. Degree is defined as the number of edges associated with a
node. It can be extended to directed graphs by considering the num-
ber of edges connecting to (from) a node as in-degree (out-degree).
• Betweenness [26]. Betweenness is the fraction of shortest paths
passing through a node relative to the total number of shortest paths
in the graph. It is infeasible for disconnected graphs since it is based
on shortest path distance. The betweenness of node i is defined as

betweenness(i) =
∑

k∈V,k 6=i

∑
j∈V,j 6=i,j>k

σkj(i)

σkj
, (4)

where σkj is the total number of shortest paths from k to j and
σkj(i) is the number of such shortest paths passing through i.
• Closeness [27]. Closeness is associated with the shortest path dis-
tances of a node to all other nodes. Let ρ(i, j) denote the shortest
path distance between node i and node j in a connected graph. Then

closeness(i) =
1∑

j∈V,j 6=i ρ(i, j)
. (5)

• Eigenvector centrality [1]. Eigenvector centrality of node i is the
i-th entry of the eigenvector associated with the largest eigenvalue
of the weight matrix W. It is defined as

eigenvector centrality(i) = λ−1
max

∑
j∈V

[W]ij [ξ]j , (6)

where (λmax, ξ) is the largest eigenpair of W.
• Ego centrality [28]. Ego centrality can be viewed as a local ver-
sion of betweenness that computes the shortest paths between its
neighboring nodes. Let di denote the degree of node i, W(i) de-
note the (di + 1) × (di + 1) local weight matrix of node i, I be
the identity matrix, and let ◦ denote entrywise matrix product. Ego
centrality is defined as

ego(i) =
∑
k∈V

∑
j∈V,j>k

1

[W2(i) ◦ (I−W(i))]kj
. (7)

• Local Fiedler Vector Centrality (LFVC) [32]. LFVC is a cen-
trality measure that evaluates the structural importance of a node re-
garding graph connectivity. Let y denote the eigenvector associated
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with the smallest nonzero eigenvalue of the graph Laplacian matrix.
LFVC is defined as

LFVC(i) =
∑
j∈Ni

([y]i − [y]j)
2, (8)

whereNi is the set of nodes connecting to or from i (i.e., neighbors).

2.3. Graph distances to a set of reference nodes

We propose to use graph distances of each node to a set of refer-
ence nodes as structural features that compensate the insufficiency
of graph walk statistics and centrality measures when one performs
MC-GPCA on graphs with high structural symmetry. For exam-
ple, consider a star-like graph where the central node is a singleton
and each leaf node is an identical clique (i.e., a complete graph).
All edges in the graph are undirected and have identical weight.
Therefore this graph has high structural symmetry and apparently
the nodes of identical structural property (e.g., connected to the cen-
tral node or not) have the same graph walk statistics and centrality
measures. To resolve the ambiguity of graph walk statistics and cen-
trality measures due to high structural symmetry in graphs we use
the shortest path distance of each node to the selected r reference
nodes as the r additional structural features. In the example of the
star-like graph with high structural symmetry, if r = 1 then selecting
any but the central node as a reference node can yield distinguish-
able structural features due to difference in shortest path distance to
the reference node. The reference nodes are selected according to a
user specified criterion, e.g. the nodes of maximal degrees.

3. METHODOLOGY

The extracted centrality features introduced in Sec. 2 can be rep-
resented as an n × p matrix X, where n is the graph size, p is the
number of extracted features and each column of X corresponds to
a particular centrality feature that is normalized to have unit norm.
The multi-centrality feature matrix X is then centered by subtracting
the row-wise empirical average from each row.

3.1. Multi-centrality graph PCA (MC-GPCA)

In analogy to standard graph PCA, which is applied to the graph
Laplacian matrix, MC-GPCA is PCA applied to X. PCA can be
formulated as finding an orthonormal transformation Q on X such
that after transformation the multi-centrality feature matrix X is rep-
resented by an n × q (q ≤ p) matrix Y = XQ that maximally
preserves the total data variance trace(YTY)/n, where trace(·) de-
notes the sum of diagonal entries of a matrix and Q is a p× q matrix
such that QTQ = I. Such a matrix Q can be obtained by solving
the q right singular vectors associated with the q largest singular val-
ues of X, which is denoted by a p×q matrix Vq . Moreover, the total
variance of Y is equivalent to the sum of the q squared largest sin-
gular values of X divided by n. Therefore using MC-GPCA we ob-
tain n q-dimensional coordinates representing structural scores with
respect to the q principal components (i.e., columns of Vq). The
algorithm for MC-GPCA is summarized in Algorithm 1.

3.2. Structural difference score (SDS)

We use these structural coordinates (i.e., each row of Y = XVq) to
define a structural difference score (SDS) for each node in a graph.
The SDS of node i is associated with the total squared Euclidean

Algorithm 1 Multi-centrality graph PCA (MC-GPCA)

Input: A graph G = (V, E), desired dimension q
Output: n structural coordinates Y for each node in G
1. Extract p structural vectors X from G
2. Normalize each column of X to have unit norm
3. Subtract row-wise empirical average from X
4. Solve the right singular vectors Vq of X
5. Y = XVq

Algorithm 2 Multi-centrality graph dictionary learning (MC-GDL)

Input: A set of graphs {G`}g`=1, number of atoms K, sparsity
constraint S, number of highest SDS feature z
Output: graph structure dictionary D, coefficient matrix C
1. Obtain z highest SDS from (9) for each graph as columns of Z
2. Subtract column-wise empirical average from Z
3. Perform K-SVD on Z to obtain D and C

distance to its neighboring nodes Ni and its number of edges (i.e.,
degree di), which is defined as

SDS(i) =

∑
j∈Ni

‖rowi(Y)− rowj(Y)‖2

di + 1
, (9)

where rowi(Y) denotes the i-th row of Y, ‖ · ‖ denotes Euclidean
distance, and the denominator di + 1 is such that the SDS of a sin-
gleton node is well-defined.

3.3. Multi-centrality graph dictionary learning (MC-GDL)

Consider the case where a set of graphs {G`}g`=1 is available, each
possibly being of different graph size and connectivity pattern, e.g.,
data from a cyber network at different time instances. Multiple-
centrality graph dictionary learning (MC-GDL) is proposed to learn
a sparse structure representation of {G`}g`=1 by finding a dictio-
nary D consisting of K atoms (columns of D) and an associated
sparse coefficient matrix C ∈ RK×g such that the representation
error ‖Z − DC‖F is minimized while satisfying the column-wise
sparsity constraints on C that the number of nonzero entries of each
column can not exceed a specified value S, where the columns in
Z are structural features of {G`}g`=1 and ‖ · ‖F denotes the Frobe-
nious norm. Many different methods exist for solving the dictionary
learning problem of estimating D and C, often called the sparse cod-
ing problem [23, 24]. In this paper, we focus on a spectral method
(K-SVD) of dictionary learning introduced in [25]. The proposed
MC-GDL selects the z highest SDS from each graph as one column
of Z and applies K-SVD to find the dictionary and the corresponding
coefficient matrix. The algorithm is summarized in Algorithm 2.

4. EXPERIMENTS AND CYBER INTRUSION DETECTION

4.1. Illustration of sensitivity to structural changes on graphs

Here we consider four similar graphs with different structural char-
acteristics as displayed in Fig. 1 (a). From top to bottom, these four
graphs represent high structural symmetry, reduced structural sym-
metry due to edge removal, increase of the weight of edge (3,4), and
change in edge direction. The extracted multi-centrality features are
1) graph walk statistics from 1 to 4 hops, and 2) the graph distance
to node 1 (the reference node). It can be observed from Fig. 1 (b)
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(c) MC-GPCA with one reference node

Fig. 1: Illustration of sensitivity of proposed MC-GPCA algorithm to structural perturbations. Each node on a graph is represented by a
2-dimensional structural coordinate. Nodes marked by a gray box have identical MC-GPCA score.

Table 2: Description of the University of New Brunswick (UNB)
Intrusion Detection Evaluation Dataset [33]

Dataset # nodes # edges Description
Day 1 5357 12887 Normal activity
Day 2 2631 5614 Normal activity

Day 3 3052 5406
Infiltrating attack and

normal activity

Day 4 8221 12594
HTTP denial of service

attack and normal activity

Day 5 24062 32848
Distributed denial of

service attack using Botnet
Day 6 5638 13958 Normal activity

Day 7 4738 11492
Brute force SSH attack

and normal activity

that MC-GPCA can reflect structural perturbations, and total data
variance is explained by one or two principal components. More-
over, the first principal component is shown to completer describe
the network flow pattern for the directed example graph. Fig. 1 (c)
shows that the graph distance feature adds discrimination power as
the MC-GPCA scores are better differentiated.

4.2. Cyber intrusion detection

The UNB intrusion detection evaluation dataset [33] described in
Table 2 is a collection of directed cyber network graphs where each
node is a host (machine) in a cyber system and an edge indicates the
existence of communication between hosts. No information beyond
graph topology is used for analysis. The extracted multi-centrality
features are 1) graph walk statistics from 1 to 20 hops, 2) all central-
ity measures introduced in Sec. 2.2 (edge directions are omitted for
computing LFVC), and 3) graph distances to 10 reference nodes of
highest degree, resulting in p = 56 features (columns of X). Fig. 2
(a) shows that the proposed SDS statistic (Eqn. (9)) with q = 2 prin-
cipal components from MC-GPCA. The SDS statistics are similar
over days without attacks, whereas they are significantly higher in
days under attacks that induce anomalous connectivity patterns (i.e.
Days 3, 4 and 5). On the other hand degree statistic (Fig. 2 (b)) fails
to be a valid indicator of cyber attacks. The SDS statistic fails to
detect the SSH attack (Day 7) since it is a password attack that takes
place only between a single host and a single server.
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Fig. 2: Cyber intrusion detection on the UNB dataset. MC-GPCA
and MC-GDL are shown to be effective indicators of cyber attacks.

We applied MC-GDL to the entire UNB database of graphs to
learn a dictionary that spans the dataset. For this implementation
of MC-GDL we select K = 2 atoms, z = 300 SDS features and
S = 2 sparsity level. The two learned structural atoms in Fig. 2 (c)
can be interpreted as a normal activity atom consisting of identical
SDS features except for one spike accounting for the main router
and an attack activity atom of higher variance in SDS features. The
corresponding coefficients in Fig. 2 (d) reflect the mixture portion
of these atoms and they can be used for attack classification. For
instance, K-means clustering with 2 clusters identifies Days 3, 4
and 5 as being anomalous and thus under attack.

5. CONCLUSION

This paper proposes PCA and dictionary learning graph decomposi-
tion methods that are based on multi-centrality features of the graph.
The proposed methods can reflect structural perturbations in graph
symmetry, edge weight and edge direction. When applied to cyber
intrusion detection, our experiments show that MC-GPCA and MC-
GDL can effectively detect attacks on the network.
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